A Compiler Address Transformation For Conflict-Free Access of Memories and Networks

Mayez Al-Mouhamed  
Comp. Eng. Dept.  
King Fahd Univ.  
Dhahran, Saudi Arabia

Lubomir Bic  
Dept. of Info. and Comp. Sc.  
UC Irvine  
Irvine, CA 92717

Hussam Abu-Haimed  
Comp. Eng. Dept.  
King Fahd Univ.  
Dhahran, Saudi Arabia

Abstract

A method for mapping arrays into parallel memories so that to minimize serialization and network conflicts for lock-step systems will be presented. Each array is associated an arbitrary number of data access patterns that can be identified following compiler data-dependence analysis. Conditions for conflict-free access of parallel memories and network are derived for arbitrary power-of-2 data patterns and arbitrary multistage networks. We propose an efficient heuristic to synthesize combined address transformation (NP-complete) which applies to arbitrary linear patterns, arbitrary multistage networks, and arbitrary number of power-of-2 memories. Our method can be implemented as part of the address transformation (Xor and And) or through compiler emulation. Performance of optimized storage schemes is presented for FFT, arbitrary sets of data patterns, non-power-of-2 stride access in vector processors, interleaving, and static row-column storages. Our approach is profitable in all the above cases and provides a systematic method for converting array-memory mapping and network aspects of algorithms from one network topology to another.

1 Introduction

The serialization of memory accesses is a major limiting factor in high performance SIMD computers. Conflict-free access [2] to rows, columns, and diagonals of arrays was proposed on the basis of row rotations. The drawbacks are the dependence on the array size, the number of memories, and the complex address transformation. The use of a prime number of memories [5] significantly outperforms interleaving but requires expensive address translation.

Based on skew storage, XOR-schemes were proposed [7, 4] for eliminating most of the above problems. The scheme can be efficiently used for power-of-2 strides but other strides can also be accessed through the use of few buffers at the memory inputs and outputs. The buffers reduce the effects of transient degradation in pipelined memories.

Linear permutations [3, 6] for multistage networks have been studied by using non-singular (NS) matrices. In most cases, conflict-free access to the network is obtained for some fixed data templates. For row, column, diagonals, and square blocks, a scheme [3] based on composite linear permutations was proposed for the Omega network.

Our objective is to find a storage scheme that combines the constraints of composite patterns and the network in synthesizing dynamic storages so that memory and network contentions are minimized.

Sections 2 and 3 presents linear permutations and storage schemes. Sections 4 and 5 presents properties of combined storages. Sections 6 and 7 present one general example and application to FFT. Sections 8 and 9 present application to general patterns and stride access. Section 10 concludes this work.

2 Linear permutations and networks

In a multistage network, routing a source $s = s_{n-1} \ldots s_0$ to destination $d = d_{n-1} \ldots d_0$ consists of finding a path of switches that connect $s$ to $d$.

In an $\Omega_n$ network, the position of the message at the input is $pos_0(s, d) = s_{n-1} \ldots s_0$. We can easily find the position of the message at the output of the $i$th stage:

$$pos_i(s, d) = s_{n-i-1} \ldots s_0 d_{n-i} \ldots d_{n-i+1} d_{n-i}$$

We can similarly find the position of the message for other networks. A network input is denoted by $s = (s_{n-1}, \ldots, s_0) \in S$ and output is denoted by
$d = (d_{n-1}, \ldots, d_0) \in S$. This applies to $n$-stage networks. A linear permutation is a function $M : S \rightarrow S$ for which each source $s \in S$ maps into destination $d = Ms = (d_{n-1}, \ldots, d_0)$ where $d_i$ is a linear combination of the bits of $s$ by using the logical AND and XOR operators as the multiplication and addition, respectively.

