
Exam ReviewExam Review
•• Instruction DependenciesInstruction Dependencies
•• InIn--order Floating Point/order Floating Point/MulticycleMulticycle PipeliningPipelining
•• InstructionInstruction--Level Parallelism (Level Parallelism (ILP)ILP)(())

–– LoopLoop--unrolling unrolling
•• Dynamic Pipeline SchedulingDynamic Pipeline Scheduling

TheThe TomasuloTomasulo AlgorithmAlgorithm–– The The TomasuloTomasulo Algorithm Algorithm
•• Multiple Instruction Issue (CPI < 1):Multiple Instruction Issue (CPI < 1): Superscalar vs. VLIWSuperscalar vs. VLIW
•• Dynamic HardwareDynamic Hardware--Based Speculation Based Speculation
•• LoopLoop--Level Parallelism Level Parallelism

–– Making loop iterations parallel Making loop iterations parallel
–– Software Pipelining (Symbolic LoopSoftware Pipelining (Symbolic Loop--Unrolling)Unrolling)p g (y pp g (y p g)g)

•• Cache & Memory PerformanceCache & Memory Performance
•• I/O & System PerformanceI/O & System Performance

1

Data Hazard/Dependence ClassificationData Hazard/Dependence Classification
I (Write) I (Read)

Shared
Operand

I (Read)

Shared
Operand

A name dependence:
antidependence

I
..

True Data Dependence
Operand

J (Read)
Operand

J (Write)

antidependence..
..

J

Read after Write (RAW)
if data dependence is violated

Write after Read (WAR)
if antidependence is violated

I (Write) I (Read)

Program
Order

()

Shared
Operand

Shared
OperandA name dependence:

output dependence
No dependence

Operand

J (Write)
W i f W i (WAW)

p

J (Read)

R d ft R d (RAR)

output dependence

Write after Write (WAW)
if output dependence is violated

Read after Read (RAR) not a hazard

2

Instruction Dependence ExampleInstruction Dependence Example
Dependency Graph Example CodeDependency Graph

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S D F4 0(R1)

1
2
3

L.D F0, 0 (R1)

1

2

Example Code

S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

3
4
5
6

ADD.D F4, F0, F2

2

3
S.D F4, 0(R1)

4
Date Dependence:
(1, 2) (2, 3) (4, 5) (5, 6)

Output Dependence:

ADD.D F4, F0, F2

5
L.D F0, -8 (R1)

Output Dependence:
(1, 4) (2, 5)

Anti-dependence:
(2, 4) (3, 5)

S.D F4, -8 (R1)

6 Can instruction 4 (second L.D) be moved
just after instruction 1 (first L.D)?
If not what dependencies are violated?Can instruction 3 (first S.D) be moved

just after instruction 4 (second L.D)?just after instruction 4 (second L.D)?
How about moving 3 after 5 (the second ADD.D)?
If not what dependencies are violated?

3

Control DependenciesControl Dependencies
• Determines the ordering of an instruction with respect to a branch instruction.
• Every instruction in a program except those in the very first basic block of the

program is control dependent on some set of branches.
A i t ti hi h i t l d d t b h t b d b f• An instruction which is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch.

• An instruction which is not control dependent on the branch cannot be moved so
that its execution is controlled by the branch (in the then portion)that its execution is controlled by the branch (in the then portion)

• It’s possible in some cases to violate these constraints and still have correct
execution.

• Example of control dependence in the then part of an if statement: p p p

if p1 {
S1; S1 is control dependent on p1

};
If p2 {

S2;

S2 is control dependent on p2 but not on p1

What happens if S1 is moved here?

(In Chapter 3.1)

S2;
}

(In Chapter 3.1)
4

Floating Point/Multicycle Pipelining in MIPSFloating Point/Multicycle Pipelining in MIPS
• Completion of MIPS EX stage floating point arithmetic operations in oneCompletion of MIPS EX stage floating point arithmetic operations in one

or two cycles is impractical since it requires:
• A much longer CPU clock cycle, and/or
• An enormous amount of logic.An enormous amount of logic.

• Instead, the floating-point pipeline will allow for a longer latency.
• Floating-point operations have the same pipeline stages as the integer

instructions with the following differences:instructions with the following differences:

– The EX cycle may be repeated as many times as needed.
– There may be multiple floating-point functional units.
– A stall will occur if the instruction to be issued either causes a

structural hazard for the functional unit or cause a data hazard.

• The latency of functional units is defined as the number of interveningThe latency of functional units is defined as the number of intervening
cycles between an instruction producing the result and the instruction
that uses the result (usually equals stall cycles with forwarding used).

• The initiation or repeat interval is the number of cycles that must elapse

(In Appendix A)

The initiation or repeat interval is the number of cycles that must elapse
between issuing an instruction of a given type.

5

Extending The MIPS InExtending The MIPS In--order Integer Pipeline:order Integer Pipeline:
Multiple Outstanding Floating Point OperationsMultiple Outstanding Floating Point Operationsp g g pp g g p

Latency = 0
Initiation Interval = 1

Latency = 6
Initiation Interval = 1
Pipelined

Integer Unit

Hazards:
RAW WAW possible

Floating Point (FP)/Integer Multiply

RAW, WAW possible
WAR Not Possible
Structural: Possible
Control: Possible

IF ID WBMEM
FP Adder

EX

Latency = 3 FP/Integer Dividery
Initiation Interval = 1
Pipelined

Latency = 24
Initiation Interval = 25
Non-pipelined

(In Appendix A)
6

FP Code RAW Hazard Stalls ExampleFP Code RAW Hazard Stalls Example
(with full data forwarding in place)(with full data forwarding in place)

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11 CC12 CC13 CC14 CC15 CC16 CC17 CC18
L.D F4, 0(R2)

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID MEMEX WB

STALLMUL D F0 F4 F6 IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID A1 A4A3A2 MEM WB

STALL

STALL STALL STALL STALLSTALL STALL STALL

MUL.D F0, F4, F6

ADD.D F2, F0, F8

IF MEMID EX WBSTALL STALLSTALL STALL STALL STALL STALL STALL STALLS.D F2, 0(R2)

Third stall due
to structural hazard
i MEM tin MEM stage

6 stall cycles which equals latency of FP add functional unit

(In Appendix A) (quiz 2)(quiz 2)
7

Increasing InstructionIncreasing Instruction--Level ParallelismLevel Parallelism
• A common way to increase parallelism among instructions is to

exploit parallelism among iterations of a loopexploit parallelism among iterations of a loop
– (i.e Loop Level Parallelism, LLP).

• This is accomplished by unrolling the loop either statically by the
compiler or dynamically by hardware which increases the size ofcompiler, or dynamically by hardware, which increases the size of
the basic block present. This resulting larger basic block
provides more instructions that can scheduled or re-ordered to
eliminate more stall cycleseliminate more stall cycles.

• In this loop every iteration can overlap with any other iteration.
Overlap within each iteration is minimal.

for (i=1; i<=1000; i=i+1;)
x[i] = x[i] + y[i];

• In vector machines, utilizing vector instructions is an important
alternative to exploit loop-level parallelism,

• Vector instructions operate on a number of data items. The

(In Chapter 4.1)

p
above loop would require just four such instructions.

8

MIPS Loop Unrolling ExampleMIPS Loop Unrolling Example
• For the loop:

for (i=1000; i>0; i=i-1)for (i 1000; i 0; i i 1)
x[i] = x[i] + s;

The straightforward MIPS assembly code is given by:

Loop: L.D F0, 0 (R1) ;F0=array element
ADD.D F4, F0, F2 ;add scalar in F2
S.D F4, 0(R1) ;store result
DADDUI R1, R1, # -8 ;decrement pointer 8 bytesDADDUI R1, R1, # 8 ;decrement pointer 8 bytes
BNE R1, R2,Loop ;branch R1!=R2

R1 is initially the address of the element with highest address. (Basic block size = 5 instructions)

(In Chapter 4.1)

R1 is initially the address of the element with highest address.
8(R2) is the address of the last element to operate on.

(quiz 3)(quiz 3) 9

MIPS FP Latency For Loop Unrolling ExampleMIPS FP Latency For Loop Unrolling ExampleMIPS FP Latency For Loop Unrolling ExampleMIPS FP Latency For Loop Unrolling Example
• All FP units assumed to be pipelined.
• The following FP operations latencies are used:• The following FP operations latencies are used:

Instruction
P d i R lt

Instruction
U i R lt

Latency In
Cl k C l

(or Number of
Stall Cycles)

Producing Result

FP ALU Op

Using Result

Another FP ALU Op

Clock Cycles

3

FP ALU Op

Load Double

Store Double

FP ALU Op

2

1

Load Double Store Double 0

Branch resolved in decode stage Branch penalty = 1 cycle Full forwarding is used

(In Chapter 4.1)

Branch resolved in decode stage, Branch penalty = 1 cycle, Full forwarding is used

10

Loop Unrolling Example (continued)Loop Unrolling Example (continued)
• This loop code is executed on the MIPS pipeline as follows:

(Branch resolved in decode stage, Branch penalty = 1 cycle, Full forwarding is used)

No scheduling
Scheduled with single delayed
branch slot

No scheduling
Clock cycle

Loop: L.D F0, 0(R1) 1
stall 2

Loop: L.D F0, 0(R1)
DADDUI R1, R1, # -8
ADD.D F4, F0, F2

stall 2
ADD.D F4, F0, F2 3
stall 4
stall 5 stall

BNE R1,R2, Loop
S.D F4,8(R1)

stall 5
S.D F4, 0 (R1) 6
DADDUI R1, R1, # -8 7
stall 8

6 cycles per iteration

stall 8
BNE R1,R2, Loop 9
stall 10

10/6 = 1.7 times faster

(In Chapter 4.1)

10 cycles per iteration
10/6 1.7 times faster

11

Loop Unrolling Example (continued)Loop Unrolling Example (continued)
• The resulting loop code when four copies of the

loop body are unrolled without reuse of registers

No scheduling
Loop: L.D F0, 0(R1)1

Cycle

loop body are unrolled without reuse of registers.
• The size of the basic block increased from 5

instructions in the original loop to 14 instructions.

