King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 132 (Spring 2013) Major Exam II Saturday April 19, 2014

Time: 120 minutes, Total Pages: 12

Name:		ID:	Section:
Notes:			
•	Do not open the exam book until inst	ructed	
•	Calculators are not allowed (basic,	advanced, cell phone	es, etc.)

- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	8	
2	12	
3	8	
4	12	
5	13	
6	10	
7	7	
Total	70	

Question 1 [8 Points]

Shown to the right is the K-Map of the Boolean function \mathbf{F} subject to the don't care conditions \mathbf{d}

$$\mathbf{F}(A, B, C, D) = \sum (0, 1, 2, 4, 6, 10, 12)$$

$$\mathbf{d}(A, B, C, D) = \sum (7, 13, 14, 15)$$

a) Derive the minimum **SOP** expression of F.

CD	00	01	11	10
00	1	1	0	1
01	1	0	x	1
11	1	х	х	х
10	0	0	0	1

Shown to the right is the K-Map of the Boolean function G subject to the don't care conditions D

G(A, B, C, D) =
$$\Sigma$$
(1, 4, 5, 6, 9, 12)
D(A, B, C, D) = Σ (0, 7, 10, 13, 15)

b) Derive the minimum **POS** expression of **G**.

CD	00	01	11	10
00	X	1	0	0
01	1	1	X	1
11	1	х	х	0
10	0	1	0	Х

Question 2 [12 Points]

A logic circuit has <u>two</u> inputs x & y each is a 2-bit <u>unsigned</u> number. It has an output number z such that $z = x^2 + y^2$.

- a. What is the minimum number of bits required for the output number z?
- b. Construct the truth table of the circuit.
- c. Derive the Boolean expressions of the two least significant output bits (z_0, z_1) using basic gates (NO MSI parts)

Question 3 [8 Points]

b. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $\mathbf{F} = (\mathbf{A} + \mathbf{B} + \mathbf{C}) (\mathbf{D} + \mathbf{B'} + \mathbf{C'}) \cdot \mathbf{D}$ using a minimum number of one gate type only.

c. Assuming the availability of the true and complement of signals A, B, C, D and E, implement the shown circuit using minimum number of NAND gates only.

Quest	ion 4.	(12 Points)
Assı	uming that all numbers are held in 6-bit storage registers, answer the follow	lowing:
a.	If 2's complement binary representation is used, what is the range of values the	nat each number may
	assume?	(2 points)
b.	The largest number that can be subtracted from (-15) without causing	overflow is (2 points)
C.	Perform the following arithmetic operations <i>in the indicated number represen</i> the result to decimal and indicate if an <i>overflow</i> has occurred:	tation. Then, convert

 $(10)_{10}$ – $(24)_{10}$ (using sign-magnitude binary representation).

(i)

(ii)	010010 –111111 (using 1's complement binary representation).	Page
(iii)	100000 –100011 (using 2's complement binary representation).	

010111 – 11 0111 (using 2's complement binary representation).

(iv)

Question 5. (13 Points)

Implement the Boolean function: $F(A, B, C) = AB + \overline{A}C + \overline{A}\overline{B}$

- a. Using a single 4x1 multiplexer. (4 Points)
- b. Using a minimum number of 2x1 multiplexers. (2 Points)
- c. Using a single 3x8 decoder and an OR gate. (3 Points)
- d. Using a single NOR gate and the minimum number of 2x4 decoders with enable. (4 Points)

Question 6. (10 Points)

a. Design a 4-bit adder/subtractor circuit which uses the least number of Full-Adders (FAs). The circuit receives two 4-bit signed numbers A and B (2's complement representation) and one control input (M). If the control input M =0, the 4-bit circuit output equals (A+B). If the control input M =1, it equals (A-B). The circuit has another output V which equals 1 only in case of overflow.

b. Given the FA circuit shown below, calculate the worst-case delay of this adder/subtractor circuit assuming gate delays as given in the table to the right.

Gate	Delay (ns)
AND	2
OR	2
XOR	3

Question 7. (7 Points)

A 4-bit adder/subtrctor circuit like the one designed in problem 6, is used here as a **subtractor** with the input control M=1 (see Figure).

It subtracts two 4-bit numbers (A, and B) producing a 4-bit result (X). It also produces the overflow flag V, and C_{out} .

This **subtractor** can be used to compare both *unsigned* and *signed* 4-bit input numbers (**A** and **B**) by computing (**A-B**). It can be shown that the comparator output ($\mathbf{A} \ge \mathbf{B}$) is given by:

Type of Input Operands (A & B)	Comparator Output $(A \ge B)$	
Unsigned	$= 1 \text{ iff } \mathbf{C}_{\text{out}} = 1$	
	= 0 otherwise	
Signed	= 1 iff $\mathbf{V} = \mathbf{Sign}$ of the result \mathbf{X}	
(2's Complement)	= 0 Otherwise	

Using this subtractor, design a circuit that compares two 4-bit input numbers A_{3-0} and B_{3-0} to output the larger of the two. The input numbers (A & B) <u>may be signed or unsigned</u>. An additional input signal **S** indicates whether the input numbers are **signed** (S=1) or **unsigned** (S=0).

In addition to the subtractor, you <u>may use</u> multiplexers of any size, and other needed gates. <u>You MAY</u> **NOT USE** any magnitude comparator. (7 Points)