We wish to know under what condition an $n$-stage network can perform permutation $M$. We shall abbreviate $pos_i(s, Ms)$ to $pos_i(s)$ which can be written as a matrix product $M[i]s$:

$$pos_i(s) = (s_{n-1} \ldots s_0d_{n-1} \ldots d_0) = M[i](s_{n-1} \ldots s_0d_{n-1} \ldots d_0)$$

where $M[i]$ is

$$
\begin{pmatrix}
0 & \cdots & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\end{pmatrix}
$$

Where the $(n-i) \times i$ matrix in the upper-left corner is formed by 0s, the $(n-i) \times (n-i)$ matrix in the upper-right corner is the identity, the $i \times (n-i)$ matrix in the lower-right corner will be denoted by $B[i]$, and the $i \times i$ matrix in the lower-left corner will be denoted by $M[i]$:

$$M[i] = \begin{pmatrix}
d_{n-1,n-1} & \cdots & d_{n-1,n-i} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\end{pmatrix}$$

The permutation matrix $M$ that gives the position $pos_n(s) = d = Ms$ of the message at the output of the $n$th stage is defined as follows:

$$
\begin{pmatrix}
d_{n-1,n-1} & \cdots & d_{n-1,n-i} & d_{n-1,0} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 \\
\end{pmatrix}
$$

Note that $M[i]$ is the $i \times i$ sub-matrix in the upper-left corner of the $M$. We present a number of Theorems that characterize permutations. The proof of these Theorems can be found in [1].

**Theorem 1** All inputs of the $i$th stage map one-to-one to all outputs of the same stage if and only if $M[i]$ is NS.

We now characterize linear permutations $M$ which the Omega network can perform. An $n \times n$ permutation matrix $M$ is said to be Strongly-Non-Singular (SNS) if and only if its restriction $M[i]$ is NS for arbitrary $i$, where $1 \leq i \leq n$.

**Theorem 2** A linear permutation $M$ defined over $Z_2^n$ can be performed by $\Omega_n$ if and only if $M$ is SNS for $\Omega_n$.

We generalize the above result to an arbitrary network that belongs to the class of dynamic, full access, unique path, multistage networks.

**Theorem 3** An arbitrary dynamic, full access, unique path, multistage network ($\gamma$) can achieve arbitrary linear permutation defined by an $n \times n$ boolean matrix $M$ if and only if $M$ is SNS for $\gamma$.

Note that the position of sub-matrices $M[i]$ can be different for each type of network. For the Omega network, the NS sub-matrices are located in the upper-left corner of $M$. For the Baseline network, the NS sub-matrices start at the lower-left corner of $M$.

We can define a permutation $\tilde{d} = Ms \oplus x$ which we call Complement-Permutation, where $x$ is a constant.

**Theorem 4** An arbitrary complement-permutation $\tilde{d} = Ms \oplus x$ passes a multistage network if and only if $M$ is SNS for the network.

It can also be proved that the set of all complement-permutations associated with all SNS matrices $M$ are all distinct for any multistage network.

### 3 Characterization of SNS matrices

We now evaluate the number $R_n$ of $n \times n$ SNS matrices. Since $R_n$ is identical for each type of network, we use the notation for $\Omega_n$. It is obvious that $R_1 = 1$.

We define algorithm (H-2) that finds and assigns the set of $2 \times 2$ matrices which are SNS

$$
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\end{pmatrix}
$$

and so $R_2 = 4$. We now show that:

**Theorem 5** The number of permutations $\tilde{d} = Ms \oplus x$ that an arbitrary $n$-stage multistage network can perform is $T_n = 2^n$, where $M$ is an $n \times n$ SNS matrix and $x$ is an $n \times 1$ arbitrary vector.
Proof We first find the number of matrices and evaluate the number of permutations \( d = M_+ \oplus x \) for all values of \( x \).

Suppose we are given an arbitrary \( n \times n \) matrix \( M \). Assume that \( M[i] \) is SNS. Then by performing row and column operations, we can transform \( M \) such that \( M[i] \) is the identity matrix thus:

\[
M = \begin{pmatrix}
1 & 0 & \ldots & 0 & 0 & a_{i-1} & \ldots \\
0 & 1 & \ldots & 0 & 0 & a_{i-2} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & \ldots & 1 & 0 & a_1 & \ldots \\
0 & 0 & \ldots & 0 & 1 & a_0 & \ldots \\
b_{i-1} & b_i & \ldots & b_1 & b_0 & & c \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots 
\end{pmatrix}
\]

We examine the matrix \( M[i+1] \). We denote the entry in the lower-right corner as \( c \), the entries above \( c \) as \( a_0 \ldots a_{i-1} \), and the entries to the left of \( c \) as \( b_0 \ldots b_{i-1} \).

