King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 142 (Spring 2015)
Major Exam II
Saturday April 18, 2015

Time: 150 minutes, Total Pages: 11

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	12	
2	12	
3	12	
4	12	
5	10	
6	10	
Total	68	

Question 1.

Assuming the availability of all variables and their complements, simplify the following two Boolean functions F and G subject to the given don't care conditions d1 and d2 using the K-Map method:
(i) Implement F using only NOR gates:

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(4,5,6,10,12,13)
$$

$$
\mathrm{d} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(3,7,9)
$$

(ii) Implement G using only NAND gates:

$$
\mathrm{G}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,2,8,11,13,15)
$$

$$
\mathrm{d} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(3,6,7,9,12)
$$

$\stackrel{\sim}{4}$	C D			
	00	01	11	10
	1		X	1
			X	X
	X	1	1	
	1	X	1	

Question 2.

Design a combinational logic circuit which receives a 4-bit unsigned number $X\left(x_{3} x_{2} x_{1} x_{0}\right)$ as input and produces an output \boldsymbol{Z} which equals the result of integer division of \boldsymbol{X} by $\mathbf{3}$ (e.g., if $\mathrm{X}=7, \mathrm{Z}=2$).
(i) How many bits does the output \boldsymbol{Z} have? Why?
(2 Points)
(ii) Derive the truth table of this circuit.
(4 Points)
(iii) Using K-maps, derive minimized sum-of-products expression(s) for the circuit output(s).

Question 3.

(i) Fill the following table with the appropriate signed number representation. Under the columns labeled "O" put " T " if there is an overflow, otherwise put " F ". If the value cannot be represented correctly using the specified number of bits, put "NA".

\# Bits	Sign-Magnitude	\mathbf{O}	1's Complement	\mathbf{O}	2's Complement	\mathbf{O}	Decimal Value
5					10000	F	
7			0111111	F			
8	10001100	F					
6							-17

(ii) Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values from the last two stages. For each of the three operations, check and indicate whether overflow occurred or not.

11000	$\underline{01001}$	11011
$-\underline{10010}$	$\underline{10011}$	
Overflow? (Yes / No)		

Question 4.

In the following questions, you must clearly label all inputs/outputs of all MSI components, and clearly indicate both the MSB and LSB.
(i) Implement a 3 -to- 8 decoder with enable, using two 2 -to-4 decoders with enable and other logic gates as needed
(ii) Impalement $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{M} 0 . \mathrm{M} 1 . \mathrm{M} 5 . \mathrm{M} 6 . \mathrm{M} 7$ using a decoder and a single gate with minimum number of inputs.
(iii) Implement $F(A, B, C)=m_{2}+m_{5}+m_{6}+m_{7}$, using the smallest possible multiplexer and inverters as needed.

Question 5.

Given two 8-bit signed numbers, \mathbf{X} and \mathbf{Y} in 2's complement representation, and assuming overflow does not occur:
(i) Using a single adder of any size and basic logic gates, design a circuit that generates a signal LT which equals $\mathbf{1}$ if $\mathbf{X}<\mathbf{Y}$, otherwise it is $\mathbf{0}$. Points)
(ii) Using a single adder of any size and basic logic gates, design a circuit that receives an 8bit signed number \mathbf{M} and produces an output value which equals $\mathbf{3 *} \mathbf{M}$. Points)
(iii) Given two 8-bit signed numbers \mathbf{X} and \mathbf{Y} in 2's complement representation, use only adders of any size, multiplexers and basic logic gates, to compute the output \boldsymbol{Z} defined as follows:
(6 Points)

IF $(X \geq Y)$	Then $Z=3 *(X-Y)$
	Else $Z=2 *(Y-X)$

Question 6.

Given below the design of an n-bit magnitude comparator. The circuit receives two n-bit unsigned numbers \boldsymbol{A} and \boldsymbol{B} and produces two outputs GT and EQ as given in the table to the right.

	GT	EQ
IF A $>\mathrm{B}$	1	0
IF $\mathrm{A}=\mathrm{B}$	0	1
IF A B	0	0

The input operands are processed in a bitwise manner starting with the most significant bit (MSB). The comparator circuit is constructed using n identical copies of the basic 1-bit cell shown to the right.

The Figure below shows the n-bit comparator circuit implemented using n copies of the basic 1-bit cell.

Boolean expressions of the outputs of $\underline{\text { cell } \boldsymbol{i}}$ and its gate-level implementation are given below:

$$
\begin{aligned}
& G T_{i}=G T_{i+1}+A_{i} \bar{B}_{i} E Q_{i+1} \\
& E Q_{i}=\left(A_{i} \odot B_{i}\right) . E Q_{i+1}
\end{aligned}
$$

(i) Write a Verilog model Comp1Bit to model the 1-bit comparator circuit using either a structural model of basic logic gates or a behavioral model using the assign statement.
(4 Points)

The declaration of the Comp1Bit module is as follows:
module Comp1Bit (output GT_out, EQ_out ,
input GT_{-}in , EQ_in, Ai, Bi);
(ii) Complete the following Verilog model Comp3Bit which models a 3-bit comparator circuit.

```
module Comp3Bit (output Greater, Equal,
    input [2:0] A , B) ;
wire [2:1] GT, EQ ;// internal wires connecting cells
/* First instance "M1" of the cell Comp1Bit with its inputs GT_in and
    EQ_in connected to fixed values of 0 and 1 respectively */
//
Comp1Bit M1 (GT[2], EQ [2], 0, 1, A[2], B[2]) ;
...
...
endmodule
```

(iii) Write a Verilog test bench to test the 3-bit comparator Comp3Bit by applying the following input patterns consecutively with a delay of 20ps: (4 Points)

1. $\{A=100, B=011\}$,
2. $\{A=101, B=101\}$,
3. $\{\mathrm{A}=011, \mathrm{~B}=111\}$.

Verilog Primitives

Basic logic gates only

\diamond and
γ or
\diamond not
\& buf
\& xor
\diamond nand
\& nor
These gates are expandable: 1st node is O / P node, followed by $1,2,3 \ldots$
number of input nodes

Verilog Operators

$\}$	concatenation		
$+\cdots$	$l^{* *}$	arithmetic	
$\%$		modulus	
$\gg=$	$\ll=$	relational	
$!$	logical NOT		
$\& \&$	logical AND		
$\\|$	logical OR		
$==$	logical equality		
$!=$	logical inequality		
$===$	case equality		
$!==$	case inequality		
$?:$	conditional		

\sim	bit-wise NOT
$\&$	bit-wise AND
\mid	bit-wise OR
\wedge	bit-wise XOR
$\wedge \sim \sim \wedge$	bit-wise XNOR
$\&$	reduction AND
\mid	reduction OR
$\sim \&$	reduction NAND
$\sim \mid$	reduction NOR
\wedge	reduction XOR
$\sim \wedge \wedge \sim$	reduction XNOR
\ll	shift left
\gg	shift right

