Exam Review

Instruction Dependencies

In-order Floating Point/Multicycle Pipelining
Instruction-Level Parallelism (ILP)

— Loop-unrolling
Dynamic Pipeline Scheduling

— The Tomasulo Algorithm

Multiple Instruction Issue (CPI < 1): Superscalar vs. VLIW
Dynamic Hardware-Based Speculation

Loop-Level Parallelism

— Making loop iterations parallel

— Software Pipelining (Symbolic Loop-Unrolling)
Cache & Memory Performance

/O & System Performance

Data Hazard/Dependence Classification

I (Write)\ | (Read) \

True Data Dependence Shared | A name dependence: Shared
Operand : antidependence Ope rand
J (Read) — , J (Write)/
Read after Write (RAW) orogram | VVTIte after Read (WAR)
if data dependence is violated Order if antidependence is violated
| (Write) \ | (Read) .\
Shared Shared
A name dependence: No dependence
output dependence Ope rand Ope rand
I (Wiite).— J Read)—
Write after Write (WAW) Read after Read (RAR) not a hazard

if output dependence is violated
2

Instruction Dependence Example

Dependency Graph Example Code

LD FO,0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
LD FO,-8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1

L.D FO, 0 (R1)

2

ADD.D F4, FO, F2

OO WP B

3

S.D F4,0(R1)

Date Dependence:
1,2 (2,3) (4,5 (5,6)

Output Dependence:

L.D FO, -8 (R1) 1,4) (2,9)

Anti-dependence:

2,4) (3,5
ADD.D F4, F0, F2 24 @3

6

S.D F4, -8 (R1)

Can instruction 4 (second L.D) be moved
just after instruction 1 (first L.D)?

Can instruction 3 (first S.D) be moved If not what dependencies are violated?
just after instruction 4 (second L.D)?
How about moving 3 after 5 (the second ADD.D)?

If not what dependencies are violated?

Control Dependencies

« Determines the ordering of an instruction with respect to a branch instruction.

e Every instruction in a program except those in the very first basic block of the
program is control dependent on some set of branches.

* An instruction which is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch.

* An instruction which is not control dependent on the branch cannot be moved so
that its execution is controlled by the branch (in the then portion)

* It’s possible in some cases to violate these constraints and still have correct
execution.

« Example of control dependence in the then part of an if statement:

If pl{
S1; S1 is control dependent on pl
}; S2 is control dependent on p2 but noton pl
If p2 {
S2: What happens if S1 is moved here?
}

(In Chapter 3.1)

Floating Point/Multicycle Pipelining in MIPS

« Completion of MIPS EX stage floating point arithmetic operations in one
or two cycles is impractical since it requires:

A much longer CPU clock cycle, and/or
« An enormous amount of logic.

* Instead, the floating-point pipeline will allow for a longer latency.

» Floating-point operations have the same pipeline stages as the integer
Instructions with the following differences:

— The EX cycle may be repeated as many times as needed.

— There may be multiple floating-point functional units.

— A stall will occur if the instruction to be issued either causes a
structural hazard for the functional unit or cause a data hazard.

e The latency of functional units is defined as the number of intervening
cycles between an instruction producing the result and the instruction
that uses the result (usually equals stall cycles with forwarding used).

e The initiation or repeat interval is the number of cycles that must elapse
between issuing an instruction of a given type.

(In Appendix A)

Extending The MIPS In-order Integer Pipeline:
Multiple Outstanding Floating Point Operations

Latency = 6 Integer Unit Latency =0

Pipelined Hazards:
RAW, WAW possible
WAR Not Possible

Initiation Interval = 1 / Initiation Interval = 1

Structural: Possible

Floating Point (FP)/Integer Multiply Control: Possible
A1 iz M3 4 M5 M& M7
EX
IF ID MEM
FP Adder WB

1

FP/Integer Divider

Latency =3
Initiation Interval = 1 1 _
oo Latency = 24
Pipelined ¢ Initiation Interval = 25
Non-pipelined

A pipeline that supports multiple outstanding FP operations.

(In Appendix A)

FP Code RAW Hazard Stalls Example

(with full data forwarding in place)

CC1i cC2. CC3 ccai CCsi cCéi CC7i CC8i cCoi CC10i cciti cci2i ccisi cciai ccisi cciei ccir i ccis
L.D F4, 0(R2)

IF| ID| EX|MEM| WB

E\A
MULDFO,F4,F6 | IF | ID STALL‘ M1l M2 | M3] M4| M5] M6| M7] MEM WB
: : \\A :
ADD.D F2, FO, F8 IF‘STALL ID [sTALLpTALLsTALL STALL‘STALL‘STALL Al A2 A3 A4 vem] we

S.D F2, 0(R2)

STALLJSTALL STALL‘STALL‘STALL ID EX ‘STALL‘STALL‘STALL MEM| WB
|

Third stall due
to structural hazard
in MEM stage

6 stall cycles which equals latency of FP add functional unit

(In Appendix A) (QUiZ 2)

Increasing Instruction-Level Parallelism
A common way to increase parallelism among instructions is to
exploit parallelism among iterations of a loop

— (1.e Loop Level Parallelism, LLP).
« This is accomplished by unrolling the loop either statically by the
compiler, or dynamically by hardware, which increases the size of
the basic block present. This resulting larger basic block

provides more instructions that can scheduled or re-ordered to
eliminate more stall cycles.