We can determine whether \( M[i+1] \) is NS. For the general case, the fact that \( M[i] \) is SNS makes it easy to cancel the \( a_j \)'s and \( b_j \)'s using row and column operations. \( M[i+1] \) will be NS if and only if after these operations \( c = 1 \). If \( a_j = 1 \), add the column containing \( b_j \) to the column containing \( c \) of \( M \). This changes \( a_j \) to zero and \( c \) becomes \( c \oplus b_j \). Similarly, if \( b_j = 1 \) and we add the row containing \( a_j \) to the row containing \( c \) of \( M \), this changes \( b_j \) to zero and \( c \) becomes \( c \oplus a_j \). These operations may affect \( c \) as follows: 1) \( c \) does not change if \( a_j = b_j = 0 \) or \( a_j \oplus b_j = 1 \), or 2) \( c \) is flipped if \( a_j = b_j = 1 \).

In the last case, both \( a_j \) and \( b_j \) are one. If we choose to cancel \( a_j \) first, the value of \( b_j = 1 \) is added to \( c \), changing it from a one to a zero, or vice-versa. If we choose to cancel \( b_j \) first, the value of \( a_j = 1 \) is added to \( c \), and \( c \) is again changed. In all other cases, we can cancel \( a_j \) and \( b_j \) without affecting \( c \). The non-singularity of \( M[i+1] \) will therefore depend on two factors: the initial value of \( c \) and the number of flips.

Counting the number of ways we get 0 flips, we find that we can do so in \( 3^i \) ways. There are \( i3^{i-1} \) ways we can get one flip, and \( i(i-1)3^{i-2}/2 \) ways we can get two flips. In general, the total number of ways is simply \( \sum_{j=0}^{i} \binom{i}{j}3^{i-j} \).

If there are \( R_i \) ways that \( M[i] \) can be NS, then there are \( R_i \sum_{j=0}^{i} \binom{i}{j}3^{i-j} = R_i(3 + 1)^i = R_i4^i \) ways that \( M[i+1] \) can be NS. Combing this with our value for \( R_1 \) we have \( R_1 = 1 \) and \( R_{n+1} = R_n4^n \). Therefore, we have \( R_n = 4^{(n-1)/2^2} = 2^{(n-1)/2} \). For each SNS matrix \( M \), we can find \( 2^n \) distinct vectors for \( x \). Therefore, the number of permutations \( d = M_+ \oplus x \) is \( T_n = R_n2^n = 2^{n^2} \).

4 Combined storage schemes by using SNS matrices

Consider an SIMD computer that consists of \( 2^n \) processing elements interconnected to \( 2^n \) memories through \( \Omega_n \). We assume that the data to be accessed is a one dimensional array denoted by \( A = \{a(i) : 0 \leq i \leq 2^k - 1 \} \) that is accessed by using a skew storage scheme defined by \( d(i) = \Phi_i \), where \( \Phi \) is some boolean matrix, and \( d(i) \) is the memory number where array element \( a(i) \) is stored. Assume that the dimension of \( A \) is \( 2^k \). The binary of \( i \) is \( v_{k-1}i_{k-1}, \ldots, v_0i_0 \), where \( v_{k-1}, \ldots, v_0 \) are \( k \) canonical vectors of \( Z_2^k \).

Assume \( \Phi \) is to be used for accessing power-of-2 strides, such as strides 1, 2, and 4 with \( n = 3 \). We denote these patterns by \( P_1, P_2, \) and \( P_3 \). We may choose matrix \( \Phi \) as follows

\[
d(i) = \begin{pmatrix}
d_0 & d_1 & d_2 \\
d_3 & d_4 & d_5 \\
d_6 & d_7 & d_8 \\
\end{pmatrix} = \begin{pmatrix}
c_4 & c_3 & c_2 & c_1 & c_0 \\
c_4 & c_3 & c_2 & c_1 & c_0 \\
c_4 & c_3 & c_2 & c_1 & c_0 \\
\end{pmatrix} \begin{pmatrix}
i_4 \\
i_3 \\
i_2 \\
i_1 \\
i_0 \\
\end{pmatrix}
\]

where \( c_j \) denotes the \( j \)th column of \( \Phi \) and \( i \) is restricted to its 5 least-significant bits. Each pattern can be translated within the array which leads to access different instances of that pattern. For each instance of \( P_1 \), the group of bits \( (i_2, i_1, i_0) \) takes all possible binary combinations and the remaining bits of \( i \) are constant. Each power-of-2 pattern can entirely be specified by some basis. Patterns \( P_1, P_2, \) and \( P_3 \) have bases \( P_1 = \{v_2, v_3, v_0\}, P_2 = \{v_3, v_2, v_1\}, \) and \( P_3 = \{v_4, v_3, v_2\} \), respectively, where \( P_i \) denotes the basis of the \( i \)th pattern.

