King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 132 (Spring 2013)
Major Exam II
Saturday April 19, 2014

Time: $\mathbf{1 2 0}$ minutes, Total Pages: 12

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	8	
2	12	
3	8	
4	12	
5	13	
6	10	
7	7	
Total	70	

Question 1

Shown to the right is the K-Map of the Boolean function \mathbf{F} subject to the don't care conditions d

$$
\begin{aligned}
& \mathbf{F}(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,4,6,10,12) \\
& \mathbf{d}(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(7,13,14,15)
\end{aligned}
$$

a) Derive the minimum SOP expression of F .

	00	01	11	10
00	1	1	0	1
01	1	0	X	1
11	1	X	X	X
10	0	0	0	1

Shown to the right is the K-Map of the Boolean function G subject to the don't care conditions D
$\mathbf{G}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,4,5,6,9,12)$
$\mathbf{D}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,7,10,13,15)$
b) Derive the minimum POS expression of \mathbf{G}.

${ }_{A B}{ }^{C D}$	00	01	11	10
00	X	1	0	0
01	1	1	X	1
11	1	X	X	0
10	0	1	0	X

Question 2

A logic circuit has two inputs \boldsymbol{x} \& \boldsymbol{y} each is a 2-bit unsigned number. It has an output number z such that $z=x^{2}+y^{2}$.
a. What is the minimum number of bits required for the output number z ?
b. Construct the truth table of the circuit.

c. Derive the Boolean expressions of the two least significant output bits (z_{0}, z_{1}) using basic gates (NO MSI parts)

Question 3

a. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $F=A B C+D B^{\prime} C^{\prime}+A^{\prime}$ using a minimum number of one gate type only.
b. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $F=(A+B+C)\left(D+B^{\prime}+C^{\prime}\right) \cdot D$ using a minimum number of one gate type only.
c. Assuming the availability of the true and complement of signals A, B, C, D and E, implement the shown circuit using minimum number of NAND gates only.

Question 4.

Assuming that all numbers are held in 6-bit storage registers, answer the following:
a. If 2's complement binary representation is used, what is the range of values that each number may assume?
b. The largest number that can be subtracted from (-15) without causing overflow is
\qquad
c. Perform the following arithmetic operations in the indicated number representation. Then, convert the result to decimal and indicate if an overflow has occurred:
(i) $\quad(10)_{10}-(24)_{10}$ (using sign-magnitude binary representation).
(ii) $010010-111111$ (using 1's complement binary representation).
(iii) $100000-100011$ (using 2's complement binary representation).
(iv) 010111-110111 (using 2's complement binary representation).

Question 5.

Implement the Boolean function: $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})=\boldsymbol{A} \boldsymbol{B}+\overline{\boldsymbol{A}} \boldsymbol{C}+\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}$
a. Using a single 4×1 multiplexer. (4 Points)
b. Using a minimum number of 2×1 multiplexers. (2 Points)
c. Using a single 3×8 decoder and an OR gate. (3 Points)
d. Using a single NOR gate and the minimum number of 2×4 decoders with enable. (4 Points)

Question 6.

a. Design a 4-bit adder/subtractor circuit which uses the least number of Full-Adders (FAs). The circuit receives two 4-bit signed numbers \mathbf{A} and \mathbf{B} (2's complement representation) and one control input (M). If the control input $M=0$, the 4 -bit circuit output equals $(\mathbf{A}+\mathbf{B})$. If the control input $M=1$, it equals ($\mathbf{A}-\mathbf{B}$). The circuit has another output \mathbf{V} which equals $\mathbf{1}$ only in case of overflow.
b. Given the FA circuit shown below, calculate the worst-case delay of this adder/subtractor circuit assuming gate delays as given in the table to the right.

Gate	Delay (ns)
AND	2
OR	2
XOR	3

Question 7.

(7 Points)

A 4-bit adder/subtrctor circuit like the one designed in problem 6, is used here as a subtractor with the input control $\mathbf{M}=\mathbf{1}$ (see Figure).

It subtracts two 4-bit numbers (A, and \mathbf{B}) producing a 4-bit result (\mathbf{X}). It also produces the overflow flag \mathbf{V}, and $\mathbf{C}_{\text {out }}$.

This subtractor can be used to compare both unsigned and signed 4 -bit input numbers (\mathbf{A} and \mathbf{B}) by computing ($\mathbf{A}-\mathbf{B}$). It can be shown that the comparator output $(\mathbf{A} \geq \mathbf{B})$ is given by:

Type of Input Operands (A \& B)	Comparator Output ($\mathrm{A} \geq \mathrm{B}$)
Unsigned	$\begin{aligned} & =1 \text { iff } \mathbf{C}_{\text {out }}=1 \\ & =0 \text { otherwise } \end{aligned}$
Signed (2's Complement)	$\begin{aligned} & =1 \text { iff } \mathbf{V}=\mathbf{S i g n} \text { of the result } \mathbf{X} \\ & =0 \text { Otherwise } \end{aligned}$

Using this subtractor, design a circuit that compares two 4-bit input numbers A_{3-0} and B_{3-0} to output the larger of the two. The input numbers (A \& B) may be signed or unsigned. An additional input signal \mathbf{S} indicates whether the input numbers are signed ($\mathbf{S}=\mathbf{1}$) or unsigned ($\mathbf{S}=\mathbf{0}$).
In addition to the subtractor, you may use multiplexers of any size, and other needed gates. You MAY NOT USE any magnitude comparator.

