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ABSTRACT 
 
A new algorithm for asynchronous modulo multiplication 
has been devised. A locally synchronous globally 
asynchronous hardware implementation of the algorithm 
has been modeled in VHDL. Results show that the 
developed hardware has a superior AT cost for use with 
GF(P) elliptic curve cryptosystems. 
 

1. INTRODUCTION 
 

With the increased use of business and commercial 
transactions through public communication channels and 
high speed networks, data encryption has become a major 
requirement to ensure secrecy of such transactions. 
Encryption speed is a major performance measure in 
communication cryptosystems. The speed of the 
encryption/decryption process is a direct function of the 
complexity of the encryption algorithm, the speed of the 
underlying hardware arithmetic unit and the 
implementation technology. Public-key cryptosystems, 
e.g. RSA   [1] and Elgamal  [2], are based on modulo 
exponentiation of large numbers. Being the basic 
operation in these systems, efficient modulo 
multiplication algorithms and circuitry have been the 
subject of many research works, e.g.  [3] and  [6]. 

This work investigates the use of asynchronous 
techniques for the design of an efficient modulo 
multiplier. With the large size operands commonly used 
in cryptosystems, using array or parallel multipliers 
would require prohibitively large areas. Instead, 
sequential multipliers are employed in this work. Since 
sequential multipliers use repeated add and shift 
operations, an asynchronous implementation can 
significantly improve the speed at a modest increase in 
area. The speed of an asynchronous adder is O(Log n) on 
the average  [7] compared to the O(n) speed of carry-
propagate adders. We have used asynchronous event 
logic based on transition signaling  [8] where signal 
transitions are used as control events. 

The multiplication process consists of a number of 
add and shift operations with addition requiring much 
more time than the shift operation. In addition to using an 
asynchronous adder with O(Log n) average speed  [9], a 
number of other measures were adopted to further 
improve the overall speed of the system. For one, the 

developed algorithm uses radix-4 which retires two bits 
per iteration instead of one. For another, multiplier 
recoding as a signed-digit number   [10] is used to allow 
skipping over chains of zeros as well as chains of ones 
which results in a considerable reduction in the number 
of add operations, and hence a significant speed 
improvement.  

The rest of the paper is organized as follows. Section 
2 shows a fast efficient modular multiplier algorithm and 
its data flow. Section 3 presents some implementation 
and performance issues. Finally, the paper is concluded 
in section 4. 
 

2. THE BASIC ALGORITHM 
 

It is required to compute P =X×Y mod N, where the 
modulus N, the multiplicand X and the multiplier Y are 
k-bit unsigned numbers. Typically, N is a very large odd 
number, i.e. generally Nk-1 = 1 and N0 = 1. The developed 
algorithm uses radix 4, but may be extended to higher 
radixes as well. In addition, a Booth-like recoding of the 
multiplier (Y) into an equivalent signed digit 
representation is performed. This generally results in 
increasing the number of 0’s and reducing the number of 
1’s and -1’s leading to a reduction in the number of 
add/subtract operations thus improving the overall speed. 

Starting from the most significant digit, the algorithm 
scans one multiplier digit (2bits) plus one look-ahead bit 
ach iteration. Even though the algorithm requires a 2-bit 
left shift per iteration, proper scaling of the result restricts 
all addition operations to be only k-bit additions. 
Multiplier recoding is based on Table 1. 

 
Table 1: Left-to-Right Multiplier Recoding. 

Scanned Multiplier 
Digit 
yi yi-1 

Look Ahead 
Bit 
yi-2 

Action 

00 0 Shift 2-bits 
00 1 +1 X; Shift 2-bits 
01 0 +1 X; Shift 2-bits 
01 1 +2 X; Shift 2-bits 
10 0 -2 X; Shift 2-bits 
10 1 -1 X; Shift 2-bits 
11 0 -1 X; Shift 2-bits 
11 1 Shift 2-bits 
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a. Initialization: 
 P  0 {P is left padded with 3 bits} 
  where k, the number of bits in N, is assumed to be 

even  
 Left pad Y by two bits, i.e. Yk+1=Yk=0. 
 Compute (N-X), 3N and 5N. i=k+1 
 
b. Shift, Recode and Add: 
 WHILE i >0 DO  
  P 4P; 
  CASE Pk+2 Yi Yi-1  Yi-2 IS 
   X000, X111 : skip 
   0001, 0010 : P  P-(N-X) 
   0011 : P  P-2(N-X) 
   0100 : P  P-2X 
   0110, 0101 : P  P-X 
 
   1110, 1101 : P  P+(N-X) 
   1100 : P  P+2(N-X) 
   1011 : P  P+2X 
   1001, 1010 : P  P+X 
  END CASE 
 
c. Scaling: 
  CASE Pk+2 Pk+1 Pk Pk-1 Nk-2 IS 
   000XX, 111XX : skip 
   001XX : P  P-2N 
   010X1 : P  P-3N 
   010X0, 011X1 : P  P-4N 
   01100 : P  P-5N 
   01110 : P  P-6N 
 