Generally, the data dependences in the program dictate the data pattern that must be accessed by each PE in order to honor the dependence. The array \( a(.,.) \) shown in Figure 1 must be accessed by different data patterns depending on the dependence in the loop (on top of each array). Each of the cases (a) to (d) shows the partitioning of the array by a data pattern whose instances correspond to the shown frames. The component of the basis for each pattern are pointed by arrows in the address vector for each partitioning of the array. Therefore, an array must be accessed by a number of distinct data patterns which can be identified following compiler dependence analysis. Finding the access patterns for an array can be a compiler decision that can be taken once the data dependence analysis is complete.

The union of all pattern bases is \( \{v_0, \ldots, v_4\} \). Generally, the storage matrix \( \Phi \) should then be an \( n \times p \) matrix, where \( p \) is the number of distinct canonical...
5 Storage schemes and multistage networks

The problem of finding a linear storage scheme which allows conflict-free and network-contention-free access for a given set of patterns is tractable for $p = 2$, but NP-complete for $p > 2$. The problem of finding an assignment of vectors in $\mathbb{Z}^T_2$ such that the matrices corresponding to all tuples are SNS is called non-singular satisfiability (NSS). It is proved that NSS is NP-complete for $n \geq 3$ [1].

We present an efficient algorithm for finding a linear storage scheme for a given pattern set. The idea is to construct the storage matrix $\Phi$ one row at a time, from top to bottom. We assume that, for each pattern, the matrix $\Phi_{P,j}$ is SNS and attempt to construct the row $\Phi_{P,j+1}$ so that each $\Phi_{P,j+1}$ is SNS. We use the idea from the proof of Theorem 5, in the construction of algorithm (H-n) which is as follows

1. Determine the upper two rows of the matrix.

2. Create each remaining row, working from top to bottom.

For $i$ in $2$ to $n - 1$ loop:

(a) For each pattern $P_j$ do:
  i. Obtain a matrix $\Phi_{P,j}$ by reducing the matrix $\Phi_{P,j}$ to the identity in its upper-left corner, using only row operations.
  ii. Use the $i$th column of this matrix to determine the equation associated with this pattern.

(b) Solve the system of simultaneous equations.

Assign entry $\Phi_{n-i-1,k}$ the value $x_k$.

The time complexity of this algorithm is $O(n^2)$. Since there are potentially several alternatives at Steps 1 and (b), one possibility is to use backtracking to exhaustively search for a solution.

6 Example

We illustrate the algorithm by an example with $p = 3$. Suppose we are given patterns $P_1$, $P_2$, $P_3$, and $P_4$ so that their bases are:

$\Phi_{P_1} = \{v_2, v_1, v_0\}$, $\Phi_{P_2} = \{v_3, v_2, v_1\}$

$\Phi_{P_3} = \{v_5, v_4, v_3\}$, $\Phi_{P_4} = \{v_4, v_3, v_1\}$

We construct the upper two rows of $\Phi$ using algorithm H-2. For each $\Phi_{P_i}$, we wish to ensure that the $2 \times 2$...
sub-matrix in its upper-left corner is SNS. We can accomplish this by constructing a matrix for the reduced pattern set:

\[
\begin{align*}
\tilde{P}'_1 &= \{v_2, v_1\}, & \tilde{P}'_2 &= \{v_3, v_2\} \\
\tilde{P}'_3 &= \{v_5, v_4\}, & \tilde{P}'_4 &= \{v_4, v_3\}
\end{align*}
\]

Note that \(\tilde{P}'_2\) is just \(\tilde{P}_1\) with the lowest ordered vector removed. The vectors appearing first in some pattern basis \(\tilde{P}'_i\) are \(X = \{v_5, v_4, v_3, v_2\}\). The vectors appearing only second in some pattern are \(Y = \{v_1\}\). Finally, \(v_0\) does not appear first or second and thus can be assigned any value. The conflict graph, with one possible coloring, is shown in Figure 2.