Stall

ADD.D F4, F0, F2
Stall
Stall

SD F4,0 (R1) ; drop DADDUI & BNE

2

3
4
5
6 , () ; p

LD F6, -8(R1)
Stall

ADDD F8, F6, F2
Stall
Stall

Three branches and three
decrements of R1 are eliminated.

L d d t dd

7
8
9
10
11

SD F8, -8 (R1), ; drop DADDUI & BNE

LD F10, -16(R1)
Stall

ADDD F12, F10, F2
Stall

Load and store addresses are
changed to allow DADDUI
instructions to be merged.

12
13
14
15
16 Stall

Stall

SD F12, -16 (R1) ; drop DADDUI & BNE

LD F14, -24 (R1)
Stall

ADDD F16, F14, F2

The unrolled loop runs in 28 cycles
assuming each L.D has 1 stall
cycle, each ADD.D has 2 stall
cycles the DADDUI 1 stall the

17
18

19
20
21 ADDD F16, F14, F2

Stall
Stall

SD F16, -24(R1)
DADDUI R1, R1, # -32
Stall

cycles, the DADDUI 1 stall, the
branch 1 stall cycle, or 28/4 = 7
cycles to produce each of the four
elements.

22
23
24
25
26

(In Chapter 4.1)

BNE R1, R2, Loop
Stall

27
28

12

Loop Unrolling Example (continued)Loop Unrolling Example (continued)

When scheduled for pipeline

L L D F0 0(R1)

The execution time of the loop
has dropped to 14 cycles, or 14/4 = 3.5
l k l l tLoop: L.D F0, 0(R1)

L.D F6,-8 (R1)
L.D F10, -16(R1)
L D F14 24(R1)

clock cycles per element

compared to 6.8 before scheduling
and 6 when scheduled but unrolled.L.D F14, -24(R1)

ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2

and 6 when scheduled but unrolled.

Unrolling the loop exposed more
computations that can be scheduled ADD.D F12, F10, F2

ADD.D F16, F14, F2
S.D F4, 0(R1)
S.D F8, -8(R1)

to minimize stalls by increasing the
size of the basic block from 5 instructions
in the original loop to 14 instructions
in the unrolled loop, ()

DADDUI R1, R1,# -32
S.D F12, 16(R1),F12
BNE R1,R2, Loop

in the unrolled loop.

(In Chapter 4.1)

S.D F16, 8(R1), F16 ;8-32 = -24

13

Dynamic Pipeline SchedulingDynamic Pipeline Scheduling
• Dynamic instruction scheduling is accomplished by:

– Dividing the Instruction Decode ID stage into two stages:
• Issue: Decode instructions, check for structural hazards.
• Read operands: Wait until data hazard conditions, if any,

are resolved, then read operands when available.
(All instructions pass through the issue stage in order but can

be stalled or pass each other in the read operands stage).
– In the instruction fetch stage IF, fetch an additional instruction

every cycle into a latch or several instructions into an instruction
queue.

– Increase the number of functional units to meet the demands of
the additional instructions in their EX stage.

• Two dynamic scheduling approaches exist:
– Dynamic scheduling with a Scoreboard used first in CDC6600 (1963)

(In Appendix A.8, Chapter 3.2)

– The Tomasulo approach pioneered by the IBM 360/91 (1966)

14

Tomasulo Algorithm Vs. Scoreboard
• Control & buffers distributed with Function Units (FU) Vs. centralized in

Scoreboard:Scoreboard:
– FU buffers are called “reservation stations” which have pending instructions

and operands and other instruction status info.
– Reservations stations are sometimes referred to as “physical registers” or p y g

“renaming registers” as opposed to architecture registers specified by the
ISA.

• ISA Registers in instructions are replaced by either values (if available) or
i t t ti t ti (RS) th t ill l th l l tpointers to reservation stations (RS) that will supply the value later:

– This process is called register renaming.
– Avoids WAR, WAW hazards.

All f h d b d l lli– Allows for hardware-based loop unrolling.
– More reservation stations than ISA registers are possible , leading to

optimizations that compilers can’t achieve and prevents the number of ISA
registers from becoming a bottleneck.registers from becoming a bottleneck.

• Instruction results go (forwarded) to FUs from RSs, not through registers, over
Common Data Bus (CDB) that broadcasts results to all FUs.

• Loads and Stores are treated as FUs with RSs as well.
• Integer instructions can go past branches, allowing FP ops beyond basic block in

FP queue.
(In Chapter 3.2)

15

Dynamic Scheduling: The Tomasulo ApproachDynamic Scheduling: The Tomasulo Approach

The basic structure of a MIPS floating-point unit using Tomasulo’s algorithm

(In Chapter 3.2)
16

Reservation Station FieldsReservation Station Fields
• Op Operation to perform in the unit (e.g., + or –)p p p (g)
• Vj, Vk Value of Source operands S1 and S2

– Store buffers have a single V field indicating result to
be storedbe stored.

• Qj, Qk Reservation stations producing source
registers. (value to be written).
– No ready flags as in Scoreboard; Qj,Qk=0 => ready.
– Store buffers only have Qi for RS producing result.

A Add i f ti f l d t I iti ll• A: Address information for loads or stores. Initially
immediate field of instruction then effective address
when calculated.

• Busy: Indicates reservation station and FU are busy.
• Register result status: Qi Indicates which functional

unit will write each register if one exists

(In Chapter 3.2)

unit will write each register, if one exists.
– Blank (or 0) when no pending instructions exist that

will write to that register. 17

Three Stages of Tomasulo AlgorithmThree Stages of Tomasulo Algorithm
1 Issue: Get instruction from pending Instruction Queue.

Instruction issued to a free reservation station (no structural hazard)– Instruction issued to a free reservation station (no structural hazard).
– Selected RS is marked busy.
– Control sends available instruction operands values (from ISA registers)

to assigned RS.
– Operands not available yet are renamed to RSs that will produce the

operand (register renaming).

2 Execution (EX): Operate on operands.
– When both operands are ready then start executing on assigned FU.
– If all operands are not ready, watch Common Data Bus (CDB) for needed

result (forwarding done via CDB).

33 Write result (WB): Finish execution.
– Write result on Common Data Bus to all awaiting units
– Mark reservation station as available.

N l d b d d i i (“ ” b)• Normal data bus: data + destination (“go to” bus).
• Common Data Bus (CDB): data + source (“come from” bus):

– 64 bits for data + 4 bits for Functional Unit source address.
Write data to waiting RS if source matches expected RS (that produces result)

(In Chapter 3.2)

– Write data to waiting RS if source matches expected RS (that produces result).
– Does the result forwarding via broadcast to waiting RSs.

18

Tomasulo Approach ExampleTomasulo Approach Example
Using the same code used in the scoreboard example to be run on the Tomasulo
configuration given earlier:

of RSs EX Latency

Integer 1 0
Floating Point Multiply/divide 2 10/40
Floating Point add 3 2

Pi li d F ti l U it

L.D F6, 34(R2)

L.D F2, 45(R3) Real Data Dependence (RAW)

Pipelined Functional Units

L.D F2, 45(R3)

MUL. D F0, F2, F4

S 8 6 2

p ()

Anti-dependence (WAR)

Output Dependence (WAW)

SUB.D F8, F6, F2

DIV.D F10, F0, F6

ADD.D F6, F8, F2
(In Chapter 3.3)

19

Tomasulo Example: Cycle 57Tomasulo Example: Cycle 57
Instruction status Execution Write
Instruction j k Issue complete Result Busy Address

F6 34+ R2 1 3 4 Load1 NoL.D F6 34 R2 1 3 4 Load1 No
F2 45+ R3 2 4 5 Load2 No
F0 F2 F4 3 15 16 Load3 No
F8 F6 F2 4 7 8
F10 F0 F6 5 56 57
F6 F8 F2 6 10 11 Instruction

L.D
MUL.D
SUB.D
DIV.D
ADD DF6 F8 F2 6 10 11
Reservation Stations S1 S2 RS for j RS for k

Time Name Busy Op Vj Vk Qj Qk
0 Add1 No
0 Add2 No

Add3 No

Block done
ADD.D

Add3 No
0 Mult1 No
0 Mult2 No

Register result status
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

57 FU M*F4 M(45+R3) (M–M)+M() M()–M() M*F4/M

• We have:
• In-oder issue,In oder issue,
• Out-of-order execution, completion

(quiz 4)(quiz 4) 20

Tomasulo Loop ExampleTomasulo Loop Example
Loop: L.D F0, 0(R1)

MUL.D F4,F0,F2
S D F4 0(R1)S.D F4, 0(R1)
DADDUI R1,R1,# -8
BNE R1,R2,Loop ; branch if R1 = R2BNE R1,R2,Loop ; branch if R1 R2

• Assume Multiply takes 4 clocks.
• Assume first load takes 8 clocks (possibly due to a cache miss), second (p y),

load takes 4 clocks (cache hit).
• Assume R1 = 80 initially.
• Assume branch is predicted taken and no branch misprediction.Assume branch is predicted taken and no branch misprediction.
• No branch delay slot is used in this example.
• Stores take 4 cycles (ex, mem) and do not write on CDB

W ’ll th ti t l t fi t t l it ti• We’ll go over the execution to complete first two loop iterations.