* In this loop every iteration can overlap with any other iteration.
Overlap within each iteration is minimal.
for (1=1; 1<=1000; i=1+1;)
x[1] = x[1] + y[i];

* In vector machines, utilizing vector instructions is an important
alternative to exploit loop-level parallelism,

« Vector instructions operate on a number of data items. The
above loop would require just four such instructions.

(In Chapter 4.1)

MIPS Loop Unrolling Example

For the loop:

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s:

The straightforward MIPS assembly code is given by:

Loop: L.D FO, 0 (R1) ;FO=array element
ADD.D F4, FO, F2 ;add scalar in F2
S.D F4, 0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes
BNE R1, R2,Loop ;branch R1!=R2

R1is initially the address of the element with highest address. (Basic block size = 5 instructions)
8(R2) is the address of the last element to operate on.

. 9
(In Chapter 4.1) (C]UIZ 3)

MIPS FP Latency For Loop Unrolling Example

o All FP units assumed to be pipelined.

 The following FP operations latencies are used:

(or Number of

Stall Cycles)

Instruction Instruction Latency In

Producing Result Using Result Clock Cycles
FPALU Op Another FP ALU Op 3
FPALU Op Store Double 2
Load Double FPALU Op 1
Load Double Store Double 0

Branch resolved in decode stage, Branch penalty = 1 cycle, Full forwarding is used

(In Chapter 4.1)

10

LLoop Unrolling Example (continued)

e This loop code is executed on the MIPS pipeline as follows:

(Branch resolved in decode stage, Branch penalty = 1 cycle, Full forwarding is used)

No scheduling Scheduled with single delayed

Clock cycle branch slot
Loop: L.D FO, O(R1) 1
stall \ 2
ADD.D F4, F0, F2 3 Loop: L.D F0, O(R1)
stall A DADDUI R1,R1,#-8
ADD.D F4,F0, F2
stall \ 5 stall
S.D F4,0 (R1) 6 BNE R1,R2, Loop
DADDUI R1,R1,#-8 7 S.D F4,8(R1)
stall l 8
BNE R1,R2, Loop 9 | i i
stall 10 6 cycles per Iteration

10/6 = 1.7 times faster

10 cycles per iteration

11
(In Chapter 4.1)

Cycle Loop Unrolling Example (continued)

\ No scheduling
Loop:1 L.D FO, O(R1)

Stall

* The resulting loop code when four copies of the
loop body are unrolled without reuse of registers.

ADD.D F4, F0, F2 « The size of the basic block increased from 5

Stall instructions in the original loop to 14 instructions.

SD F4,0 (R1) ; drop DADDUI & BNE
LD F6, -8(R1)

Stall

9 ADDD FS8§, F6, F2

10 stall
1 Stall

12 SD F8, -8 (R1), ;drop DADDUI & BNE
13D F10, -16(R1)

14 stall

15 ADDD F12, F10, F2

16 stall
17 Stall

18 SD F12, -16 (R1) ; drop DADDUI & BNE
19 | D F14, -24 (R1)

20 Stall

21 ADDD F16, F14, F2
22 Stall
23 Stall

24 SD F16, -24(R1)
25 DADDUI R1, R1, #-32

26 Stall

27 BNE R1, R2, Loop

28 stall

2
3
4
5 Stall
6
7
8

(In Chapter 4.1)

Three branches and three
decrements of R1 are eliminated.

Load and store addresses are
changed to allow DADDUI
Instructions to be merged.

The unrolled loop runs in 28 cycles
assuming each L.D has 1 stall
cycle, each ADD.D has 2 stall
cycles, the DADDUI 1 stall, the
branch 1 stall cycle, or 28/4 =7
cycles to produce each of the four
elements.

12

Loop Unrolling Example (continued)

When scheduled for pipeline

Loop: L.D
L.D
L.D
L.D
ADD.D
ADD.D
ADD.D
ADD.D
S.D
S.D
DADDUI
S.D
BNE
S.D

(In Chapter 4.1)

FO, O(R1)
F6,-8 (R1)
F10, -16(R1)
F14, -24(R1)
F4, FO, F2
F8, F6, F2
F12, F10, F2
F16, F14, F2
F4, 0(R1)
F8, -8(R1)
R1, R1# -32

F12, 16(R1),F12

R1,R2, Loop

F16, 8(R1), F16

The execution time of the loop
has dropped to 14 cycles, or 14/4 = 3.5
clock cycles per element

compared to 6.8 before scheduling
and 6 when scheduled but unrolled.

