
An Asynchronous Modulo Multiplier for Cryptosystems
M. Mahmoud* and Alaaeldin Amin**

King Fahd University of Petroleum and Minerals/Computer Engineering Department, Dhahran,

Saudi Arabia
* muhammad@ieee.org

** amin@ccse.kfupm.edu.sa

ABSTRACT

A new algorithm for asynchronous modulo multiplication
has been devised. A locally synchronous globally
asynchronous hardware implementation of the algorithm
has been modeled in VHDL. Results show that the
developed hardware has a superior AT cost for use with
GF(P) elliptic curve cryptosystems.

1. INTRODUCTION

With the increased use of business and commercial
transactions through public communication channels and
high speed networks, data encryption has become a major
requirement to ensure secrecy of such transactions.
Encryption speed is a major performance measure in
communication cryptosystems. The speed of the
encryption/decryption process is a direct function of the
complexity of the encryption algorithm, the speed of the
underlying hardware arithmetic unit and the
implementation technology. Public-key cryptosystems,
e.g. RSA [1] and Elgamal [2], are based on modulo
exponentiation of large numbers. Being the basic
operation in these systems, efficient modulo
multiplication algorithms and circuitry have been the
subject of many research works, e.g. [3] and [6].

This work investigates the use of asynchronous
techniques for the design of an efficient modulo
multiplier. With the large size operands commonly used
in cryptosystems, using array or parallel multipliers
would require prohibitively large areas. Instead,
sequential multipliers are employed in this work. Since
sequential multipliers use repeated add and shift
operations, an asynchronous implementation can
significantly improve the speed at a modest increase in
area. The speed of an asynchronous adder is O(Log n) on
the average [7] compared to the O(n) speed of carry-
propagate adders. We have used asynchronous event
logic based on transition signaling [8] where signal
transitions are used as control events.

The multiplication process consists of a number of
add and shift operations with addition requiring much
more time than the shift operation. In addition to using an
asynchronous adder with O(Log n) average speed [9], a
number of other measures were adopted to further
improve the overall speed of the system. For one, the

developed algorithm uses radix-4 which retires two bits
per iteration instead of one. For another, multiplier
recoding as a signed-digit number [10] is used to allow
skipping over chains of zeros as well as chains of ones
which results in a considerable reduction in the number
of add operations, and hence a significant speed
improvement.

The rest of the paper is organized as follows. Section
2 shows a fast efficient modular multiplier algorithm and
its data flow. Section 3 presents some implementation
and performance issues. Finally, the paper is concluded
in section 4.

2. THE BASIC ALGORITHM

It is required to compute P =X×Y mod N, where the
modulus N, the multiplicand X and the multiplier Y are
k-bit unsigned numbers. Typically, N is a very large odd
number, i.e. generally Nk-1 = 1 and N0 = 1. The developed
algorithm uses radix 4, but may be extended to higher
radixes as well. In addition, a Booth-like recoding of the
multiplier (Y) into an equivalent signed digit
representation is performed. This generally results in
increasing the number of 0’s and reducing the number of
1’s and -1’s leading to a reduction in the number of
add/subtract operations thus improving the overall speed.

Starting from the most significant digit, the algorithm
scans one multiplier digit (2bits) plus one look-ahead bit
ach iteration. Even though the algorithm requires a 2-bit
left shift per iteration, proper scaling of the result restricts
all addition operations to be only k-bit additions.
Multiplier recoding is based on Table 1.

Table 1: Left-to-Right Multiplier Recoding.

Scanned Multiplier
Digit
yi yi-1

Look Ahead
Bit
yi-2

Action

00 0 Shift 2-bits
00 1 +1 X; Shift 2-bits
01 0 +1 X; Shift 2-bits
01 1 +2 X; Shift 2-bits
10 0 -2 X; Shift 2-bits
10 1 -1 X; Shift 2-bits
11 0 -1 X; Shift 2-bits
11 1 Shift 2-bits