(Expanded from loop example in Chapter 3.3)
21

Loop Example Cycle 19
First two Loop iterations done

Loop Example Cycle 19
Instruction status Execution Write
Instruction j k iteration Issue complete Result Busy AddressInstruction j k iteration Issue complete Result Busy Address

F0 0 R1 1 1 9 10 Load1 No
F4 F0 F2 1 2 14 15 Load2 No
F4 0 R1 1 3 18 Load3 No Qi
F0 0 R1 2 6 10 11 Store1 No

L.D
MUL.D
S.D
L.D F0 0 R1 2 6 10 11 Store1 No

F4 F0 F2 2 7 15 16 Store2 Yes 72 M(72)*R(72)
F4 0 R1 2 8 Store3 Yes 64 Mult1

Reservation Stations S1 S2 RS for j RS for k
Time Name Busy Op Vj Vk Qj Qk Code:

MUL.D
S.D

0

19

y p j j
0 Add1 No
0 Add2 No
0 Add3 No
1 Mult1 Yes MULTD R(F2) R1, R1, #-8

L.D F0, 0(R1)
MUL.D F4,F0,F2
S.D F4, 0(R1)
DADDUIM(64)

0 Mult2 No
Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

19 56 Qi Mult1

BNE R1,R2,loop

Second S.D done (No write on CDB for stores) Second loop iteration done
Issue third iteration BNE

22

Multiple Instruction Issue: CPI < 1Multiple Instruction Issue: CPI < 1
• To improve a pipeline’s CPI to be better [less] than one, and to utilize Instruction

Level Parallelism (ILP) better, a number of independent instructions have to be
issued in the same pipeline cycle.

• Multiple instruction issue processors are of two types:
S l A b f i t ti (2 8) i i d i th– Superscalar: A number of instructions (2-8) is issued in the same
cycle, scheduled statically by the compiler or dynamically
(Tomasulo).

• PowerPC Sun UltraSparc Alpha HP 8000PowerPC, Sun UltraSparc, Alpha, HP 8000 ...
– VLIW (Very Long Instruction Word):

A fixed number of instructions (3-6) are formatted as one long
instruction word or packet (statically scheduled by the compiler). p (y y p)

– Example: Explicitly Parallel Instruction Computer (EPIC)
• Originally a joint HP/Intel effort.
• ISA: Intel Architecture-64 (IA-64) 64-bit address:
• First CPU: Itanium, Q1 2001.

• Limitations of the approaches:
– Available ILP in the program (both).
– Specific hardware implementation difficulties (superscalar).
– VLIW optimal compiler design issues.

(Ch 3.6, 3.7, 4.3, 4.5)
23

Unrolled Loop Example for Unrolled Loop Example for
Scalar (singleScalar (single--issue) Pipelineissue) Pipeline

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

Scalar (singleScalar (single--issue) Pipelineissue) Pipeline

3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2

y

6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D F4,0(R1)
10 S D F8 8(R1)10 S.D F8,-8(R1)
11 DADDUI R1,R1,#-32
12 S.D F12, 16(R1)
13 BNE R1,R2,LOOP, ,
14 S.D F16,8(R1) ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

24

Loop Unrolling in Superscalar Pipeline: Loop Unrolling in Superscalar Pipeline:
(1 Integer, 1 FP/Cycle)(1 Integer, 1 FP/Cycle)(tege , /Cyc e)(tege , /Cyc e)

Integer instruction FP instruction Clock cycle
Loop: L.D F0,0(R1) 1

L D F6 -8(R1) 2L.D F6,-8(R1) 2
L.D F10,-16(R1) ADD.D F4,F0,F2 3
L.D F14,-24(R1) ADD.D F8,F6,F2 4
L D F18 -32(R1) ADD D F12 F10 F2 5L.D F18,-32(R1) ADD.D F12,F10,F2 5
S.D F4,0(R1) ADD.D F16,F14,F2 6
S.D F8,-8(R1) ADD.D F20,F18,F2 7
S D F12 -16(R1) 8S.D F12,-16(R1) 8
DADDUI R1,R1,#-40 9
S.D F16,-24(R1) 10
BNE R1 R2 LOOP 11BNE R1,R2,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays and expose more ILP (unrolled one more time)
• 12 cycles, or 12/5 = 2.4 cycles per iteration (3.5/2.4= 1.5X faster than scalar)12 cycles, or 12/5 2.4 cycles per iteration (3.5/2.4 1.5X faster than scalar)
• CPI = 12/ 17 = .7 worse than ideal CPI = .5 because 7 issue slots are wasted

25

Loop Unrolling in VLIW PipelineLoop Unrolling in VLIW Pipeline
(2 Memory, 2 FP, 1 Integer / Cycle)(2 Memory, 2 FP, 1 Integer / Cycle)(2 Memory, 2 FP, 1 Integer / Cycle)(2 Memory, 2 FP, 1 Integer / Cycle)

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L D F26 -48(R1) ADD D F12 F10 F2 ADD D F16 F14 F2 4L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D F4,0(R1) S.D F8, -8(R1) ADD.D F28,F26,F2 6
S.D F12, -16(R1) S.D F16,-24(R1) DADDUI R1,R1,#-56 7
S.D F20, 24(R1) S.D F24,16(R1) 8
S.D F28, 8(R1) BNE R1,R2,LOOP 9

Unrolled 7 times to avoid delays and expose more ILPy p
7 results in 9 cycles, or 1.3 cycles per iteration

(2.4/1.3 =1.8X faster than 2-issue superscalar, 3.5/1.3 = 2.7X faster than scalar)
Average: about 23/9 = 2.55 IPC (instructions per clock cycle) Ideal IPC =5,
CPI = .39 Ideal CPI = .2 thus about 50% efficiency, 22 issue slots are wasted

(In chapter 4.3 pages 317-318)

CPI .39 Ideal CPI .2 thus about 50% efficiency, 22 issue slots are wasted
Note: Needs more registers in VLIW (15 vs. 6 in Superscalar)

26

Multiple Instruction Issue with Dynamic
Scheduling ExampleScheduling Example

Assumptions:
Restricted 2-way superscalar:
1 integer 1 FP Issue Per Cycle1 integer, 1 FP Issue Per Cycle

One integer unit
(for ALU, effective address)
One integer unit for branch condition
2 CDBs

Execution cycles:
Integer: 1 cycle
Load: 2 cycles (1 ex + 1 mem)Load: 2 cycles (1 ex + 1 mem)
FP add: 3 cycles

Any instruction following
a branch cannot start execution

til b h diti i l t duntil branch condition is evaluated

Branches are single issued,
no delayed branch,
perfect branch prediction

Example on page 221

p p

27

Three Loop Iterations on Restricted 2-way Superscalar Tomasulo

Only one CDB is needed in this case.

28

Multiple Instruction Issue with Dynamic Scheduling Example

Assumptions:
The same loop in previous example
On restricted 2-way superscalar:
1 integer, 1 FP Issue Per Cycle

Two integer units
one for ALU, one for effective address
One integer unit for branch condition
2 CDBs

Execution cycles:
Integer: 1 cycle
Load: 2 cycles (1 ex + 1 mem)
FP add: 3 cycles

Any instruction followingAny instruction following
a branch cannot start execution
until branch condition is evaluated

Branches are single issued,
no delayed branch,

Example on page 223

y ,
perfect branch prediction

29

Same three loop Iterations on Restricted 2-way Superscalar Tomasulo
but with Two integer units (one for ALU, one for effective address)

(page 224)
30

Dynamic HardwareDynamic Hardware--Based SpeculationBased Speculation
•• Combines:Combines:

– Dynamic hardware-based branch prediction
– Dynamic Scheduling: issue multiple instructions in order and

execute out of order. (Tomasulo)execute out of order. (Tomasulo)
• Continue to dynamically issue, and execute instructions passed

a conditional branch in the dynamically predicted branch
direction before control dependencies are resolveddirection, before control dependencies are resolved.
– This overcomes the ILP limitations of the basic block size.
– Creates dynamically speculated instructions at run-time with no

compiler support at allcompiler support at all.
– If a branch turns out as mispredicted all such dynamically

speculated instructions must be prevented from changing the state of
the machine (registers, memory).(g , y)

• Addition of commit (retire, completion, or re-ordering) stage and
forcing instructions to commit in their order in the code (i.e to
write results to registers or memory).

• Precise exceptions are possible since instructions must commit in
order.

31

HardwareHardware--Based Based
S l tiS l tiSpeculationSpeculation

Speculative Execution +Speculative Execution +pp
Tomasulo’s AlgorithmTomasulo’s Algorithm

32

Four Steps of Speculative Tomasulo AlgorithmFour Steps of Speculative Tomasulo Algorithm
1. Issue — Get an instruction from FP Op Queue

If a reservation station and a reorder buffer slot are free, issue instruction
& send operands & reorder buffer number for destination (this stage is
sometimes called “dispatch”)

2 Execution Operate on operands (EX)2. Execution — Operate on operands (EX)
When both operands are ready then execute; if not ready, watch CDB for
result; when both operands are in reservation station, execute; checks
RAW (sometimes called “issue”)()

3. Write result — Finish execution (WB)
Write on Common Data Bus (CDB) to all awaiting FUs & reorder
buffer; mark reservation station available.;

4. Commit — Update registers, memory with reorder buffer result
– When an instruction is at head of reorder buffer & the result is present,

update register with result (or store to memory) and remove instruction upd e eg s e w esu (o s o e o e o y) d e ove s uc o
from reorder buffer.

