King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 142 (Spring 2014-2015)
Major Exam 1
Saturday February 28, 2015

Time: 90 minutes, Total Pages: 7

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	25	
2	20	
3	10	
Total	55	

Question 1.

(I) Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to 3 digits only).

Decimal	Binary	Octal	HEX	EXCESS-3 BCD
109.39				

(II) Perform the following arithmetic operations in the specified number system.

Octal Subtraction $\begin{array}{r} 4512 \\ -\quad 2537 \end{array}$	Hexadecimal Addition $\begin{array}{r} \text { FEA3 } \\ +\quad \text { AF9D } \end{array}$	Binary Subtraction $\begin{array}{r} 1 \\ -1 \end{array} 110000100$	Binary Addition $\begin{array}{r} 11011011 \\ +01110111 \end{array}$

(III) Two number system with radixes r_{1} and r_{2}, have the following two relations:
a. $(69)_{r_{2}}=(100)_{r_{1}}$, and
b. $(17)_{r_{2}}=(21)_{r_{1}}$

Question 2.

Use Boolean algebra to solve the following questions. Show clearly all your steps.
(I) Simplify each of the following Boolean functions to the specified number of literals in sum-ofproducts (SOP) representation:
a. $F 1=x+\bar{x} y$ (2 literals)
point)
b. $F 2=x y+\bar{x} z+y \bar{z} \quad$ (3 literals)
points)
c. $F 3=x \bar{w} \bar{z}+x \bar{w} \bar{y}+x w+x y z \quad$ (1 literal)
points)
d. $F 4=\overline{(x+\bar{y})} \overline{(x y+\bar{x} z)}$ (3 literals)
(II) Given the Boolean function $F(X, Y, Z)=(Y+\bar{Z})(\bar{X}+Y)$: points)
a. Express F as a product-of-maxterms, $F=\Pi M$.
b. Find the algebraic sum-of-minterms expression for F.
(III) Given the following Boolean function expressed using sum-of-products representation. $F(X, Y, Z)=X Y+\bar{X} Z$, express F as a product-of-sums (NOT as product-of-maxterms) representation.

Question 3.

I. Without simplification, write the Boolean algebra equation that represents F :
II.

a. Fill the table based on the Logic diagram points)

Gate	Delay (ns)	Fan $_{\text {in }}$	Driving Load
G1	2		
G2	1		
G3	3		
G4	2		
G5	2		

b. What is the worst-case delay?
c. What is the worst-case delay path?
III.
a. You are required to mark the $V_{I L}, V_{I H}, V_{O L}, V_{O H}$ parameters on the following diagram given that the values of these parameters are selected from the set $\{0.5 v, 1.0 v, 3.5 v, 4.2 v\}^{*}$.
*(Voltage values are given in ascending order, i.e. not necessarily in the same order of the $V_{I L}, V_{I H}, V_{O L} V_{O H}$ parameters)
Input voltages
Output voltages

b. Calculate the Noise Margin for logic $1\left(\mathrm{NM}_{1}\right)$?

