King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 141 (Fall 2014)
Major Exam II
Saturday November 29, 2014

Time: 150 minutes, Total Pages: 11

Name:_KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	17	
2	14	
3	10	
4	12	
5	12	
Total	65	

Question 1

For the given K-map representing the Boolean function F, answer the following questions:
(i) Which one of the following is an Implicant of F :

Term	$A^{\prime} C^{\prime}$	$A^{\prime} B D$	$A C$	$A^{\prime} B^{\prime} C^{\prime}$	$B C D^{\prime}$
Implicant (Y / N)	N	Y	N	N	Y

$\begin{array}{lllll}\mathrm{AB} / \mathrm{CD} & 00 & 01 & 11 & 10\end{array}$

00

01

11

	1		
	1	1	1
1	1		1
1	1		1

(ii) Which one of the following is a Prime Implicant (PI) of F:

Term	$A C^{\prime}$	$A^{\prime} B C$	$B C^{\prime} D$	$C^{\prime} D$	$A D^{\prime}$
PI (Y / N)	Y	Y	N	Y	Y

(iii) Which one of the following is an Essential Prime Implicant (EPI) of F:

	$C^{\prime} D$	$A^{\prime} B C$	$A^{\prime} C^{\prime}$	$B C^{\prime} D$	$A D^{\prime}$
$E P I$ (Y / N)	Y	N	N	N	Y

(iv) Obtain a simplified sum-of-product (SOP) expression for F .
$F=A D^{\prime}+C^{\prime} D+A^{\prime} B C$
(v) The following Boolean expression $F=A D+A^{\prime} C^{\prime} D^{\prime}$ is a simplified version of the expression $F=$ $A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A B C D+A B^{\prime} C^{\prime} D$. Are there any don t care conditions? If so, what are they?

The don't care conditions are:
A'BC'D'. ABC'D, AB'CD
(vi) Implement the circuit given below using only 2-input

NAND gates. Redraw the circuit to obtain a multi-level NAND circuit implementation. Assume that only the true form of each input variable is available.

AB/CD	00	01	11	10
00	1			
01	X			
11		X	1	
10		1	X	

The implementation using only 2-input NAND gates is:

Question 2.

(i) Fill in all blank cells in the two tables below.

Binary	Equivalent decimal value with the binary interpreted as:			
	Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number
10110110	182	-54	-73	-74

Decimal	Binary representation in 8 bits:		
	Signed-magnitude representation	Signed-1's complement representation	Signed-2's complement representation
+100	01100100	01100100	01100100
-100	11100100	10011011	10011100

(ii) Show how the following arithmetic operations are performed using 5-bit signed 2 's-complement system. Check for overflow and mark clearly any overflow occurrences.

Question 3.

(i) It is required to design a combinational circuit that receives a 4-bit input number, $\times 3 \times 2 \times 1 \times 0$, and computes the number of leading zero's in the input. For example, if the input $\times 3 \times 2 \times 1 \times 0=0111$ or $\mathrm{X} 3 \times 2 \times 1 \times 0=0100$, the output should produce a result indicating that there is a single leading zero. Construct the truth table of the circuit. You do not need to derive the Boolean expressions of the outputs. (5 points)
(ii) Using a block diagram of the design of the 4-bit leading-zero detector circuit in (i) and any other needed MSI blocks (e.g. Adder, Comparator, Multiplexer, Decoder, etc.), design a combinational circuit that receives an 8-bit input number, X7X6X5X4X3X2X1X0, and computes the number of leading zero's in the input. (5 points)
(i)

X 3	X 2	X 1	X 0	Z 2	Z 1	Z 0
1	x	x	x	0	0	0
0	1	x	x	0	0	1
0	0	1	x	0	1	0
0	0	0	1	0	1	1
0	0	0	0	1	0	0

(ii)

Question 4.