– A mispredicted branch at the head of the reorder buffer flushes the
reorder buffer (sometimes called “graduation”)

 Instructions issue in order, execute (EX), write result (WB) out of
order, but must commit in order.

33

Multiple Issue with Speculation Example

Example on page 235

Branches still single issue

(quiz 5)(quiz 5) 34

Answer: Without Speculation

35

Answer: 2-way Superscalar Tomasulo With Speculation

Branches Still Single Issue
36

LoopLoop--Level Parallelism (LLP) AnalysisLevel Parallelism (LLP) Analysis
• Loop-Level Parallelism (LLP) analysis focuses on whether data accesses in

later iterations of a loop are data dependent on data values produced inlater iterations of a loop are data dependent on data values produced in
earlier iterations and possibly making loop iterations independent.

e.g. in for (i=1; i<=1000; i++)
[i] [i] +x[i] = x[i] + s;

the computation in each iteration is independent of the previous
iterations and the loop is thus parallel. The use of X[i] twice is within

i l it tia single iteration.
Thus loop iterations are parallel (or independent from each other).

• Loop-carried Dependence: A data dependence between different loop
iterations (data produced in earlier iteration used in a later one)iterations (data produced in earlier iteration used in a later one).

• LLP analysis is important in software optimizations such as loop unrolling
since it usually requires loop iterations to be independent.

• LLP analysis is normally done at the source code level or close to it since y y
assembly language and target machine code generation introduces a loop-
carried name dependence in the registers used for addressing and
incrementing.

(In Chapter 4.4)

• Instruction level parallelism (ILP) analysis, on the other hand, is usually done
when instructions are generated by the compiler.

37

LLP Analysis Example 1LLP Analysis Example 1
• In the loop:p

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

}
(Wh A B C di ti t l i)(Where A, B, C are distinct non-overlapping arrays)

– S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried p p
dependence).
 does not prevent loop iteration parallelism.

– S1 uses a value computed by S1 in an earlier iteration since iteration i– S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]
These two dependencies are loop-carried spanning more than one iterationThese two dependencies are loop carried spanning more than one iteration

preventing loop parallelism.
38

LLP Analysis Example 2LLP Analysis Example 2
• In the loop:

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */B[i+1] C[i] + D[i]; / S2 /

}
– S1 uses the value B[i] computed by S2 in the previous iteration (loop-

carried dependence)carried dependence)
– This dependence is not circular:

• S1 depends on S2 but S2 does not depend on S1.
– Can be made parallel by replacing the code with the following:

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

Loop Start-up code

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}

Parallel
loop iterations

}
B[101] = C[100] + D[100]; Loop Completion code

(quiz 6)(quiz 6)
39

LLP Analysis Example 2LLP Analysis Example 2
for (i=1; i<=100; i=i+1) {

A[i] A[i] + B[i] /* S1 */Original Loop: A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}
Iteration 1 Iteration 2 Iteration 100Iteration 99

.
A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];Loop-carried
Dependence

.S1

S2

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];Modified Parallel Loop: A[i+1] A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Loop Start-up code Iteration 1
Iteration 98 Iteration 99. . . .

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];Not Loop
Carried

Loop Completion codeDependence

40

ILP Compiler Support:ILP Compiler Support:
Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)
– A compiler technique where loops are reorganized:

• Each new iteration is made from instructions selected
from a number of independent iterations of the original
loop.

– The instructions are selected to separate dependentThe instructions are selected to separate dependent
instructions within the original loop iteration.

– No actual loop-unrolling is performed.
• A software equivalent to the Tomasulo approach?

– Requires:
• Additional start-up code to execute code left out from

the first original loop iterations.
• Additional finish code to execute instructions left out

from the last original loop iterations.

(In Chapter 4.4)
41

Software Pipelining ExampleSoftware Pipelining Example
Show a software-pipelined version of the code: Software Pipeline

op
s

finish

start-up
code

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8 Loop Unrolled

er
la

pp
ed

 o

Time

code

B f U ll d 3 i

BNE R1,R2,LOOP

ov
e

Time
Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)

After: Software Pipelined
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

start-up
code

4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)

1 S.D F4,0(R1) ;Stores M[i]
2 ADD.D F4,F0,F2 ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI R1,R1,#-8

8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI R1,R1,#-24
11 BNE R1,R2,LOOP

5 BNE R1,R2,LOOP
S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

finish
code

2 fewer loop iterations

42

Software Pipelining Example Illustrated

Assuming 6 original iterations
for illustration purposes:

L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

1 2 3 4 5 6
start-up
code

L.D

ADD D

L.D

ADD D

L.D

ADD D

L.D

ADD D

L.D

ADD D

L.D

ADD D

code

ADD.D

S.D

ADD.D

S.D

ADD.D

S.D

ADD.D

S.D

ADD.D

S.D

ADD.D

S.D1 2 3 4 finish

4 Software Pipelined loop iterations (2 iterations fewer)

finish
code

43

Cache ConceptsCache Concepts
• Cache is the first level of the memory hierarchy once the address leaves

Cache ConceptsCache Concepts
• Cache is the first level of the memory hierarchy once the address leaves C c e s e s eve o e e o y e c y o ce e dd ess e ves

the CPU and is searched first for the requested data.

• If the data requested by the CPU is present in the cache, it is retrieved
from cache and the data access is a cache hit otherwise a cache miss

C c e s e s eve o e e o y e c y o ce e dd ess e ves
the CPU and is searched first for the requested data.

• If the data requested by the CPU is present in the cache, it is retrieved
from cache and the data access is a cache hit otherwise a cache missfrom cache and the data access is a cache hit otherwise a cache miss
and data must be read from main memory.

• On a cache miss a block of data must be brought in from main memory

from cache and the data access is a cache hit otherwise a cache miss
and data must be read from main memory.

• On a cache miss a block of data must be brought in from main memory
to cache to possibly replace an existing cache block.

• The allowed block addresses where blocks can be mapped into cache
from main memory is determined by cache placement strategy.

to cache to possibly replace an existing cache block.

• The allowed block addresses where blocks can be mapped into cache
from main memory is determined by cache placement strategy.y y p gy

• Locating a block of data in cache is handled by cache block
identification mechanism.

y y p gy

• Locating a block of data in cache is handled by cache block
identification mechanism.

• On a cache miss the cache block being removed is handled by the block
replacement strategy in place.

• When a write to cache is requested, a number of main memory update

• On a cache miss the cache block being removed is handled by the block
replacement strategy in place.

• When a write to cache is requested, a number of main memory update q , y p
strategies exist as part of the cache write policy.

q , y p
strategies exist as part of the cache write policy.

(Review from 550)
44

Cache Performance:
Average Memory Access Time (AMAT), Memory Stall cycles

• The Average Memory Access Time (AMAT): The number of
cycles required to complete an average memory access request
by the CPUby the CPU.

• Memory stall cycles per memory access: The number of stall
cycles added to CPU execution cycles for one memory access.

• For ideal memory: AMAT = 1 cycle, this results in zero
memory stall cycles.

• Memory stall cycles per average memory access = (AMAT -1)y y p g y ()
• Memory stall cycles per average instruction =

Memory stall cycles per average memory access
x Number of memory accesses per instructionx Number of memory accesses per instruction

= (AMAT -1) x (1 + fraction of loads/stores)

Instr ction FetchInstruction Fetch

45

Cache PerformanceCache Performance
P i t (U ifi d L1) M A hit tP i t (U ifi d L1) M A hit tPrinceton (Unified L1) Memory ArchitecturePrinceton (Unified L1) Memory Architecture

CPUtime = Instruction count x CPI x Clock cycle time
CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

CPUtime = Instruction Count x (CPIexecution +
Mem Stall cycles per instruction) x Clock cycle time

Mem Stall cycles per instruction =
Mem accesses per instruction x Miss rate x Miss penaltyMem accesses per instruction x Miss rate x Miss penalty

CPUtime = IC x (CPIexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x Miss penalty) xCPUtime IC x (CPIexecution Misses per instruction x Miss penalty) x
Clock cycle time

(Review from 550)
46

Memory Access Tree
For Unified Le el 1 CacheFor Unified Level 1 Cache

CPU Memory Access

L1 Miss:
% = (1- Hit rate) = (1-H1)

L1 Hit:
% = Hit Rate = H1
A Ti 1

L1
Access time = M + 1
Stall cycles per access = M x (1-H1)

Access Time = 1
Stalls= H1 x 0 = 0

(No Stall)

AMAT = H1 x 1 + (1 -H1) x (M+ 1) = 1 + M x (1 -H1)

Stall Cycles Per Access = AMAT - 1 = M x (1 -H1)Stall Cycles Per Access = AMAT - 1 = M x (1 -H1)
CPI = CPIexecution + Mem accesses per instruction x M x (1 -H1)

M = Miss Penalty
H1 Level 1 Hit RateH1 = Level 1 Hit Rate
1- H1 = Level 1 Miss Rate

47

Cache PerformanceCache Performance
Harvard Memory ArchitectureHarvard Memory Architecture

For a CPU with separate or split level one (L1) caches for
instructions and data (Harvard memory architecture) and no
stalls for cache hits:
CPUtime = Instruction count x CPI x Clock cycle timeCPUtime = Instruction count x CPI x Clock cycle time