   110XX : P  P+2N 
   101X1 : P  P+3N 
   101X0, 100X1 : P  P+4N 
   10010 : P  P+5N 
   10000 : P  P+6N 
  END CASE 
  i=i-2 
 END WHILE  
 
d. Correction: 
 IF P>N THEN 
  P  P-N 
 ELSEIF P< 0 Then 
  P  P+N 
 ENDIF 

Figure 1. The Modulo Multiplication Algorithm 
 
 
To compute P = X×Y mod N, the product register P is left 
padded with three bits to accommodate the left shift 
operation by one digit (2bits) plus the sign bit. The 
multiplier is also left padded with 0’s for proper 
recoding. The algorithm consists of four major phases 
(Figure 1): 
• The initialization phase, where the values (N-X) 

and 3N are pre-computed 

• The shift, recode and add phase. In this phase, the 
product register is shifted left by one digit and the 
proper multiple of X is added or subtracted from P 
based on the current recoded multiplier digit and 
the sign of P, i.e. Pk+2. It should be noted that 
instead of subtracting (adding) X, (N-X) may be 
equivalently added (subtracted). The performed 
operation, i.e. adding X or subtracting (N-X), is 
chosen to oppose the current sign of P so as to 
reduce the chance of overflow. For example, 
according to Table 1, if yi yi-1 yi-2=001 then X 
should be added to P. In this case, if P is negative, 
we add X to P, but if P is positive we subtract (N-
X) from P. This requires pre-computation and 
storage of the value (N-X). 

• The scaling phase. Here, the proper multiple of N 
is added / subtracted to guarantee that register P 
will not overflow in the subsequent left shift 
operation (P = 4P). Thus, the objective of this 
phase is to make the 3-leftmost bits of register P 
have the same value, i.e. 000 or 111. 

• The correction phase. After all k/2 iterations, 
the resulting value of P may need correction 
which is guaranteed to require no more than one 
add/subtract operation. 

 
 
Example: Compute (9×11) Mod 13 
 
Initialization: 
X=1001, Y=001011, N=1101, 
i =5, (N-X) =0100, 
3N=100111, 5N=10000001, 
and P= 000_0000. 
Shift, Recode, and Add 
P=P-(N-X) 
P=111_1100 
Scaling    
Skip 
i =3 
Shift, Recode, and Add 
P=111_0000 (P=4P) 
P=P+(N-X)= 111_0100 
 
Scaling    
Skip 
i =1 
Shift, Recode, and Add 
P=101_0000  (P=4P) 
P=P+(N-X) 
P=101_0100 
Scaling    
P=P+3N= 111_1011 
i = -1 
Correction 
P=P+N= 000_1000 = 8 
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The data flow of the algorithm is illustrated in Figure 2 
and the multiplier data path is shown in Figure 3. 
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Figure 2. Data flow of the Modular Multiplication 

Algorithm 
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Figure 3: Asynchronous Multiplier Data Path. 

 
 
 

3. IMPLEMENTATION ISSUES AND 
PERFORMANCE 

 
The adopted asynchronous system implementation of the 
above algorithm is based on event control logic   [8]. The 
implementations were modeled using VHDL. The select 
module   [8] was used to implement decisions (IF 
statements). Loops were implemented using a merge 
element with the loop condition checked through a select 
module   [8] as shown in Figure 4. 
 

Merge
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Select
T                                            .

F
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Start Loop

 
Figure 4: Loop Implementation. 

 

3.1. Globally Asynchronous Locally Synchronous. 

For area efficiency, the implementation followed a 
Globally Asynchronous Locally Synchronous (GALS) 
strategy with counters and registers implemented as 
clocked synchronous elements. The local clock input of a 
register or counter receives a single clock pulse whenever 
a signal event is received at the input request line. This is 
achieved through the use of edge detection and one shot 
circuitry as shown in  Figure 5. 

 

Edge Detector 
& One Shot

Register/
Counter

Matching Delay

Due to request 
falling event

Due to request 
rising event

Two requests

Acknowledge

 Figure 5: Clock Pulse Generation for GALS Designs. 
 

3.2. Algorithm Cost. 

Table 2 shows the area cost taking one register bit as a 
reference unit. The total area cost is 10 k or O(K). 
 

Table 2: Hardware Area Cost . 
Count Module Area Estimate 

6 Register 6k 
1 Adder 1.5k 
1 Mux 2k 

 
The algorithm FOR LOOP is executed k/2 times. On 

the average addition/subtraction is performed only 75% 
of the time in the shift, recode and add phase. Likewise, 
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in the scaling phase, addition/subtraction is performed 
only 75% of the time on the average.Therefore, since the 
average addition/subtraction time for a self-timed 
asynchronous adder is O(Log k)  [9], the algorithm overall 
area-delay (AT) cost is O(k2 log k). Study of the cost 
constant factor showed that the cost of this multiplier is 
superior to other multipliers for k values less than 200 
bits. This makes such implementation superior for elliptic 
curve cryptosystems  [11], as well as Residue Number 
Systems (RNS). 
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