Unrolling the loop exposed more
computations that can be scheduled

to minimize stalls by increasing the

size of the basic block from 5 instructions
In the original loop to 14 instructions

in the unrolled loop.

;8-32=-24

13

Dynamic Pipeline Scheduling

Dynamic instruction scheduling is accomplished by:

— Dividing the Instruction Decode ID stage into two stages:
* Issue: Decode instructions, check for structural hazards.
e Read operands: Wait until data hazard conditions, if any,
are resolved, then read operands when available.

(All instructions pass through the issue stage in order but can
be stalled or pass each other in the read operands stage).

— In the instruction fetch stage IF, fetch an additional instruction
every cycle into a latch or several instructions into an instruction

gueue.
— Increase the number of functional units to meet the demands of

the additional instructions in their EX stage.

Two dynamic scheduling approaches exist:
— Dynamic scheduling with a Scoreboard used first in CDC6600 (1963)

— The Tomasulo approach pioneered by the IBM 360/91 (1966)

14

(In Appendix A.8, Chapter 3.2)

Tomasulo Algorithm Vs. Scoreboard

Control & buffers distributed with Function Units (FU) Vs. centralized in
Scoreboard:

— FU buffers are called “reservation stations” which have pending instructions
and operands and other instruction status info.

— Reservations stations are sometimes referred to as “physical registers” or

“renaming registers” as opposed to architecture registers specified by the
ISA.

* ISA Registers in instructions are replaced by either values (if available) or
pointers to reservation stations (RS) that will supply the value later:

— This process is called register renaming.
— Avoids WAR, WAW hazards.

— Allows for hardware-based loop unrolling.

— More reservation stations than ISA registers are possible , leading to
optimizations that compilers can’t achieve and prevents the number of ISA
registers from becoming a bottleneck.

* Instruction results go (forwarded) to FUs from RSs, not through registers, over
Common Data Bus (CDB) that broadcasts results to all FUs.
» Loads and Stores are treated as FUs with RSs as well.

* Integer instructions can go past branches, allowing FP ops beyond basic block in
FP queue.

(In Chapter 3.2)

15

Dynamic Scheduling: The Tomasulo Approach

From instruction unit

Instruction FP registers l
queue
Load-store
operations
Y : : Operand
Address unit Floa;tlr:_g-npomt buses
Store buffers eparations
K/ §y vy Load buffers
Y
Operation bus
SEN]
3 2
2 Reservation 1
1 stations
y Data yAddress /] 4
Memory unit | FP adders | FP multipliers |

Y Y

Common data bus

(CDB)

The basic structure of a MIPS floating-point unit using Tomasulo’s algorithm

(In Chapter 3.2)

16

Reservation Station Fields

e Op Operation to perform in the unit (e.g., + or —)
V|, VK Value of Source operands S1 and S2

— Store buffers have a single V field indicating result to
be stored.

 Q], Qk Reservation stations producing source
registers. (value to be written).

— No ready flags as in Scoreboard; Q],Qk=0 => ready.
— Store buffers only have Qi for RS producing result.

« A: Address information for loads or stores. Initially
Immediate field of instruction then effective address
when calculated.

« Busy: Indicates reservation station and FU are busy.

 Register result status: Qi Indicates which functional
unit will write each register, if one exists.

— Blank (or 0) when no pending instructions exist that
(n chapter Wil Write to that register. 17

Three Stages of Tomasulo Algorithm
1 lssue: Get instruction from pending Instruction Queue.

— Instruction issued to a free reservation station (no structural hazard).

— Selected RS is marked busy.

— Control sends available instruction operands values (from ISA registers)
to assigned RS.

— Operands not available yet are renamed to RSs that will produce the
operand (register renaming).

2 Execution (EX): Operate on operands.

— When both operands are ready then start executing on assigned FU.

— If all operands are not ready, watch Common Data Bus (CDB) for needed
result (forwarding done via CDB).

3 Werite result (WB): Finish execution.
— Write result on Common Data Bus to all awaiting units
— Mark reservation station as available.

 Normal data bus: data + destination (“go to” bus).

« Common Data Bus (CDB): data + source (*“come from” bus):
— 64 bits for data + 4 bits for Functional Unit source address.
— Write data to waiting RS if source matches expected RS (that produces result).
— Does the result forwarding via broadcast to waiting RSs.