435435

a. Initialization:
 P 0 {P is left padded with 3 bits}
 where k, the number of bits in N, is assumed to be

even
 Left pad Y by two bits, i.e. Yk+1=Yk=0.
 Compute (N-X), 3N and 5N. i=k+1

b. Shift, Recode and Add:
 WHILE i >0 DO
 P 4P;
 CASE Pk+2 Yi Yi-1 Yi-2 IS
 X000, X111 : skip
 0001, 0010 : P P-(N-X)
 0011 : P P-2(N-X)
 0100 : P P-2X
 0110, 0101 : P P-X

 1110, 1101 : P P+(N-X)
 1100 : P P+2(N-X)
 1011 : P P+2X
 1001, 1010 : P P+X
 END CASE

c. Scaling:
 CASE Pk+2 Pk+1 Pk Pk-1 Nk-2 IS
 000XX, 111XX : skip
 001XX : P P-2N
 010X1 : P P-3N
 010X0, 011X1 : P P-4N
 01100 : P P-5N
 01110 : P P-6N

 110XX : P P+2N
 101X1 : P P+3N
 101X0, 100X1 : P P+4N
 10010 : P P+5N
 10000 : P P+6N
 END CASE
 i=i-2
 END WHILE

d. Correction:
 IF P>N THEN
 P P-N
 ELSEIF P< 0 Then
 P P+N
 ENDIF

Figure 1. The Modulo Multiplication Algorithm

To compute P = X×Y mod N, the product register P is left
padded with three bits to accommodate the left shift
operation by one digit (2bits) plus the sign bit. The
multiplier is also left padded with 0’s for proper
recoding. The algorithm consists of four major phases
(Figure 1):
• The initialization phase, where the values (N-X)

and 3N are pre-computed

• The shift, recode and add phase. In this phase, the
product register is shifted left by one digit and the
proper multiple of X is added or subtracted from P
based on the current recoded multiplier digit and
the sign of P, i.e. Pk+2. It should be noted that
instead of subtracting (adding) X, (N-X) may be
equivalently added (subtracted). The performed
operation, i.e. adding X or subtracting (N-X), is
chosen to oppose the current sign of P so as to
reduce the chance of overflow. For example,
according to Table 1, if yi yi-1 yi-2=001 then X
should be added to P. In this case, if P is negative,
we add X to P, but if P is positive we subtract (N-
X) from P. This requires pre-computation and
storage of the value (N-X).

• The scaling phase. Here, the proper multiple of N
is added / subtracted to guarantee that register P
will not overflow in the subsequent left shift
operation (P = 4P). Thus, the objective of this
phase is to make the 3-leftmost bits of register P
have the same value, i.e. 000 or 111.

• The correction phase. After all k/2 iterations,
the resulting value of P may need correction
which is guaranteed to require no more than one
add/subtract operation.

Example: Compute (9×11) Mod 13

Initialization:
X=1001, Y=001011, N=1101,
i =5, (N-X) =0100,
3N=100111, 5N=10000001,
and P= 000_0000.
Shift, Recode, and Add
P=P-(N-X)
P=111_1100
Scaling
Skip
i =3
Shift, Recode, and Add
P=111_0000 (P=4P)
P=P+(N-X)= 111_0100

Scaling
Skip
i =1
Shift, Recode, and Add
P=101_0000 (P=4P)
P=P+(N-X)
P=101_0100
Scaling
P=P+3N= 111_1011
i = -1
Correction
P=P+N= 000_1000 = 8

436436

The data flow of the algorithm is illustrated in Figure 2
and the multiplier data path is shown in Figure 3.

Initialize

Shift, Recode
and Add

Scale

Correction

Figure 2. Data flow of the Modular Multiplication

Algorithm

Asynchronous Adder

Mux

x2x(n
-x

)

2(
n-

x)

P Register

Add

Mux

2n3n4n5n6n

Figure 3: Asynchronous Multiplier Data Path.

3. IMPLEMENTATION ISSUES AND
PERFORMANCE

The adopted asynchronous system implementation of the
above algorithm is based on event control logic [8]. The
implementations were modeled using VHDL. The select
module [8] was used to implement decisions (IF
statements). Loops were implemented using a merge
element with the loop condition checked through a select
module [8] as shown in Figure 4.

Merge

Processing

Select
T .

F

Loop Condition

Start Loop

Figure 4: Loop Implementation.

