COE 202 – Digital Logic Design EE 200 – Digital Logic Circuit Design Syllabus for Term 081 – Fall 2008

Computer Engineering Department College of Computer Sciences & Engineering King Fahd University of Petroleum & Minerals

Professor:	Muhamed Mudawar, Room 22/328, Phone 4642
Office Hours:	SMW 11 am – 1 pm.
Course URL:	http://faculty.kfupm.edu.sa/coe/mudawar/coe202/
Email:	mudawar@kfupm.edu.sa

Catalog Description

Introduction to information representation and number systems. Boolean algebra and switching theory. Manipulation and minimization of completely and incompletely specified Boolean functions. Physical properties of gates: fan-in, fan-out, propagation delay, timing diagrams, and tri-state drivers. Combinational circuit analysis and design, multiplexers, decoders, comparators, and adders. Sequential circuit analysis and design, basic flip-flops, clocking and timing diagrams. Registers, counters, RAMs, ROMs, PLAs, PLDs, and FPGAs.

Prerequisite: PHYS 102.

Textbook

M. Morris Mano, Digital Design, Third Edition, Prentice Hall, 2002. ISBN: 0-13-035525-9.

Online Lessons

Online lessons are available at <u>http://faculty.kfupm.edu.sa/coe/mudawar/coe202/cd/index.htm</u> with animation and sound. They are divided into six units with several lessons in each unit.

Unit I – Number System and Codes

Unit II - Binary Logic and Gates

Unit III - Combinational Logic

Unit IV - Sequential Circuits

Unit V - Registers and Counters

Unit VI - Memory and PLDs

Course Learning Outcomes

- Carry out arithmetic computations in various number systems (binary, octal, hexadecimal).
- Apply rules of Boolean algebra to simplify Boolean expressions.
- Translate Boolean expressions into equivalent truth tables and logic gate implementations and vice versa.
- Design efficient combinational and sequential logic circuit implementations from functional description of digital systems.
- Carry out simple CAD simulations to verify the operation of logic circuits.

Grading Policy

Assignments & Quizzes	15%
Project	10%
Major Exam I	20%
Major Exam II	25%
Final Exam	30%

• NO makeup will be given for missing quizzes or exams.

Course Topics and Weekly Breakdown

1	Introduction, number system and arithmetic
2	Number base conversion, signed numbers and signed number arithmetic
3	Binary logic, basic identities, algebraic simplifications
4	Canonical and standard forms, physical properties of gates
5	Logic simplification using K-maps, K-map manipulation
6	2-level and multi-level implementations, universal gates
7	Combinational logic and adders
8	Carry look-ahead adders and MSI components
9	Design with MSI components
10	Sequential circuits, latches and flip-flops
11	Design of Sequential circuits
12	Analysis of Sequential circuits
13	Registers and Counters
14	Programmable logic