18
(In Chapter 3.2)

Tomasulo Approach Example

Using the same code used in the scoreboard example to be run on the Tomasulo
configuration given earlier:

of RSs EX Latency

Integer 1 0
Floating Point Multiply/divide 2 10/40
Floating Point add 3 2

Pipelined Functional Units

L.D F6, 34(R2)

L.D F2\45(R3) Real Data Dependence (RAW) —
Anti-dependence (WAR) ——

Output Dependence (WAW) —-o-»

MUL.D FO, F4

0, K2

DIV.D F1Q, FO, F6

ADD.D Fo6, F8, F2

(In Chapter 3.3)

SUB.D Fgli

19

Tomasulo Example: Cycle 57

Instruction status Execution Write
Instruction] k Issue, complete Result Busy Address
LD F6 34+ R2 1 3 4 Loadl [No
LD |F2 45+ R3 2 4 5 Load2 [No
MUL.DFO F2 F4 3 15 16 Load3 [No
SUB.DF8 F6 F2 4 7 8
DIV.D F10 FO F6 5 56 57 1
ADDDF6 F8 F2 || 6 10 . Instruction
Reservation Stations T s1 S2 RS for j RS for k
Time Name Busy Op Vij VK Qi Qk BIOCk done

0 Addl ([No

0 Add2 |[No

Add3 [No

0 Multl |No

0 Mult2 [No
Regqister result status
Clock FC F2 F4 F6 F8 F10 F12 ... F30
57 FU |I\/I*:4 M(454R3) (M=M)+M() MO-M(O M*E4/M

 We have:
* In-oder issue, | !

o Qut-of-order execution, completion

(quiz 4) 20

Tomasulo Loop Example

Loop: L.D FO, O(R1)
MUL.D F4,F0,F2
S.D F4, 0(R1)
DADDUI R1,R1,# -8
BNE R1,R2,Loop ; branch if R1=R2

o Assume Multiply takes 4 clocks.

« Assume first load takes 8 clocks (possibly due to a cache miss), second
load takes 4 clocks (cache hit).

e Assume R1 =80 initially.

e Assume branch is predicted taken and no branch misprediction.
* No branch delay slot is used in this example.

» Stores take 4 cycles (ex, mem) and do not write on CDB

« We’ll go over the execution to complete first two loop iterations.

21
(Expanded from loop example in Chapter 3.3)

Instruction status

First two Loop iterations done

Loop Example Cycle 19

Execution Write

Instruction | k iteration Issue complete Result Busy Address
LD |FO 0 R1 1 1 9 10 |Loadl |No
MUL.D | F4 FO F2 1 2 14 15 |(Load2 |[No
SD |F4 0 R1 1 3 18 Load3 |No Qi
LD |FO 0 R1 2 6 10 11 |Storel |No
MUL.D|F4 FO | F2 2 7 15 16 |[Store2 0|Yes 72 |M(72)*R(72)
SD |F4 0 R1 2 8 19 Store3 |Yes 64 |[Multl
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op Vj VK Qj Qk Code:
0 Addl |No L.D FO, O(R1)
0 Add2 |No MUL.D F4,F0,F2
0 Add3 |No S.D F4, 0(R1)
1 Multl |Yes MULTD M(64) R(F2) DADDUI |R1,R1, #-8
0 Mult2 |No BNE R1,R2,loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30
19 56 Qi Multl

Second S.D done (No write on CDB for stores) Second loop iteration done

Issue third iteration BNE

22

Multiple Instruction Issue: CPI< 1

 Toimprove a pipeline’s CPI to be better [less] than one, and to utilize Instruction

Level Parallelism (ILP) better, a number of independent instructions have to be
issued in the same pipeline cycle.

« Multiple instruction issue processors are of two types:

— Superscalar: A number of instructions (2-8) is issued in the same

cycle, scheduled statically by the compiler or dynamically
(Tomasulo).

* PowerPC, Sun UltraSparc, Alpha, HP 8000 ...

— VLIW (Very Long Instruction Word):

A fixed number of instructions (3-6) are formatted as one long
Instruction word or packet (statically scheduled by the compiler).

— Example: Explicitly Parallel Instruction Computer (EPIC)
» Originally a joint HP/Intel effort.
* ISA: Intel Architecture-64 (1A-64) 64-bit address:
e First CPU: Itanium, Q1 2001.

e Limitations of the approaches:
— Available ILP in the program (both).

— Specific hardware implementation difficulties (superscalar).
— VLIW optimal compiler design issues.