3.1. Globally Asynchronous Locally Synchronous.

For area efficiency, the implementation followed a
Globally Asynchronous Locally Synchronous (GALS)
strategy with counters and registers implemented as
clocked synchronous elements. The local clock input of a
register or counter receives a single clock pulse whenever
a signal event is received at the input request line. This is
achieved through the use of edge detection and one shot
circuitry as shown in Figure 5.

Edge Detector
& One Shot

Register/
Counter

Matching Delay

Due to request
falling event

Due to request
rising event

Two requests

Acknowledge

 Figure 5: Clock Pulse Generation for GALS Designs.

3.2. Algorithm Cost.

Table 2 shows the area cost taking one register bit as a
reference unit. The total area cost is 10 k or O(K).

Table 2: Hardware Area Cost .
Count Module Area Estimate

6 Register 6k
1 Adder 1.5k
1 Mux 2k

The algorithm FOR LOOP is executed k/2 times. On

the average addition/subtraction is performed only 75%
of the time in the shift, recode and add phase. Likewise,

437437

in the scaling phase, addition/subtraction is performed
only 75% of the time on the average.Therefore, since the
average addition/subtraction time for a self-timed
asynchronous adder is O(Log k) [9], the algorithm overall
area-delay (AT) cost is O(k2 log k). Study of the cost
constant factor showed that the cost of this multiplier is
superior to other multipliers for k values less than 200
bits. This makes such implementation superior for elliptic
curve cryptosystems [11], as well as Residue Number
Systems (RNS).

4. ACKNOWLEDGMENT

The authors would like to acknowledge the support of the
Computer Engineering Department of King Fahd
University of Petroleum and Minerals (KFUPM) and
King Abdul-Aziz City of Science and Technology
(KACST) for support.

5. REFERENCES

[1] R. L. Rivest , A. Shamir , L. Adleman, “A method
for obtaining digital signatures and public-key
cryptosystems” Communications of the ACM,
Vol.:21, No. : 2, pp 120-126, Feb. 1978.

[2] Elgamal, T. “A public key cryptosystem and a
signature scheme based on discrete logarithms”
IEEE Transactions on Information Theory, Vol.:
31 No.: 4, pp 469-472, Jul 1985.

[3] H.Orup and P. Kornerup, “A high-radix hardware
algorithm for calculating the exponential M/sup E/
modulo N," in Proc. IEEE 10th symp. Comput.
Arithmetic, June 1991, pp51-56.

[4] N. Takagi, “A radix-4 modular multiplication
hardware algorithm efficient for iterative modular
multiplications” 10th IEEE Symposium on
Computer Arithmetic. Proceedings., pp 35 -42,
26-28 Jun 1991.

[5] N. Takagi, "A radix-4 modular multiplication
hardware algorithm for modular exponentiation"
IEEE Transactions on Computers, Vol. 41 No. 8,
pp. 949 – 956, Aug. 1992

[6] Takagi, N. and Yajima, S.” Modular
multiplication hardware algorithms with a
redundant representation and their application to
RSA cryptosystem” IEEE Transactions on
Computers, Volume: 41 Issue: 7 , pp 887 -891,
Jul 1992.

[7] G. W. Reitwiesner, “The Determination of Carry
Propagation Length of Binary Addition,” IRE
Transactions on Electronic Computers, pp 35 –
38, 1960.

[8] I. E. Sutherland, "Micropipelines",
Communications of the ACM, Vol. 32 No. 6, pp.
720 – 738, June. 1989.

[9] Alaaeldin Amin and Feras Maadi, “Double-rail
encoded self-timed adder with matched delays” to
appear in the proceedings of the 10th IEEE
International Conference on Electronics, Circuits
and Systems, Dec. 2003, (ICECS-2003).

[10] Behrooz Parhami, "COMPUTER ARITHMETIC
Algorithms and Hardware Design" Oxford,
Oxford University Press, 2000.

[11] Standards for Efficient Cryptography
Group/Certicom Research, SEC 2: Recommended
Elliptic Curve Cryptography Domain Parameters,
Version 1.0, 2000.

438438

	Button3:

