King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 151 (Fall 2015-2016)
Major Exam 1
Saturday Oct. 10, 2015

Time: 90 minutes, Total Pages: 8

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	23	
2	12	
3	12	
4	7	
Total	54	

Question 1.

Fill in the spaces in the questions below: (Show all work needed to obtain your answer)

1) The decimal number $(60.875)_{10}$ is represented in binary as (\qquad $)_{2}$.
2) The binary number $(1100011.001)_{2}$ is represented in decimal as (\qquad $)_{10}$.
3) The decimal number $(100.75)_{10}$ is represented in hexadecimal as \qquad $)_{16}$.
4) The hexadecimal number (AC.A) $)_{16}$ is represented in decimal as (\qquad $)_{10}$.
5) The hexadecimal number (B3.5) ${ }_{16}$ is represented in binary as (\qquad $)_{2}$.

[^0]7) The result of performing the following operation in hexadecimal $(A 5)_{16}+(C E)_{16}=($ \qquad $)_{16}$.
8) In a base R number system, given that the value $(x 8)_{\mathrm{R}}$ is equal to $(32)_{10}$, where x is a single digit in the such base R system, find the proper values of R and x. (Answer : $x=$ \qquad and $\mathrm{R}=$ \qquad _).
9) The largest unsigned decimal value that can be expressed using 3 binary integer digits and 3 binary fractional digits is \qquad _.
10) The number $\mathbf{2 5}$ is represented in $\mathbf{B C D}$ as \qquad .
11) Given that 80 students have registered in the COE 202 course, and that each of these students should be assigned a unique n-bit binary code. The minimum value of n is \qquad and the number of additional students that the code can accommodate is \qquad _.
2) Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value E5 representing a character, the character stored in the register is \qquad and the parity used is ____(i.e., even or odd parity). Note that the ASCII code of character 'A' is 41h and the ASCII code of character ' a ' is 61 h . Note that other character codes are consecutive, i.e., the ASCII code of character ' B ' is 42 h and the ASCII code of character ' b ' is 62 h .

Question 2.

Use Boolean algebra to solve the following questions. Show clearly all your steps.
(I) Consider the following Boolean function:

$$
F(A, B, C)=A B^{\prime} C+B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} C^{\prime}
$$

Simplify \mathbf{F} to a minimum number of literals (in SOP form) using Algebraic manipulations. (4 points)
(II) Consider the following Boolean function:

$$
F(X, Y, W, Z)=Y+X^{\prime} Y^{\prime} W Z+Y^{\prime} W Z+X^{\prime} Y W Z^{\prime}+Y^{\prime} W^{\prime} Z+X Y W Z^{\prime}
$$

Simplify \mathbf{F} to a minimum number of literals (in SOP form) using Algebraic manipulations. (5 points)
(III) Find the Dual and the Complement of the following function \mathbf{G} : (3 points)

$$
\mathbf{G}=(\mathrm{A}+\mathrm{B}) C D^{\prime}+\mathrm{E}+\mathrm{F}^{\prime}
$$

Question 3.

(I) Given the Boolean function $F(A, B, C)=A+B^{`} C$
a. Determine and express the minterms algebraically. (3 points)
b. Determine and express the maxterms algebraically. (3 points)
(II) Given the Boolean functions E and F shown in the following truth table:

Using the numerical form (i.e. $\Sigma(), \Pi())$ show the following:
a. Minterms of F (2 points)
b. Maxterms of $F^{\prime}(2$ points)
c. Minterms of G , where $\mathrm{G}=\mathrm{E}+\mathrm{F}$ (2 points)

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}	\mathbf{E}
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	0

Question 4.

Consider the circuit shown. Assuming the gate propagation delays given in Table I, answer the following:
a) What is the longest path delay from an input to the output? (1 point)
b) What is the value of this delay? (2 points)

Table I

Gate	Delay
Not	1 ns
AND	2 ns
OR	3 ns

a
b
 F
c
 $+$

Blank Page

[^0]: 6) The result of performing the following operation in binary $(11010100)_{2}-(01011011)_{2}=$ (\qquad $)_{2}$