23
(Ch 3.6, 3.7, 4.3, 4.5)

Unrolled Loop Example for
Scalar (single-issue) Pipeline

1Loop: L.D FO,0(R1) L.D to ADD.D: 1 Cycle
2 L.D F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D F4,0(R1)

10 S.D F8,-8(R1)

11 DADDUI R1,R1,#-32

12 S.D F12, 16(R1)

13 BNE R1,R2,LOOP

14 S.D F16,8(R1) - 8-32 = -24

14 clock cycles, or 3.5 per iteration

24

LLoop Unrolling in Superscalar Pipeline:
(1 Integer, 1 FP/Cycle)

Integer instruction FP instruction Clock cycle
Loop: L.D , 1 1
L.D F6,-8(R1) 2
L.D F10,-16(R1) ADD.D F4,F0,F2 3
L.D F14,-24(R1) .D F8,F6,F2 4
L.D F18,-32(R1) ADD.D F12,F10,F2 5
S.D F4,0(R1) ADD.D F16,F14,F2 6
S.D F8,-8(R1) ADD.D F20,F18,F2 7
S.D F12,-16(R1) 8
DADDUI R1,R1#-40 9
S.D F16,-24(R1) 10
BNE R1,R2,LOOP 11

SD -32(R1),F20 12
« Unrolled 5 times to avoid delays and expose more ILP (unrolled one more time)
o 12 cycles, or 12/5 = 2.4 cycles per iteration (3.5/2.4= 1.5X faster than scalar)
o CPI=12/17 =.7 worse than ideal CPIl =.5 because 7 issue slots are wasted

25

LLoop Unrolling in VLIW Pipeline
(2 Memory, 2 FP, 1 Integer / Cycle)

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L. - 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,FO,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) D.D F12,F10,F2 ADD.D F16,F14,F2 4
ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D F4,0(R1) S.DF8,-8(R1) ADD.D F28,F26,F2 6
7

S.DF12,-16(R1) S.D F16,-24(R1) DADDUI R1,R1#56
S.DF20,24(R1) S.D F24,16(R1)
S.D F28, 8(R1) BNE R1,R2,LOOP 9

Unrolled 7 times to avoid delays and expose more ILP
7 results in 9 cycles, or 1.3 cycles per iteration
(2.4/1.3 =1.8X faster than 2-issue superscalar, 3.5/1.3 = 2.7X faster than scalar)
Average: about 23/9 = 2.55 IPC (instructions per clock cycle) Ideal IPC =5,
CPI =.39 Ideal CPI =.2 thus about 50% efficiency, 22 issue slots are wasted

Note: Needs more registers in VLIW (15 vs. 6 in Superscalar)

26
(In chapter 4.3 pages 317-318)

Multiple Instruction Issue with Dynamic
Scheduling Example

. Example
Assumptions: g

Restricted 2-way superscalar:
1 integer, 1 FP Issue Per Cycle

One integer unit

(for ALU, effective address)

One integer unit for branch condition
2 CDBs

Execution cycles:

Integer: 1 cycle

Load: 2cycles (1ex+ 1 mem)
FPadd: 3 cycles

Any instruction following
a branch cannot start execution
until branch condition is evaluated

Branches are single issued,
no delayed branch,
perfect branch prediction

Example on page 221

Consider the execution of the following simple loop, which adds a scalar in F2 to
each element of a vector in memory. Use a MIPS pipeline extended with Toma-
sulo’s algorithm and with multiple issue:

Loop: L.D FO,0(R1) ;FO0=array element
ADD.D F4,F0,F2 sadd scalar in F2
5.D F4,0(R1) istore result
DADDIU R1,R1,#-8 idecrement pointer
;8 bytes (per DW)
BNE R1,R2,L00P ;branch R1!=R2

Assume that both a floating-point and an integer operation can be issued on every
clock cycle, even if they are dependent. Assume one integer functional unit is
used for both ALU operations and effective address calculations and a separate
pipelined FP functional unit for each operation type. Assume that Issue and Write
Results take one cycle each and that there is dynamic branch-prediction hardware
and a separate functional unit to evaluate branch conditions. As in most dynami-
cally scheduled processors, the presence of the Write Results stage means that the
effective instruction latencies will be one cycle longer than in a simple in-order
pipeline. Thus, the number of cycles of latency between a source instruction and
an instruction consuming the result is one cycle for integer ALU operations, two
cycles for loads, and three cycles for FP add. Create a table showing when each
instruction issues, begins execution, and writes its result to the CDB for the first
three iterations of the loop. Assume two CDB¢ and assume that branches single
issue (no delayed branches) but that branch prediction is perfect, Also show the
resource usage for the integer unit, the floating-point unit, the data cache, and the
two CDBs.

27

Three Loop Iterations on Restricted 2-way Superscalar Tomasulo

Iteration Memaory Write
number Instructions Issues at Executes accessat CDBat Comment
1 L.D FO,0(R1) 1 % 3 ___—4 First issue
1 ADD.D F4,F0,F2 1 5 «— 8 Wait for L.D
1 5.0 F4,0(R1) 2 3 9 Ve Wait for ADD.D
1 DADDIU R1,R1,#-8 2 V4 5 Wait for ALU
| BNE R1,RZ,Loop 3 & «— Wait for DADDIU
2 L.D FO,0(R1) 4 v 7 8 9 Wait for BNE complete
2 ADD.D F4,F0,F2 4 10 «— 13 Wait for L.D
2 5.0 F4,0(R1) 5 | 8 14 e Wait for ADD.D
2 DADDIU RI,R1,#-8 5 Lo 10 Wait for ALU
2 ENE R1,RZ,Loop 6 | 11 Wait for DADDIU
3 L.D FO,0(R1) 7 l 12 13 14 Wait for BNE complete
3 ADD.D F4,FO,F2 7 15 «— 18 Whait for L.D
3 S.0 F4,0(R1) 8 13 19 « Wait for ADD. D
3 DAADIU RI1,R1,#-8 8 14 _ 15 Wait for ALU
3 BNE R1,RZ, Loop 9 16 S Wait for DADDIU

Figure 3.25 The clock cycle of issue, execution, and writing result for a dual-issue version of our Tomasulo pipe-
line. The Write Result stage does not apply to either stores or branches, since they do not write any registers. We
assume a result is written to the CDB at the end of the clock cycle it is available in.This iigure also assumes a wider
CDB. For L.Dand 5.0, the execution is effective address calculation. For branches, the execute cycle shows when the
branch condition can be evaluated and the prediction checked; we assume that this can happen as early as the cycle
after issue, if the operands are available. Any instructions following a branch cannot start execution until after the
branch condition has been evaluated. We assume one memory unit, one integer pipeline, znd one FP adder. If two
instructions could use the same functional unit at the same point, priority is given to the “older” instruction. Note
that the load of the next iteration performs its memory access before the store of the current iteration.

Only one CDB is needed in this case.

28

Multiple Instruction Issue with Dynamic Scheduling Example

Example Consider the execution of the same loop on a two-issue processor, but, in addi-
tion, assume that there are separate integer functional units for effective address

calcufation and for ALU operations. Create a table as in Figure 3.25 for the first
three iterations of the same loop and another table to show the resource usage.

Answer Figure 3.27 shows the improvement in performance: The loop executes in 5 clock

Assumptions: cycles less (11 versus 16 execution cycles). The cost of this improvement is both
The same loop in previous example & separate address adder and the logic to issue to it; note that, in contrast to the
On restricted 2-way superscalar: earlier example, a second CDB is needed. As Fi gure 3.28 shows this example has
1 integer, 1 FP Issue Per Cycle a higher instruction execution rate but lower efficiency as measured by the utili-

_ zation of the functional units.
Two integer units

one for ALU. one for effective address Three factors limit the performance (as shown in Figure 3.27) of the two-
One integer unit for branch condition issue dynamically scheduled pipeline:

2 CDBs 1. There is an imbalance between the functional unit structure of the pipeline
Execution cycles: and the example loop. This imbalance means that it is impossible to fully use
Integer: 1 cycle the FP units. To remedy this, we would need fewer dependent integer opera-
Load: 2cycles (1ex+ 1 mem) tions per loop. The next point is a different way of looking at this limitation.

Padd: 3cycles
FPa y 2. The amount of overhead per loop iteration is very high: two out of five

Any instruction following instructions (the DADDIU and the BNE) are overhead. In the next chapter we
a branch cannot start execution look at how this overhead can be reduced.
until branch condition is evaluated 3. The control hazard, which prevents us from starting the next L.D before we
Branches are single issued know whether the branch was correctly predicted, causes a one-cycle penalty
no delayed branch ' on every loop iteration. The next section introduces a technique that addresses
perfect branch prediction this limitation.

29

Example on page 223

Same three loop Iterations on Restricted 2-way Superscalar Tomasulo

but with Two integer units (one for ALU, one for effective address)

Iteration Memory Write
number Instructions Issues at Executes access at CDB at Comment
1 L.D FO,0(R1) 1 2 3 4 First issue
1 ADD.D F4,F0,F2 | se— 8 Wait for L.D
1 5.0 F4,0(R1) 3 3 g « Wait for ADD.D
1 DADDIU R1,R1,#-8 2 3 4 Executes earlier
1 BNE RL,R2,Loop 3 5 < Wait for DADDIU
2 L.0 F0,0(R1) 4 Iy 7 8 Wait for BNE complete
2 ADD.D F4,F0,F2 4 Ye— 12 Wait for L.D
2 5.0 F4,0(R1) 5 7 13 Wait for ADD.D
2 DADDIU R1,R1,#-8 5 |6 7 Executes earlier
2 BNE R1,R2,Loop 6 lg «— Wait for DADDIU
3 L.D FO,0(R1) 7 9 10 11 Wait for BNE complete
3 ADD.D F4,F0,F2 7 12 < 15 Wait for L.D
3 5.0 F4,0(R1) 8 10 16 4 Wait for ADD.D
3 DADDIU R1,R1,#-8 8 0 10 Executes earlier
3 BNE R1,R2,Loop 9 1 «— Wait for DADDIU

Figure 3.27 The clock cycle of issue, execution, and writing result for a dual-issue version of our Tomasulo pipe-
line with separate functional units for integer ALU operations and effective address calculation, which also uses
a wider CDB. The extra integer ALU allows the DADDIU to execute earlier, in turn allowing the BNE to execute earlier,
and, thereby, starting the next iteration earlier.

(page 224)

30

Dynamic Hardware-Based Speculation

e Combines:

— Dynamic hardware-based branch prediction

— Dynamic Scheduling: issue multiple instructions in order and
execute out of order. (Tomasulo)

o Continue to dynamically issue, and execute instructions passed
a conditional branch in the dynamically predicted branch
direction, before control dependencies are resolved.

— This overcomes the ILP limitations of the basic block size.

— Creates dynamically speculated instructions at run-time with no
compiler support at all.

— If a branch turns out as mispredicted all such dynamically
speculated instructions must be prevented from changing the state of
the machine (registers, memory).

o Addition of commit (retire, completion, or re-ordering) stage and
forcing instructions to commit in their order in the code (i.e to
write results to registers or memory).

* Precise exceptions are possible since instructions must commit in
order.

31

Hardware-Based Aeorderbuter_ |

From instruction unit

Speculation e

point
operation
Speculative Execution + | —
Tomasulo’s Algorithm N
To memao
[ﬂala.-‘addrer:s} :
o, FP registers
MEmary
(load results)
‘ Operand
Operation bus ik

L |

Heservation
stations

FP multipliers

Common data bus

32

Four Steps of Speculative Tomasulo Algorithm

1. Issue — Get an instruction from FP Op Queue

If a reservation station and a reorder buffer slot are free, issue instruction
& send operands & reorder buffer number for destination (this stage is
sometimes called “dispatch™)

2. Execution — Operate on operands (EX)

When both operands are ready then execute; if not ready, watch CDB for
result; when both operands are in reservation station, execute; checks
RAW (sometimes called “issue’)

3. Write result — Finish execution (WB)

Write on Common Data Bus (CDB) to all awaiting FUs & reorder
buffer; mark reservation station available.

4. Commit — Update registers, memory with reorder buffer result

— When an instruction is at head of reorder buffer & the result is present,
update register with result (or store to memory) and remove instruction
from reorder buffer.

— A mispredicted branch at the head of the reorder buffer flushes the
reorder buffer (sometimes called “graduation™)

—> Instructions issue in order, execute (EX), write result (WB) out of
order, but must commit in order.

33

Multiple Issue with Speculation Example

Example Consider the execution of the following loop, which searches an array, on a two-
issue processor, once without speculation and once with speculation:

Loop: LD R2,0(R1) ;:R2=array element
DADDIU R2,R2,#1 ;increment RZ2
SD R2,0(R1) ;store result
DADDIVU R1,RI1,#4 sincrement pointer
BNE R2,R3,LO0P sbranch if not last element

Assume that there are separate integer functional units for effective address
calculation, for ALU operations, and for branch condition evaluation. Create a
table as in Figure 3.27 for the first three iterations of this loop for both machines.
Assume that up to two instructions of any type can commit per clock.

Answer Figures 3.33 and 3.34 show the performance for a two-issue dynamically sched-
uled processor, without and with speculation. In this case, where a branch is a key
potential performance limitation, speculation helps significantly. The third branch
in the speculative processor executes in clock cycle 13, while it executes in clock
cycle 19 on the nonspeculative pipeline. Because the completion rate on the non-
speculative pipeline is falling behind the issue rate rapidly, the nonspeculative
pipeline will stall when a few more iterations are issued. The performance of the
nonspeculative processor could be improved by allowing load instructions to

Branches still single issue

Example on page 235 (CIU iZ 5) ¥

Answer: Without Speculation

Memory
Issues at Executesat access at Write CDB at
Iteration clockcycle clockcycle clockcycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
| DADDIU R2,R2,#1 1 5 «— 6 Wait for LW
1 sD R2,0(R1) 2 3 7 Wait for DADDIU
| DADDIU R1,R1,#4 2 3 4 Execute directly
1 BNE R2,R3,LOOP 3 7 < Wait for DADDIU
2 LD R2,0(R1) 4 '8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11— 12 Wait for LW
2 SO R2,0(R1) 5 9 13— Wait for DADDIU
2 DADDIU R1,R1,#4 5 8 9 Wait for BNE
2 BNE R2,R3,LOOP 6 13« Wait for DADDIU
3 LD R2,0(R1) 7 b4 15 16 Wait for BNE
3 DADDIU R2,R2,#1 7 17 «— 18 Wait for LW
3 SD R2,0(R1) 8 15 19 «— Wait for DADDIU
3 DADDIU R1,R1,#4 8 14 15 Wait for BNE
3 BNZ R2,R3,LO0OP 9 19 & Wait for DADDIU