(12 Points)

Using only the following modules:

- One 2-to-4 Decoder with enable,
- One 4-to-1 MUX,
- A maximum of five 1-to-2 DeMUXs /Decoders, and
- The minimum number of 2-input NAND gates (If needed)

Implement the following assuming that signals are available only in the "True" but not the complement form:
(i) A 3-to-8 Decoder (you may use this decoder as a black-box in solving (ii) and/or (iii) below)
(ii) $\mathrm{F} 1(\mathrm{a}, \mathrm{b})=\mathrm{ab}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}$
(iii) $\quad \mathrm{F} 2(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{m} 0+\mathrm{m} 1+\mathrm{m} 2+\mathrm{m} 4+\mathrm{m} 7$

Label all your signals (inside and outside MSI components).
(i)

Knowing how to construct 2-to-4 decoder using 1-to-2 DeMuxs (3 points MAX)::

- Correct general structure (1 point)
- Correct general structure with accurate port labeling (3 points)

Knowing how to construct 3-to-8 decoder using 2-to-4 decoders (3 points MAX):

- Correct general structure (1 point)
- Correct general structure with accurate port labeling (2 points)
- Using NAND in place of inverter (1 point)

(ii)

Knowing how to implement a 2 variable function using 4-to-1 Mux (2 points MAX):

- Correct general structure (1 point)
- Correct general structure with accurate port labeling (2 points)

(iii)

Knowing how to implement a 2 variable function using 3-to-8 Decoder (4 points MAX):

1. Showing that it is more efficient to use 3 -input NOR instead of 5 -input OR (1 point)
2. Showing the implementation od 3 -input NOR using 2 -input NANDs (1 point)
3. Implementation of F 2 (2 points MAX):

- Showing the correct implementation of F2 (1 point)
- Showing the correct implementation of F2 with accurate port labeling (2 point)

Question 5.

It is required to design an n-bit magnitude comparator. The circuit receives two n-bit unsigned numbers \boldsymbol{A} and \boldsymbol{B} and produces two outputs GT and EQ as given in the table to the right.

	GT	EQ
IF A> B	1	0
IF A = B	0	1
IF A < B	0	0

The input operands are processed in a bitwise manner starting with the most significant bit (MSB). The comparator circuit is constructed using n identical copies of the basic 1-bit cell shown to the right. Cell i processes the $i^{\text {th }}$ input bits $\left(\mathrm{A}_{i}\right.$ and $\left.\mathrm{B}_{i}\right)$ together with information passed to it from its predecessor cell $\left(\mathrm{GT}_{i+1}\right.$ and $\left.\mathrm{EQ}_{i+1}\right)$. It produces two output bits $\left(\mathrm{GT}_{i}\right.$ and $\left.\mathrm{EQ}_{i}\right)$. The cell output $\mathrm{GT}_{i}=1$ iff $\left(\mathbf{A}_{n-1} \mathbf{A}_{n-2} \ldots\right.$ $\left.\mathbf{A}_{i+1} \mathbf{A}_{i}>\mathbf{B}_{n-1} \mathbf{B}_{n-2} \ldots \mathbf{B}_{i+1} \mathbf{B}_{i}\right)$ and $\mathrm{EQ}_{i}=1$ iff $\left(\mathbf{A}_{n-1} \mathbf{A}_{n-2} \ldots \mathbf{A}_{i+1} \mathbf{A}_{i}=\mathbf{B}_{n-1}\right.$ $\mathbf{B}_{n-2} \ldots \mathbf{B}_{i+1} \mathbf{B}_{i}$).

The Figure below shows the n-bit comparator circuit implemented using n copies of the basic 1 bit cell. The output of the n-bit comparator is that of the $\underline{n}^{\text {th }}$ cell copy (cell 0; the leastsignificant). Note that the inputs $\boldsymbol{G T}_{\boldsymbol{n}}$ and $\mathbf{E Q}_{\boldsymbol{n}}$ to the first cell (cell n-1; the most significant) are set to 0 and 1 respectively as there are no more significant bits.