CPI = CPIexecution + Mem Stall cycles per instruction

CPUtime = Instruction Count x (CPIexecution +CPUtime Instruction Count x (CPIexecution
Mem Stall cycles per instruction) x Clock cycle time

Mem Stall cycles per instruction =
Instruction Fetch Miss rate x Miss Penalty +

Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

48

Memory Access Tree
For Separate Level 1 Caches

CPU Memory Access

Instruction Data

L1

Data L1 Miss:
Access Time : M + 1

Data L1 Hit:
Access Time: 1

Instruction L1 Hit:
Access Time = 1
Stalls = 0

Instruction L1 Miss:
Access Time = M + 1
Stalls Per access Access Time : M + 1

Stalls per access:
% data x (1 - Data H1) x M

Access Time: 1
Stalls = 0

Stalls 0 Stalls Per access
%instructions x (1 - Instruction H1) x M

St ll C l P A % I t ti (1 I t ti H1) M + % d t (1 D t H1) MStall Cycles Per Access = % Instructions x (1 - Instruction H1) x M + % data x (1 - Data H1) x M

AMAT = 1 + Stall Cycles per access

49

Cache Write StrategiesCache Write Strategies
1 Write Though: Data is written to both the cache block and to1 Write Though: Data is written to both the cache block and to

a block of main memory.
– The lower level always has the most updated data; an important

feature for I/O and multiprocessing.
– Easier to implement than write back.
– A write buffer is often used to reduce CPU write stall while data

is written to memory.

2 Write back: Data is written or updated only to the cache
block The modified or dirty cache block is written to mainblock. The modified or dirty cache block is written to main
memory when it’s being replaced from cache.
– Writes occur at the speed of cache
– A status bit called a dirty or modified bit, is used to indicate

whether the block was modified while in cache; if not the block is
not written back to main memory.

– Uses less memory bandwidth than write through.

50

Cache Write Miss PolicyCache Write Miss Policy
• Since data is usually not needed immediately on a write miss• Since data is usually not needed immediately on a write miss

two options exist on a cache write miss:
Write Allocate:
The cache block is loaded on a write miss followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower cache level, or main
memory) and not loaded into cache.

Whil f h b i i li i b d i hWhile any of the above two write miss policies can be used with
either write back or write through:

• Write back caches always use write allocate to capturey p
subsequent writes to the block in cache.

• Write through caches usually use no-write allocate since
subsequent writes still have to go to memorysubsequent writes still have to go to memory.

51

Memory Access Tree, Unified L1
Write Through No Write Allocate No Write BufferWrite Through, No Write Allocate, No Write Buffer

CPU Memory Access

Read Write

L1

L1 Write Miss:
Access Time : M + 1

L1 Write Hit:
Access Time: M +1

L1 Read Hit:
Access Time = 1
Stalls = 0

L1 Read Miss:
Access Time = M + 1
Stalls Per access Access Time : M + 1

Stalls per access:
% write x (1 - H1) x M

Access Time: M +1
Stalls Per access:
% write x (H1) x M

Stalls 0 Stalls Per access
% reads x (1 - H1) x M

Stall Cycles Per Memory Access = % reads x (1 - H1) x M + % write x M

AMAT = 1 + % reads x (1 - H1) x M + % write x M
M = Miss Penalty
H1 = Level 1 Hit Rate
1- H1 = Level 1 Miss Rate

52

Reducing Write Stalls For Write Though Cache
• To reduce write stalls when write though is used, a write

buffer is used to eliminate or reduce write stalls:
– Perfect write buffer: All writes are handled by write

buffer, no stalling for writes
In this case:– In this case:

Stall Cycles Per Memory Access = % reads x (1 - H1) x M
(No stalls for writes)

R li i W i b ff A f i ll– Realistic Write buffer: A percentage of write stalls are
not eliminated when the write buffer is full.

– In this case:In this case:
Stall Cycles/Memory Access = (% reads x (1 - H1) + % write stalls not eliminated) x M

53

Write Write Through Cache Performance ExampleCache Performance Example
• A CPU with CPIexecution = 1.1 Mem accesses per instruction = 1.3
• Uses a unified L1 Write Through No Write Allocate with:• Uses a unified L1 Write Through, No Write Allocate, with:

– No write buffer.
– Perfect Write buffer
– A realistic write buffer that eliminates 85% of write stalls

• Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
• Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction
% d 1 15/1 3 88 5% % it 15/1 3 11 5%% reads = 1.15/1.3 = 88.5% % writes = .15/1.3 = 11.5%

With No Write Buffer :
Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5% + 11.5%) = 8.33 cyclesMem Stalls/ instruction 1.3 x 50 x (88.5% x 1.5% 11.5%) 8.33 cycles

CPI = 1.1 + 8.33 = 9.43

With Perfect Write Buffer (all write stalls eliminated):
Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5%) = 0.86 cycles

CPI = 1.1 + 0.86 = 1.96

With Realistic Write Buffer (eliminates 85% of write stalls)
Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5% + 15% x 11.5%) = 1.98 cycles() y

CPI = 1.1 + 1.98 = 3.08

54

Memory Access Tree Unified L1
Write Back With Write AllocateWrite Back, With Write Allocate

CPU Memory Access

L1 MissL1 Hit:
% write x H1
Access Time = 1
Stalls = 0

2M needed to
Write Dirty Block
and Read ne blockClean

Access Time = M +1
Stall cycles = M x (1 -H1) x

% clean

Dirty
Access Time = 2M +1
Stall cycles = 2M x (1-H1) x

% dirty

and Read new block

Stall Cycles Per Memory Access = (1-H1) x (M x % clean + 2M x % dirty)

AMAT = 1 + Stall Cycles Per Memory Access

55

Write Back Cache Performance ExampleWrite Back Cache Performance Example
• A CPU with CPIexecution = 1.1 uses a unified L1 with with write back,

with write allocate, and the probability a cache block is dirty = 10%
• Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
• Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction
M St ll i t tiMem Stalls per instruction =

Mem accesses per instruction x Stalls per access
Mem accesses per instruction = 1 + .3 = 1.3p

Stalls per access = (1-H1) x (M x % clean + 2M x % dirty)

Stalls per access = 1.5% x (50 x 90% + 100 x 10%) = .825 cycles
Mem Stalls per instruction = 1.3 x .825 = 1.07 cyclesMem Stalls per instruction 1.3 x .825 1.07 cycles
AMAT = 1 + 1.07 = 2.07 cycles
CPI = 1.1 + 1.07 = 2.17

The ideal CPU with no misses is 2 17/1 1 = 1 97 times fasterThe ideal CPU with no misses is 2.17/1.1 1.97 times faster

56

2 Levels of Unified Cache: L2 Levels of Unified Cache: L11, L, L2211,, 22

CPUCPU

L1 Cache Hit Rate= H1, Hit time = 1 cycle
(No Stall)

L2 Cache Hit Rate= H2, Hit time = T2 cycles

Main Memory

Memory access penalty, M

57

Miss Rates For MultiMiss Rates For Multi--Level CachesLevel Caches
• Local Miss Rate: This rate is the number of misses in a• Local Miss Rate: This rate is the number of misses in a

cache level divided by the number of memory accesses to
this level. Local Hit Rate = 1 - Local Miss Rate

• Global Miss Rate: The number of misses in a cache level
divided by the total number of memory accesses generated
by the CPU.

• Since level 1 receives all CPU memory accesses, for level 1:
L l Mi R t Gl b l Mi R t 1 H1Local Miss Rate = Global Miss Rate = 1 - H1

• For level 2 since it only receives those accesses missed in 1:
Local Miss Rate = Miss rateL2= 1- H2Local Miss Rate Miss rateL2 1 H2
Global Miss Rate = Miss rateL1 x Miss rateL2

= (1- H1) x (1 - H2)

58

22--Level (Both Unified) Cache Performance Level (Both Unified) Cache Performance
(Ignoring Write Policy)(Ignoring Write Policy)

CPUtime = IC x (CPIexecution + Mem Stall cycles per instruction) x C

(Ignoring Write Policy)(Ignoring Write Policy)

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

• For a system with 2 levels of cache, assuming no penalty
when found in L1 cache:when found in L1 cache:

Stall cycles per memory access =
[miss rate L1] x [Hit rate L2 x Hit time L2[miss rate L1] x [Hit rate L2 x Hit time L2

+ Miss rate L3 x Memory access penalty)] =

(1-H1) x H2 x T2 + (1-H1)(1-H2) x M(1 H1) x H2 x T2 + (1 H1)(1 H2) x M

L1 Miss, L2 Hit
L1 Miss, L2 Miss:
Must Access Main Memory

59

22--Level Cache (Both Unified) Performance Level Cache (Both Unified) Performance
Memory Access TreeMemory Access Tree (Ignoring Write Policy)(Ignoring Write Policy)Memory Access Tree Memory Access Tree (Ignoring Write Policy)(Ignoring Write Policy)

CPU Stall Cycles Per Memory AccessCPU Stall Cycles Per Memory Access

CPU Memory Access

L1 Miss:
% = (1-H1)

L1 Hit:
Stalls= H1 x 0 = 0
(No Stall)

L1

L2 Miss:
Stalls= (1-H1)(1-H2) x M

L2 Hit:
(1-H1) x H2 x T2

L2
Stalls= (1-H1)(1-H2) x M(1 H1) x H2 x T2

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x MStall cycles per memory access (1 H1) x H2 x T2 (1 H1)(1 H2) x M
AMAT = 1 + (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

60

TwoTwo--Level Cache ExampleLevel Cache Example
• CPU with CPIexecution = 1.1 running at clock rate = 500 MHzexecution g
• 1.3 memory accesses per instruction.
• L1 cache operates at 500 MHz with a miss rate of 5%
• L2 cache operates at 250 MHz with local miss rate 40%, (T2 = 2 cycles)L2 cache operates at 250 MHz with local miss rate 40%, (T2 2 cycles)

• Memory access penalty, M = 100 cycles. Find CPI.

