King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 132 (Spring 2013-2014)
Major Exam 1
Saturday March 1, 2014

Time: 90 minutes, Total Pages: 11

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	12	
3	15	
4	15	
5	10	
Total	65	

Question 1.

Perform the following number base conversion with fraction precision of 3-digit where needed. Show your work in the "Work/ Scratch Area"

Required Conversion	Work / Scratch Area	
a. (i) $(0.339)_{10}=(\quad)_{2}$.		
(ii) Convert the above obtained binary result		
back to decimal. $=($	$)_{10}$	
(iii) What is the conversion loss in accuracy?		

Question 2.

I. Compute the following arithmetic operations in the indicated bases

a. $(\mathrm{A} 69 \mathrm{C}-3 \mathrm{~F})_{16}$	b. $(255+127)_{8}$

II. What is the radix r of the number system for which $(24+17=40)_{r}$.

Question 3.

Use Boolean algebra to solve the following questions. Show clearly all your steps.
a. Give the simplest form of $\mathrm{F}=\mathrm{Y}(\mathrm{X}+\mathrm{Y})+\overline{(\mathrm{X}+\mathrm{Y})} \mathrm{Z}+\mathrm{YZ}$
b. Given that $\mathrm{C}=A \bar{B}+\bar{A} B$ show that $A \bar{C}+\bar{A} C=B$
c. Find the values of the 4 Boolean variables A, B, C, and D by solving the following set of simultaneous Boolean equations:
i. $\bar{A}+B=0$
ii. $A B=A C$
iii. $A B+A \bar{C}+C D=\bar{C} D$
d. Without simplification, write out the complement and dual forms of the following expression:
$(x+\bar{y} \bar{z})(w \bar{x} z+\bar{w} y \bar{z}):$
(3 Points)

Question 4.

I. The truth table of a digital circuit which has two inputs (A, B) and two outputs (Y, Z) is shown: (4 points)
a. Write the Boolean expressions of the circuit outputs (Y, Z).

A	B	Y	Z
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

b. Draw the logic diagram of this circuit (i.e., its gate-level implementation).
II. Given the Boolean function $F(X, Y, Z)=(X+Y)(X+Z)(\bar{X}+\bar{Z})$:
a. Express F as a sum-of-minterms, $F=\sum m$.
b. Find the algebraic product-of-Maxterms expression for F.
III. Given $F(A, B, C)=\sum m(0,3,5,7)$ and $G(A, B, C)=\Pi M(1,2,4,7)$, express the function $F+\bar{G}$ as a sum-of-minterms.
IV. Given the following two circuits representing the functions F and G. Determine whether the two functions F and G are equivalent or not. Justify your answer.
(4 points)

Question 5.

I. Assume that the propagation delay of a gate depends only on its number of inputs. Thus, the propagation delay of an Inverter is 1 ns , of a 2-input gate (AND or OR) is 2 ns , and of a 3 -input gate is 3 ns. For the circuit shown below;
a. What is the longest propagation delay from an input to the output?
b. If $\mathbf{A}=\mathbf{0}, \mathbf{B}=\mathbf{1}, \mathbf{C}=\mathbf{1}, \mathbf{D}=\mathbf{1}$, and $\mathbf{F}=\mathbf{0}$, draw the signal waveforms at points \mathbf{G}, \mathbf{H}, and \mathbf{Y} due to the shown applied signal at \mathbf{E} by completing the timing diagram given below. ($\mathbf{3}$ points)

II. Given an inverter with the following parameters $\mathrm{V}_{\mathrm{OH}}=5 \mathrm{v} \mathrm{V}_{\mathrm{OL}}=0 \mathrm{v}, \mathrm{V}_{\mathrm{IH}}=2.8 \mathrm{v}, \mathrm{V}_{\mathrm{IL}}=1.6$, the noise margins $\mathrm{NM}_{\mathrm{H}}=$ \qquad and $\mathrm{NM}_{\mathrm{L}}=$ \qquad .
(2 points)
III. The Boolean function implemented by the circuit given below expressed as a sum-of-products is

$$
\mathrm{F}=
$$

\qquad .