Boolean expressions of the outputs of $\underline{\boldsymbol{c e l l} \boldsymbol{i} \boldsymbol{i}}$ and its gate-level implementation are given below:

$$
\begin{aligned}
& G T_{i}=G T_{i+1}+A_{i} \bar{B}_{i} E Q_{i+1} \text {, and } \\
& \boldsymbol{E} \boldsymbol{Q}_{i}=\left(\boldsymbol{A}_{\boldsymbol{i}} \boldsymbol{O} \boldsymbol{B}_{\boldsymbol{i}}\right) \cdot \boldsymbol{E} \boldsymbol{Q}_{i+1}
\end{aligned}
$$

Assuming that the XOR and XNOR gates have a delay of 2τ while all OTHER gates (including inverters) have a delay of 1τ, calculate:

Thus, W. C. Delay $=6 \tau$
(ii) The worst case delay of an n-bit comparator (as a function of n and τ)
(3 Points)

Delay components:

1. Delay of the Top Logic (dependent only on $\mathrm{Ai} \& \mathrm{Bi})=2 \tau$
2. EQ Propagation Delay $=1 \tau * n$
3. Delay of GT in the last change $=1 \tau$ (from the last EQ signal)

Total Delay $=2 \tau+n \tau+1 \tau=(3+n) \tau$
(iii) Suggest a design for a cascadeable 3-bit comparator with lookahead capability. What is the worst case delay of this unit (using the same delay model of 2τ for XOR/XNOR gates and 1τ for all other gates (irrespective of their fanin)?
(5 Points)
For convenience, the comparator circuit and Boolean expressions of the cell are repeated here.

Boolean expressions of the outputs of $\underline{\text { cell } \boldsymbol{i}}$ and its gate-level implementation are given below:

$$
\begin{aligned}
& G T_{i}=G T_{i+1}+A_{i} \bar{B}_{i} E Q_{i+1}, \text { and } \\
& \boldsymbol{E} \boldsymbol{Q}_{i}=\left(\boldsymbol{A}_{\boldsymbol{i}} \text { O } \boldsymbol{B}_{\boldsymbol{i}}\right) \cdot \boldsymbol{E} \boldsymbol{Q}_{i+1}
\end{aligned}
$$

$$
\begin{aligned}
E Q & =E Q_{0}=\left(A_{0} \odot B_{0}\right) \cdot E Q_{1}=\left(A_{0} \odot B_{0}\right) \cdot\left(A_{1} \odot B_{1}\right) \cdot E Q_{2}=\left(A_{0} \odot B_{0}\right) \cdot\left(A_{1} \odot B_{1}\right) \cdot\left(A_{2} \odot B_{2}\right) \cdot E Q_{3} \\
& =\left(A_{0} \odot B_{0}\right) \cdot\left(A_{1} \odot B_{1}\right) \cdot\left(A_{2} \odot B_{2}\right)
\end{aligned}
$$

Total Delay is:

1. Delay of the equivalence gates $\rightarrow 2 \tau+$
2. Delay of the AND gates to form the product $\rightarrow 1 \tau+$
3. Total Delay of the EQ output $=3 \tau$

$$
\begin{aligned}
G T & =G T_{0}=G T_{1}+A_{0} \bar{B}_{0} E Q_{1}=G T_{3}+A_{2} \bar{B}_{2} E Q_{3}+A_{1} \bar{B}_{1} E Q_{2}+A_{0} \bar{B}_{0} E Q_{1} \\
& =A_{2} \bar{B}_{2}+A_{1} \bar{B}_{1}\left(A_{2} \odot B_{2}\right)+A_{0} \bar{B}_{0}\left(A_{2} \odot B_{2}\right)\left(A_{1} \odot B_{1}\right)
\end{aligned}
$$

Total Delay is:

1. Delay of the equivalence gates $\rightarrow 2 \tau+$
2. Delay of the AND gates to form the product terms $\rightarrow 1 \tau+$
3. Delay of the OR gate to form the Sum $\rightarrow 1 \tau$
4. Total delay of the GT output $=4 \tau$

Total Delay of the lookahead unit $=\operatorname{MAX}(3 \tau, 4 \tau)=4 \tau$