CPI = CPIexecution + Mem Stall cycles per instructionexecution y p
With No Cache, CPI = 1.1 + 1.3 x 100 = 131.1
With single L1, CPI = 1.1 + 1.3 x .05 x 100 = 7.6

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access
Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

= .05 x .6 x 2 + .05 x .4 x 100
= .06 + 2 = 2.06

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access
= 2.06 x 1.3 = 2.678

CPI = 1.1 + 2.678 = 3.778
Speedup = 7.6/3.778 = 2

61

Write Policy For 2-Level Cache
• Write Policy For Level 1 Cache:

– Usually Write through to Level 2
W it ll t i d t d l l 1 i d– Write allocate is used to reduce level 1 miss reads.

– Use write buffer to reduce write stalls

• Write Policy For Level 2 Cache:

– Usually write back with write allocate is used.
• To minimize memory bandwidth usage.

• The above 2-level cache write policy results in inclusive L2 cacheThe above 2 level cache write policy results in inclusive L2 cache
since the content of L1 is also in L2

• Common in the majority of all CPUs with 2-levels of cache

62

22--Level (Both Unified) Memory Access TreeLevel (Both Unified) Memory Access Tree
L1: Write Through to L2, Write Allocate, With Perfect Write BufferL1: Write Through to L2, Write Allocate, With Perfect Write Bufferg , ,g , ,

L2: Write Back with Write AllocateL2: Write Back with Write Allocate

CPU Memory Access

L1 Miss:L1 Hit:
Stalls Per access = 0

(1-H1)(H1) L1

L2 Hit:
Stalls = (1-H1) x H2 x T2

L2 Miss
(1-H1) x (1-H2)

L2

Clean
Stall cycles =
M x (1 -H1) x (1-H2) x

% clean

Dirty
Stall cycles =
2M x (1-H1) x (1-H2) x
% dirtyy

Stall cycles per memory access = (1-H1) x H2 x T2 + M x (1 -H1) x (1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= (1-H1) x H2 x T2 + (1 -H1) x (1-H2) x (% clean x M + % dirty x 2M)

(quiz 7)(quiz 7) 63

• CPU with CPIexecution = 1.1 running at clock rate = 500 MHz

TwoTwo--Level Cache Example With Write PolicyLevel Cache Example With Write Policy
C U w C execution . u g c oc e 500

• 1.3 memory accesses per instruction.
• For L1 :

– Cache operates at 500 MHz with a miss rate of 1-H1 = 5%p
– Write though to L2 with perfect write buffer with write allocate

• For L2:
– Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T2 = 2 cycles)

W i b k i i h i ll– Write back to main memory with write allocate
– Probability a cache block is dirty = 10%

• Memory access penalty, M = 100 cycles. Find CPI.
St ll l (1 H1) H2 T2 +• Stall cycles per memory access = (1-H1) x H2 x T2 +

(1 -H1) x (1-H2) x (% clean x M + % dirty x 2M)

= .05 x .6 x 2 + .05 x .4 x (.9 x 100 + .1 x200)
06 + 0 02 110 06 + 2 2 2 26= .06 + 0.02 x 110 = .06 + 2.2 = 2.26

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access
= 2.26 x 1.3 = 2.938

CPI 1 1 + 2 938 4 038 4CPI = 1.1 + 2.938 = 4.038 = 4

64

3 Levels of Unified Cache3 Levels of Unified Cache
CPU

L1 Cache Hit Rate= H1, Hit time = 1 cycle

Hit Rate= H Hit time = T cycles
L2 Cache

L3 Cache

Hit Rate H2, Hit time T2 cycles

Hit Rate= H3, Hit time = T3L3 Cache

M i MMain Memory

Memory access penalty, M

65

33--Level Cache PerformanceLevel Cache Performance
(Ignoring Write Policy)(Ignoring Write Policy)

CPUtime = IC x (CPIexecution + Mem Stall cycles per instruction) x C
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

(Ignoring Write Policy)(Ignoring Write Policy)

• For a system with 3 levels of cache, assuming no penalty
when found in L1 cache:

Stall c cles per memor accessStall cycles per memory access =
[miss rate L1] x [Hit rate L2 x Hit time L2

+ Miss rate L2 x (Hit rate L3 x Hit time L3+ Miss rate L2 x (Hit rate L3 x Hit time L3

+ Miss rate L3 x Memory access penalty)] =

(1-H1) x H2 x T2
L1 Miss, L2 Miss:
Must Access Main Memory(1 H1) x H2 x T2

+ (1-H1) x (1-H2) x H3 x T3
+ (1-H1)(1-H2) (1-H3)x M L1 Miss, L2 Hit

Must Access Main Memory

()() ()
L2 Miss, L3 Hit

66

33--Level Cache Performance Level Cache Performance
Memory Access Tree Memory Access Tree (Ignoring Write Policy)(Ignoring Write Policy)yy

CPU Stall Cycles Per Memory AccessCPU Stall Cycles Per Memory Access

CPU Memory Access

L1 Miss:
% = (1-H1)

L1 Hit:
Stalls= H1 x 0 = 0L1 % (1-H1)

(No Stall)

L2 Miss:
% (1 H1)(1 H2)

L2 Hit:
(1 H1) x H2 x T2

1

L2 % = (1-H1)(1-H2) (1-H1) x H2 x T2

L3 Miss:L3 Hit:L3

L2

Stall c cles per memor access (1 H1) H2 T2 + (1 H1) (1 H2) H3 T3 + (1 H1)(1 H2) (1 H3) M

(1-H1)(1-H2)(1-H3) x M (1-H1) x (1-H2) x H3 x T3 3

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1) x (1-H2) x H3 x T3 + (1-H1)(1-H2) (1-H3)x M
AMAT = 1 + Stall cycles per memory access

67

ThreeThree--Level Cache ExampleLevel Cache Example
• CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
• 1.3 memory accesses per instruction.
• L1 cache operates at 500 MHz with a miss rate of 5%
• L2 cache operates at 250 MHz with a local miss rate 40%, (T2 = 2 cycles)

L h 100 MH i h l l i 50% (T 5 l)• L3 cache operates at 100 MHz with a local miss rate 50%, (T3 = 5 cycles)
• Memory access penalty, M= 100 cycles. Find CPI.

With No Cache, CPI = 1.1 + 1.3 x 100 = 131.1
With single L1, CPI = 1.1 + 1.3 x .05 x 100 = 7.6

With L1, L2 CPI = 1.1 + 1.3 x (.05 x .6 x 2 + .05 x .4 x 100) = 3.778

CPI = CPIexecution + Mem Stall cycles per instructionexecution y p
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1) x (1-H2) x H3 x T3 + (1-H1)(1-H2) (1-H3)x M
= 05 x 6 x 2 + 05 x 4 x 5 x 5 + 05 x 4 x 5 x 100= .05 x .6 x 2 + .05 x .4 x .5 x 5 + .05 x .4 x .5 x 100
= .097 + .0075 + .00225 = 1.11

CPI = 1.1 + 1.3 x 1.11 = 2.54
S d d t L1 l 7 6/2 54 3Speedup compared to L1 only = 7.6/2.54 = 3
Speedup compared to L1, L2 = 3.778/2.54 = 1.49

68

Main MemoryMain Memoryyy
• Main memory generally utilizes Dynamic RAM (DRAM),

which use a single transistor to store a bit, but require a periodic data
refresh by reading every row.refresh by reading every row.

• Static RAM may be used for main memory if the added expense, low
density, high power consumption, and complexity is feasible (e.g.
Cray Vector Supercomputers).Cray Vector Supercomputers).

• Main memory performance is affected by:

– Memory latency: Affects cache miss penalty, M. Measured by:
• Access time: The time it takes between a memory access request is

issued to main memory and the time the requested information is
available to cache/CPU.

• Cycle time: The minimum time between requests to memory
(greater than access time in DRAM to allow address lines to be stable)

– Memory bandwidth: The maximum sustained data transferMemory bandwidth: The maximum sustained data transfer
rate between main memory and cache/CPU.

(In Chapter 5.8 - 5.10)
69

Basic Memory Bandwidth Improvement TechniquesBasic Memory Bandwidth Improvement Techniques
• Wider Main Memory:• Wider Main Memory:

Memory width is increased to a number of words (usually up to the
size of a cache block).
 Memory bandwidth is proportional to memory width.

e.g Doubling the width of cache and memory doubles
potential memory bandwidth available to the CPU.

• Interleaved (Multi-Bank) Memory:
Memory is organized as a number of independent banks.

– Multiple interleaved memory reads or writes are accomplished
by sending memory addresses to several memory banks at once.

– Interleaving factor: Refers to the mapping of memory
addressees to memory banks. Goal reduce bank conflicts.
e.g. using 4 banks (width one word), bank 0 has all words whose
address is:

(word address mod) 4 = 0
70

Memory Bank InterleavingMemory Bank Interleaving
(One Bank)

(4 banks similar to the organization
of DDR SDRAM memory chips

Bank Cycle Time

Number of banks Number of cycles to access word in a bank
71

Memory Width, Interleaving: Performance ExampleMemory Width, Interleaving: Performance Example
Given the following system parameters with single unified cache level L1 (ignoring write policy):Given the following system parameters with single unified cache level L1 (ignoring write policy):

Block size= 1 word Memory bus width= 1 word Miss rate =3% M = Miss penalty = 32 cycles
(4 cycles to send address 24 cycles access time, 4 cycles to send a word)

Memory access/instruction = 1.2 CPIexecution (ignoring cache misses) = 2
Miss rate (block size = 2 word = 8 bytes) = 2% Miss rate (block size = 4 words = 16 bytes) = 1%

• The CPI of the base machine with 1-word blocks = 2 + (1.2 x 0.03 x 32) = 3.15

Increasing the block size to two words gives the following CPI:g g g
• 32-bit bus and memory, no interleaving, M = 2 x 32 = 64 cycles CPI = 2 + (1.2 x .02 x 64) = 3.54
• 32-bit bus and memory, interleaved, M = 4 + 24 + 8 = 36 cycles CPI = 2 + (1.2 x .02 x 36) = 2.86
• 64-bit bus and memory, no interleaving, M = 32 cycles CPI = 2 + (1.2 x 0.02 x 32) = 2.77

Increasing the block size to four words; resulting CPI:
• 32-bit bus and memory, no interleaving , M = 4 x 32 = 128 cycles CPI = 2 + (1.2 x 0.01 x 128) = 3.54
• 32-bit bus and memory, interleaved , M = 4 + 24 + 16 = 44 cycles CPI = 2 + (1.2 x 0.01 x 44) = 2.53
• 64-bit bus and memory no interleaving M = 2 x 32 = 64 cycles CPI = 2 + (1 2 x 0 01 x 64) = 2 7764 bit bus and memory, no interleaving, M 2 x 32 64 cycles CPI 2 + (1.2 x 0.01 x 64) 2.77
• 64-bit bus and memory, interleaved, M = 4 + 24 + 8 = 36 cycles CPI = 2 + (1.2 x 0.01 x 36) = 2.43
• 128-bit bus and memory, no interleaving, M = 32 cycles CPI = 2 + (1.2 x 0.01 x 32) = 2.38

72

• In the example with three levels of cache (all unified, ignore write policy)

Program SteadyProgram Steady--State Main Memory BandwidthState Main Memory Bandwidth--Usage ExampleUsage Example

p (g p y)
• CPU with CPIexecution = 1.1 running at clock rate = 500 MHZ
• 1.3 memory accesses per instruction.
• L1 cache operates at 500 MHz with a miss rate of 5%
• L2 cache operates at 250 MHz with a local miss rate 40%, (T2 = 2 cycles)2 p , (2 y)
• L3 cache operates at 100 MHz with a local miss rate 50%, (T3 = 5 cycles)
• Memory access penalty, M= 100 cycles.

• We found the CPI:• We found the CPI:
With No Cache, CPI = 1.1 + 1.3 x 100 = 131.1
With single L1, CPI = 1.1 + 1.3 x .05 x 100 = 7.6
With L1, L2 CPI = 1.1 + 1.3 x (.05 x .6 x 2 + .05 x .4 x 100) = 3.778
With L1, L2 , L3 CPI = 1.1 + 1.3 x 1.11 = 2.54

Assuming:
instruction size = data size = 4 bytes , all cache blocks are 32 bytes and y y

For each of the three cases with cache:
What is the total number of memory accesses generated by the CPU per second?
What is the percentage of these memory accesses satisfied by main memory?
Percentage of main memory bandwidth used by the CPU?

73

• Memory requires 100 CPU cycles = 200 ns to deliver 32 bytes, thus total main

Program SteadyProgram Steady--State Main Memory BandwidthState Main Memory Bandwidth--Usage ExampleUsage Example

memory bandwidth = 32 bytes / (200 ns) = 160 x 106 bytes/sec
• The total number of memory accesses generated by the CPU per second =

(memory access/instruction) x clock rate / CPI = 1.3 x 500 x 106 / CPI = 650 x 106 / CPI
With i l L1 650 106 / 7 6 85 106 /– With single L1 = 650 x 106 / 7.6 = 85 x 106 accesses/sec

– With L1, L2 = 650 x 106 / 3.778 = 172 x 106 accesses/sec
– With L1, L2, L3 = 650 x 106 / 2.54 = 255 x 106 accesses/sec

• The percentage of these memory accesses satisfied by main memory:The percentage of these memory accesses satisfied by main memory:
– With single L1 = L1 miss rate = 5%
– With L1, L2 = L1 miss rate x L2 miss rate = .05 x .4 = 2%
– with L1, L2, L3 = L1 miss rate x L2 miss rate x L3 miss rate = .05 x .4 x . 5 = 1%

• Memory Bandwidth used
– With single L1 = 32 bytes x 85x106 accesses/sec x .05 = 136 x106 bytes/sec

or 136/160 = 85 % of total memory bandwidth
With L1 L2 32 b t 172 106 / 02 110 106 b t /– With L1, L2 = 32 bytes x 172 x106 accesses/sec x .02 = 110 x106 bytes/sec

or 110/160 = 69 % of total memory bandwidth
– With L1, L2, L3 = 32 bytes x 255 x106 accesses/sec x .01 = 82 x106 bytes/sec

or 82/160 = 51 % of total memory bandwidthor 82/160 51 % of total memory bandwidth

74

Virtual Memory, Speeding Up Address Translation:Virtual Memory, Speeding Up Address Translation:
Translation Lookaside Buffer (TLB)Translation Lookaside Buffer (TLB)

• TLB: A small on-chip fully-associative cache used for address translations.
• If a virtual address is found in TLB (a TLB hit), the page table in main memory is not

accessed.
TLB (hi)Ph i l P

PPN

1
1
1

Physical Memory

TLB (on-chip)
32-128 Entries

Physical Page
Address

Virtual Page
Number

TagValid

TLB Hits
(VPN)

1
0
1

Physical Page
or Disk Address

1
1
1
1

Disk Storage

or Disk AddressValid

TLB Misses

0
1
1
0
1
1

Page Table
(in main memory)

Page Table Entry (PTE)
0
1

Page Faults
Page Table Entry (PTE)

75

CPU Performance with Real TLBs
When a real TLB is used with a TLB miss rate and a TLB miss penalty is used:

CPI = CPIexecution + mem stalls per instruction + TLB stalls per instruction

Where:Where:
Mem Stalls per instruction = Mem accesses per instruction x mem stalls per access

Similarly:
TLB Stalls per instruction = Mem accesses per instruction x TLB stalls per accessTLB Stalls per instruction = Mem accesses per instruction x TLB stalls per access

TLB stalls per access = TLB miss rate x TLB miss penalty

Example:Example:
Given: CPIexecution = 1.3 Mem accesses per instruction = 1.4
Mem stalls per access = .5 TLB miss rate = .3% TLB miss penalty = 30 cycles
What is the reluting CPU CPI?g
Mem Stalls per instruction = 1.4 x .5 = .7 cycles/instruction
TLB stalls per instruction = 1.4 x (TLB miss rate x TLB miss penalty)

= 1.4 x .003 x 30 = .126 cycles/instruction
CPI = 1. 3 + .7 + .126 = 2.126

76

I/O Performance MetricsI/O Performance Metrics
• Diversity: The variety of I/O devices that can be connected to the system• Diversity: The variety of I/O devices that can be connected to the system.

• Capacity: The maximum number of I/O devices that can be connected to
the system.

• Producer/server Model of I/O: The producer (CPU, human etc.)
creates tasks to be performed and places them in a task buffer (queue);
the server (I/O device or controller) takes tasks from the queue and
performs them.

• I/O Throughput: The maximum data rate that can be transferred
to/from an I/O device or sub-system, or the maximum number of I/Oto/from an I/O device or sub system, or the maximum number of I/O
tasks or transactions completed by I/O in a certain period of time
 Maximized when task buffer is never empty.

• I/O Latency or response time: The time an I/O task takes from the time
it is placed in the task buffer or queue until the server (I/O system)
finishes the task. Includes buffer waiting or queuing time.

In textbook: Ch. 7.1-7.3, 7.7, 7.8

 Maximized when task buffer is always empty.

77

ProducerProducer--ServerServer
ModelModel

Response Time = TimeSystem = TimeQueue + TimeServer I/O device +
controller

User or CPU

ThroughputThroughput
vs. vs.

R TiR Ti
Queue
full

f hResponse TimeResponse Time most of the
time.
More time
in queue

Queue almost empty
most of the timemost of the time
Less time in queue

78

Magnetic DisksMagnetic Disks
Characteristics:Characteristics:Characteristics:Characteristics:
• Diameter: 2.5in - 5.25in
• Rotational speed: 3,600RPM-15,000 RPM
• Tracks per surface.Tracks per surface.
• Sectors per track: Outer tracks contain

more sectors.
• Recording or Areal Density: Tracks/in X Bits/in
• Cost Per Megabyte• Cost Per Megabyte.
• Seek Time: (2-12 ms)

The time needed to move the read/write head arm.
Reported values: Minimum, Maximum, Average.
R t ti L t D l (2 8)• Rotation Latency or Delay: (2-8 ms)
The time for the requested sector to be under
the read/write head.

