### Page **1** of **8**

## King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

## COE 202: Digital Logic Design (3-0-3) Term 142 (Spring 2014-2015) Major Exam 1 Saturday February 28, 2015

## Time: 90 minutes, Total Pages: 7

| Name: | ID: | Section: |
|-------|-----|----------|
|       |     |          |

### Notes:

- Do not open the exam book until instructed
- <u>No Calculators are allowed</u> (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

| Question | Maximum Points | Your Points |
|----------|----------------|-------------|
| 1        | 25             |             |
| 2        | 20             |             |
| 3        | 10             |             |
| Total    | 55             |             |

Page 2 of 8

# (25 points)

(I) Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to <u>3 digits</u> only). (12 points)

| Decimal | Binary       | Octal | HEX   | EXCESS-3 BCD |
|---------|--------------|-------|-------|--------------|
| 109.39  |              |       |       |              |
|         | 10101101.101 |       |       |              |
|         |              |       | E7.48 |              |

# Question 1.

Page 3 of 8

(8 points)

(II) Perform the following arithmetic operations in the specified number system.

| Octal Subtraction    | Hexadecimal Addition | Binary Subtraction                       | Binary Addition                                                                                      |
|----------------------|----------------------|------------------------------------------|------------------------------------------------------------------------------------------------------|
| 4 5 1 2<br>- 2 5 3 7 | F E A 3<br>+ A F 9 D | 1 1 1 0 0 0 1 0<br>- 1 0 1 1 1 1 1 1<br> | $\begin{array}{r} 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \\ + \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \\ \end{array}$ |

(III) Two number system with radixes  $r_1$  and  $r_2$ , have the following two relations:

a. 
$$(69)_{r_2} = (100)_{r_1}$$
, and

b. 
$$(17)_{r_2} = (21)_{r_1}$$

What are the values of  $r_1$  and  $r_2$ ?

(5 points)

# **Question 2.**

Page **4** of **8** (20 points)

(1

(4

Use Boolean algebra to solve the following questions. Show clearly all your steps.

- (I) Simplify each of the following Boolean functions to the specified number of literals in <u>sum-of-products (SOP) representation</u>:
  - a.  $F1 = x + \overline{x} y$  (2 literals) point)
  - b.  $F2 = x y + \overline{x} z + y \overline{z}$  (3 literals) points)

c.  $F3 = x \overline{w} \overline{z} + x \overline{w} \overline{y} + x w + x y z$  (1 literal) points) (4

d.  $F4 = \overline{(x + \overline{y})} \overline{(x \ y + \overline{x} \ z)}$  (3 literals) points)

(4

- (II) Given the Boolean function  $F(X, Y, Z) = (Y + \overline{Z})(\overline{X} + Y)$ : (5 points) a. Express F as a <u>product-of-maxterms</u>,  $F = \prod M$ .
  - b. Find the *algebraic* sum-of-minterms expression for *F*.

(III) Given the following Boolean function expressed using sum-of-products representation.  $F(X, Y, Z) = X Y + \overline{X} Z$ , express F as a product-of-sums (<u>NOT as product-of-maxterms</u>) representation. (2 points)

Page 6 of 8

|  | Page | 7 | of | 8 |
|--|------|---|----|---|
|--|------|---|----|---|

## Question 3.

II.

I. Without simplification, write the Boolean algebra equation that represents F:

(**10** points)

(2 points)

A B E C

a. Fill the table based on the Logic diagram

points)

| Cata | Delay                           | For                | Driving    |
|------|---------------------------------|--------------------|------------|
| Gale | ( <i>ns</i> ) ran <sub>in</sub> | r an <sub>in</sub> | Load       |
| G1   | 2                               | $\ge$              |            |
| G2   | 1                               | $\ge$              |            |
| G3   | 3                               |                    | $\ge$      |
| G4   | 2                               |                    |            |
| G5   | 2                               |                    | $\searrow$ |



- b. What is the worst-case delay?
- c. What is the worst-case delay path?

#### III.

a. You are required to mark the  $V_{IL}$ ,  $V_{IH}$ ,  $V_{OL}$ ,  $V_{OH}$  parameters on the following diagram given that the values of these parameters are <u>selected</u> from the set {0.5v, 1.0v, 3.5v, 4.2v}\*. (2 points)

<sup>\*</sup>(Voltage values are given in ascending order, i.e. not necessarily in the same order of the  $V_{IL}$ ,  $V_{IH}$ ,  $V_{OL}$ ,  $V_{OH}$  parameters)

| Input voltages |           | Output voltages |
|----------------|-----------|-----------------|
|                |           |                 |
|                | 4v        |                 |
|                | <i>3v</i> |                 |
|                | 2         |                 |
|                | 2 V       |                 |
|                | lv        |                 |
|                | 0v        |                 |

b. Calculate the Noise Margin for logic 1 (NM<sub>1</sub>)?

\_

(1 point)

(1 point)

(1 point)

Page 8 of 8

Blank Page