The upper two rows of \(\Phi\) have been determined. We let \(x_5 \ldots x_0\) be the values in the lowest row:

\[
\Phi = \begin{pmatrix}
v_5 & v_4 & v_3 & v_2 & v_1 & v_0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
x_5 & x_4 & x_3 & x_2 & x_1 & x_0
\end{pmatrix}
\]

We must now ensure that each 3 \(\times\) 3 matrix that corresponds to some pattern is NS. So considering an instance of \(P_i\), we must assign \(x_2, x_1,\) and \(x_0\) in such a way that the matrix

\[
\Phi_{P_i} = \begin{pmatrix}
v_2 & v_1 & v_0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
x_2 & x_1 & x_0
\end{pmatrix}
\]

is NS. The first step is to get the identity matrix in the upper right 2 \(\times\) 2 sub-matrix by using only row operations. This requirement is satisfied for \(\Phi_{P_1}\). Using Theorem 5, we have \(b_0 = x_1, b_1 = x_2, c = x_0, a_0 = 1,\) and \(a_1 = 1\).

Matrix \(\Phi_{P_1}\) will be NS, and thus SNS, if \(c = 1\) and the number of pairs \(a_i = b_i = 1\) is even, or if \(c = 0\) and the number of pairs \(a_i = b_i = 1\) is odd. Since the values of the \(a\)'s are fixed, we can express this as a linear equation over \(\mathbb{Z}_2\), that is \(b_0 \oplus b_1 \oplus c = 1\). Or, in terms of \(x\)'s \(x_2 \oplus x_1 \oplus x_0 = 1\).

Now consider \(\Phi_{P_3}\):

\[
\Phi_{P_3} = \begin{pmatrix}
v_3 & v_2 & v_1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
x_3 & x_2 & x_1
\end{pmatrix}
\]

We need to get the identity matrix in the upper-left 2 \(\times\) 2 sub-matrix, using only row operations. We achieve this by adding row 1 to row 2 and, next, we add row 2 to row 1. We denote this reduced matrix \(\hat{\Phi}_{P_3}\) according to the format of theorem 5:

\[
\hat{\Phi}_{P_3} = \begin{pmatrix}
v_3 & v_2 & v_1 \\
1 & 0 & 1 \\
x_3 & x_2 & x_1
\end{pmatrix}
\]

For \(\Phi_{P_3}\) to be NS, we must have \(x_3 \oplus x_2 \oplus x_1 = 1\). The remaining conditions for \(\Phi_{P_3}\) and \(\Phi_{P_4}\) are \(x_5 \oplus x_3 = 1\) and \(x_4 \oplus x_3 \oplus x_1 = 1\), respectively.

One solution for this system of simultaneous equations is:

\[
x_0 = 0, \ x_1 = 1, \ x_2 = 0, \ x_3 = 0, \ x_4 = 0, \ x_5 = 1
\]

So the final matrix is:

\[
\Phi = \begin{pmatrix}
v_5 & v_4 & v_3 & v_2 & v_1 & v_0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
x_5 & x_4 & x_3 & x_2 & x_1 & x_0
\end{pmatrix}
\]

All these permutations can be achieved in an \(\Omega_3\) network without conflicts.

7 Application to FFT

In the following we present one implementation of a 16-point FFT over 16 memories/PEs. Data input \(a(i)\), data output \(b(i)\), and intermediate values of \(b(i)\) are stored into memory \(m_j\), where \(0 \leq i, j \leq 15\). The complement-permutation for \(\Omega_4\) (Figure 3) is \(P_k(i) = I_i + c_k\), where \(c_1 = (1000), c_2 = (0100), c_3 = (0010)\), and \(c_4 = (0001)\) which is is valid only for \(\Omega_4\).