• Transfer time: The time needed to transfer a sector of bits.
• Type of controller/interface: SCSI, EIDE
• Disk Controller delay or time.
• Average time to access a sector of data =

average seek time + average rotational delay + transfer time
+ disk controller overhead

(ignoring queuing time)
79

Disk Performance ExampleDisk Performance Example
• Given the following Disk Parameters:

– Average seek time is 5 ms
– Disk spins at 10 000 RPMDisk spins at 10,000 RPM
– Transfer rate is 40 MB/sec

• Controller overhead is 0.1 ms
• Assume that the disk is idle, so no queuing delay exist.
• What is Average Disk read or write time for a 512-byte

Sector?Sector?
Ave. seek + ave. rot delay + transfer time + controller overhead

5 ms + 0.5/(10000 RPM/60) + 0.5 KB/40 MB/s + 0.1 ms
5 + 3 + 0.13 + 0.1 = 8.23 ms

This time is service time Tser for this task used for queuing delay computationqueuing delay computation

80

I/O Performance & Little’s Queuing LawI/O Performance & Little’s Queuing Law
System

Proc IOC Device

Queue server

• Given: An I/O system in equilibrium input rate is equal to output rate) and:
– Tser : Average time to service a task = 1/Service rate
– Tq : Average time per task in the queue

T : Average time per task in the system or the response time– Tsys : Average time per task in the system, or the response time,
the sum of Tser and Tq thus Tsys = Tser + Tq

– r : Average number of arriving tasks/sec
– Lser : Average number of tasks in service.

L A l th f– Lq : Average length of queue
– Lsys : Average number of tasks in the system,

the sum of L q and Lser

• Little’s Law states: Lsys = r x Tsys (applied to system)Little s Law states: Lsys r x Tsys (applied to system)
Lq = r x Tq (applied to queue)

• Server utilization = u = r / Service rate = r x Tser
u must be between 0 and 1 otherwise there would be more tasks arriving than could be serviced

81

A Little Queuing Theory: M/G/1 and M/M/1A Little Queuing Theory: M/G/1 and M/M/1
• Assumptions:

S i i i i
Arrival

Service N b f– System in equilibrium
– Time between two successive arrivals in line are random
– Server can start on next customer immediately after prior finishes
– No limit to the queue: works First-In-First-Out

Distribution Service
Distribution

Number of
Servers

– Afterward, all customers in line must complete; each avg Tser

• Described “memoryless” or Markovian request arrival
(M for C=1 exponentially random), General service distribution (no restrictions), 1
server: M/G/1 queueq

• When Service times have C = 1, M/M/1 queue

Tq = Tser x u / (1 – u)
Tser average time to service a task
r average number of arriving tasks/second
u server utilization (0..1): u = r x Tser
Tq average time/task in queue
Tsys Average time per task in the system Tsys = Tq+ Tser

Lq average length of queue: Lq= r x Tq

Lsys Average number of tasks in the system Lsys = r x Tsys

82

Multiple Server (Disk/Controller) I/O Modeling:Multiple Server (Disk/Controller) I/O Modeling:
M/M/m QueueM/M/m Queue

Arrival

• I/O system with Markovian request arrival rate r
• A single queue serviced by m servers (disks + controllers) each

Arrival
Service Number of servers

with Markovian Service rate = 1/ Tser

Tq = Tser x u /[m (1 – u)]q ser x u /[m (u)]
u = r x Tser / m

m number of servers
Tser average time to service a task
u server utilization (0..1): u = r x Tser / m

Tq average time/task in queue
Tsys Average time per task in the system Tsys = Tq + Tser

Lq average length of queue: Lq= r x Tq

Lsys Average number of tasks in the system Lsys = r x Tsys

83

I/O Queuing Performance: An M/M/1 ExampleI/O Queuing Performance: An M/M/1 Example
• A processor sends 10 x 8KB disk I/O requests per second, requests & p q p , q

service are exponentially distributed, average disk service time = 20 ms
• On average:

– How utilized is the disk, u?
– What is the average time spent in the queue, Tq?
– What is the average response time for a disk request, Tsys ?
– What is the number of requests in the queue Lq? In system, Lsys?

W h• We have:
r average number of arriving requests/second = 10
Tser average time to service a request = 20 ms (0.02s)

• We obtain:• We obtain:
u server utilization: u = r x Tser = 10/s x .02s = 0.2 = 20%
Tq average time/request in queue = Tser x u / (1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)() ()
Tsys average time/request in system: Tsys = Tq + Tser= 25 ms
Lq average length of queue: Lq= r x Tq

= 10/s x .005s = 0.05 requests in queue
L a erage # tasks in s stem: L T 10/s 025s 0 25Lsys average # tasks in system: Lsys = r x Tsys = 10/s x .025s = 0.25

84

Example: Determining the System I/O Example: Determining the System I/O
BottleneckBottleneck (ignoring queuing delays)(ignoring queuing delays)Bottleneck Bottleneck (ignoring queuing delays)(ignoring queuing delays)

• Assume the following system components:
– 500 MIPS CPU
– 16-byte wide memory system with 100 ns cycle time
– 200 MB/sec I/O bus

20 20 MB/sec SCSI 2 buses with 1 ms controller overhead– 20 20 MB/sec SCSI-2 buses, with 1 ms controller overhead
– 5 disks per SCSI bus: 8 ms seek, 7,200 RPMS, 6MB/sec

• Other assumptions
– All devices used to 100% capacity, always have average values
– Average I/O size is 16 KB
– OS uses 10 000 CPU instructions for a disk I/OOS uses 10,000 CPU instructions for a disk I/O
– Ignore disk/controller queuing delays.

• What is the average IOPS? What is the average I/O
bandwidth?

85

Example: Determining the I/O Bottleneck Example: Determining the I/O Bottleneck
(ignoring queuing delays)(ignoring queuing delays)

• The performance of I/O systems is determined by the
portion with the lowest I/O bandwidth

(ignoring queuing delays)(ignoring queuing delays)

portion with the lowest I/O bandwidth
– CPU : (500 MIPS)/(10,000 instr. per I/O) = 50,000 IOPS
– Main Memory : (16 bytes)/(100 ns x 16 KB per I/O) = 10,000 IOPS
– I/O bus: (200 MB/sec)/(16 KB per I/O) = 12 500 IOPSI/O bus: (200 MB/sec)/(16 KB per I/O) 12,500 IOPS
– SCSI-2: (20 buses)/((1 ms + (16 KB)/(20 MB/sec)) per I/O) = 11,120 IOPS
– Disks: (100 disks)/((8 ms + 0.5/(7200 RPMS) + (16 KB)/(6 MB/sec)) per I/0)

= 6 700 IOPS= 6,700 IOPS

• In this case, the disks limit the I/O performance to 6,700
IOPS

• The average I/O bandwidth is
– 6,700 IOPS x (16 KB/sec) = 107.2 MB/sec

86

Example: Determining the I/O BottleneckExample: Determining the I/O Bottleneck
Accounting For I/O Queue TimeAccounting For I/O Queue Time ((M/M/m queue)Accounting For I/O Queue TimeAccounting For I/O Queue Time ((M/M/m queue)

• Assume the following system components:
– 500 MIPS CPU

Here m = 100

– 16-byte wide memory system with 100 ns cycle time
– 200 MB/sec I/O bus
– 20, 20 MB/sec SCSI-2 buses, with 1 ms controller overhead, ,
– 5 disks per SCSI bus: 8 ms seek, 7,200 RPMS, 6MB/sec

• Other assumptions
All devices used to 60% capacity (i e maximum utilization allowed)– All devices used to 60% capacity (i.e maximum utilization allowed).

– Treat the I/O system as an M/M/m queue.
– Requests are assumed spread evenly on all disks.

Average I/O size is 16 KB– Average I/O size is 16 KB
– OS uses 10,000 CPU instructions for a disk I/O

• What is the average IOPS? What is the average bandwidth?
• Average response time per IO operation?

87

Example: Determining the I/O BottleneckExample: Determining the I/O Bottleneck
Accounting For I/O Queue TimeAccounting For I/O Queue Time ((M/M/m queue)

• The performance of I/O systems is still determined by the system
component with the lowest I/O bandwidth

– CPU : (500 MIPS)/(10,000 instr. per I/O) x .6 = 30,000 IOPS
CPU time per I/O = 10,000 / 500,000,000 = .02 ms

– Main Memory : (16 bytes)/(100 ns x 16 KB per I/O) x .6 = 6,000 IOPS
Memory time per I/O = 1/10,000 = .1ms

– I/O bus: (200 MB/sec)/(16 KB per I/O) x 6 = 12 500 IOPS– I/O bus: (200 MB/sec)/(16 KB per I/O) x .6 = 12,500 IOPS
– SCSI-2: (20 buses)/((1 ms + (16 KB)/(20 MB/sec)) per I/O) = 7,500 IOPS

SCSI bus time per I/O = 1ms + 16/20 ms = 1.8ms
– Disks: (100 disks)/((8 ms + 0.5/(7200 RPMS) + (16 KB)/(6 MB/sec)) per I/0) x .6 =

6,700 x .6 = 4020 IOPS
Tser = (8 ms + 0.5/(7200 RPMS) + (16 KB)/(6 MB/sec) = 8+4.2+2.7 = 14.9ms

• The disks limit the I/O performance to r = 4020 IOPS
• The average I/O bandwidth is 4020 IOPS x (16 KB/sec) = 64.3 MB/sec
• Tq = Tser x u /[m (1 – u)] = 14.9ms x .6 / [100 x .4] = .22 ms
• Response Time = Tser + Tq+ Tcpu + Tmemory + Tscsi = p q p y

14.9 + .22 + .02 + .1 + 1.8 = 17.04 ms
88