A 16-input Baseline network is defined by \(B_4 = E_1\sigma_i^{-1}E_2\sigma_3^{-1}E_3\sigma_2^{-1}E_4\), where \(E_i\) is the ith stage. This implies that the position of a message, issued at \(s = s_3s_2s_1s_0\), is \(pos_1 = s_3s_2s_1d_3, pos_2 = d_3s_3s_2d_2, pos_3 = d_3d_2s_3d_1,\) and \(pos_4 = d_3d_2d_1d_0\) at the output of the stages. Note that \(I\) is not SNS for \(B_4\). Matrix \(M = M_4\) is SNS for \(B_4\) if and only if all square submatrices on the anti-diagonal are NS. To guarantee conflict-free access to the network and the memories we need \(M_i\) to be an SNS matrix for the target network. The square submatrices within the frames shown in Figure 4 are to be chosen as NS. Matrix \(M = M_4\) is SNS for \(B_4\) if and only if all the framed submatrices are NS.
The permutations $p_k(i) = M_i \oplus c_k$ are shown in Figure 5, where the columns labeled (FFT) and (M) denote the data elements and memory-PE numbers, respectively. The $i$th data element is mapped to memory $M_i$. Each data element is mapped to a unique memory because $M$ is NS. All the complement-permutations $p_k$ are conflict-free for $B_4$ because $M$ is also SNS.

This example shows how one can convert linear permutations for implementing FFT from one network to another. The benefit of our approach is to re-allocate the data so that the needed permutations become achievable for each multistage network.

8 General patterns

Testing algorithm H-n is carried on for arbitrary sets of data patterns. We iterated H-n until a network-contention-free XOR-scheme was found, or the limit of ten backtracking tries was exceeded. The studied range of memories ($N = 2^n$) is $8 \leq N \leq 256$ and the number of patterns $p$ ranges from 3 to 16. One hundred cases were generated for each combination of these parameters.

The average number of clocks achieved by the XOR-scheme found by using H-n is displayed in Figure 6. Our scheme finds solutions requiring nearly one clock access for small numbers of patterns and moderate numbers of processors. The access time increases smoothly with increasing either the number of memories or the number of patterns.

For the same patterns, interleaving causes the average access time to be 6 to 26 fold that found by H-n when the number of memories ranges from 8 to 256. The static row-column-diagonals [3] scheme has an average access time that is 4 to 7 fold the that found by H-n.
9 Optimizing for stride access

In the following we examine finding storage schemes for accessing arbitrary strides in vector processors.

Algorithm H-n can find optimum combined address transformations for arbitrary groups of power-of-2 strides [1]. Conflict-free access to arbitrary strides is harder to achieve in the general case. However, the use of specific linear storage schemes that minimize the degree of sequentialization in accessing arbitrary stride provide useful throughput in vector computers.

Harper [4] and Sohi [7] showed that high memory throughput can be achieved when few buffers are used at the memory inputs and outputs. The buffers reduce the effects of transient degradation in pipelined memories. In this case, Sohi selected an XOR matrix that allows higher throughput than those obtained by using interleaving or row-rotation. Norton [6] proposed a specific scheme for the IBM-RP3 parallel memory.

The linear storage schemes selected by Sohi and Norton for 8 memories are:

\[
M_{\text{sohi}} = \begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\end{pmatrix}
\]

\[
M_{\text{norton}} = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

Sohi’s matrix has equal number of ones in each row and any group of 3 successive columns form a NS matrix. The latter condition allows conflict-free access to power-of-two strides but can also be used for arbitrary strides. Sohi’s matrix is a particular case of complement-permutations that can be found by using Algorithm H-n. We present two schemes denoted by \(M_{\text{gray}}\) and \(M_{\text{cond}}\) which are:

\[
M_{\text{gray}} = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{pmatrix}
\]

\[
M_{\text{cond}} = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{pmatrix}
\]

These schemes can be easily generalized because their basis matrices \((3 \times 3)\) that appear in their right hand side are known as the Gray and Conditional-Exchange transformations. The remainder of these matrices can be constructed by row rotation of the basis matrix.

To compare these schemes we used the degree of conflict which is the maximum number of cycles required to access a given stride with random origin address. A stride access is defined by the sequence of addresses \(a, a+s, a+2s, \ldots, a+(2^n-1)s\), where \(a\) is the origin, \(s\) is the stride, and \(2^n\) is the number of memories.
through an arbitrary multistage network. To automate the above process we proposed a compiler operator for synthesizing combined storages for arbitrary sets of power-of-2 data patterns so that memory and network conflicts are minimized. Algorithms such as FFT and sorting written for a given network can be converted with simple address emulation to other networks. Some of the results may also apply to secondary memory organization.

11 acknowledgment

Thanks to the Research Committee and the College of Computer Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for partially supporting this research.

References