Figure 3.33 The time of issue, execution, and writing result for a dual-issue version of our pipeline without
speculation. Note that the L. D following the BNE cannot start execution earlier, because it must wait until the branch
outcome is determined. This type of program, with data-dependent branches that cannot be resolved earlier, shows
the strength of speculation. Separate functional units for address calculation, ALU operations, and branch condition
evaluation allow multiple instructions to execute in the same cycle.

35

Answer: 2-way Superscalar Tomasulo With Speculation

Write
Issues Executes Readaccess CDBat Commits

Iteration atclock atclock at clock clock at clock

number Instructions number number number number number Comment
1 LD R2,0(R1) | 2 3 4 5 First issue
1 DADDIU R2,R2,#1 | 3 — - 6 7 Wait for LW
1 SD R2,0(R1) 2 3 T 7 Wait for DADDIU
1 DADDIU R1,R1,#4 2 3 4 8 Commit in order
i BNE R2,R3,LOOP 3 7 &« 8 Wait for DADDIU
2 LD RZ,0(R1) 4 5 6 7 9 No execute delay
2 DADDIU R2,R2,#1 4 g+ 0 10 Wait for LW
2 SD R2,0(R1) 5 6 - ™10 Wait for DADDIU
2 DADDIU R1,R1,#4 5 6 7 11 Commit in order
2 BNE R2,R3,LOOP 6 10 < 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 ll“/ 12 13 Wait for LW
3 SO R2,0(R1) 5 9 - %13 Wait for DADDIU
3 DADDIU R1,R1,#4 8 9 10 14 Executes earlier
3 BNE R2,R3,LO0P 9 134" 14 Wait for DADDIU

Figure 3.34 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-
tion. Note that the L. D following the BNE can start execution early because it is speculative.

Branches Still Single Issue

36

_oop-Level Parallelism (LLP) Analysis

* Loop-Level Parallelism (LLP) analysis focuses on whether data accesses in
later iterations of a loop are data dependent on data values produced in
earlier iterations and possibly making loop iterations independent.

e.g. in for (i=1; i<=1000; i++)
X[i] = x[i] + s;

the computation in each iteration is independent of the previous
Iterations and the loop is thus parallel. The use of X[i] twice is within
a single iteration.

—=Thus loop iterations are parallel (or independent from each other).

 Loop-carried Dependence: A data dependence between different loop
iterations (data produced in earlier iteration used in a later one).

o LLP analysis is important in software optimizations such as loop unrolling
since it usually requires loop iterations to be independent.

« LLP analysis is normally done at the source code level or close to it since
assembly language and target machine code generation introduces a loop-
carried name dependence in the registers used for addressing and
incrementing.

» Instruction level parallelism (ILP) analysis, on the other hand, is usually done

when instructions are generated by the compiler.

37
(In Chapter 4.4)

LLP Analysis Example 1

* In the loop:

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1*/
B[i+1] = B[i] + A[i+1]:} /* S2*/
}

(Where A, B, C are distinct non-overlapping arrays)

— S2 uses the value AJi+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).

= does not prevent loop iteration parallelism.

— S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes Ali+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

—=These two dependencies are loop-carried spanning more than one iteration
preventing loop parallelism.

38

* In the loop: LLP AnaIySIS Example 2

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + BI[i]; [* S1 */
B[i+1] = C[i] + D[i]; /* S2 */
}

— S1 uses the value B[i] computed by S2 in the previous iteration (loop-
carried dependence)

— This dependence is not circular:
e S1 depends on S2 but S2 does not depend on S1.

— Can be made parallel by replacing the code with the following:
A[l] = A[1] + B[1]; LoopStart-up code
for (i=1; 1<=99; i=i+1) {
B[i+1] = C[i] + D[i]; joop feratons
Al[i+1] = A[i+1] + B[i+1];
}

B[101] = C[100] + D[100]; Loop Completion code
39
(quiz 6)

LLP Analysis Example 2

for (i=1; i<=100; i=i+1) {

- _ A[i] =A[i] + B[i]l; /* S1 *
Original Loop: B[i+1] = C[i] + D[i]; /* S2 */
}
Iteration 1 lteration 2 Iteration 99 Iteration 100
S1 A[1] = A[1] + B[1]; Al2] = A[2] + B[2]; A[99] = A[99] + B[99]; : A[100] = A[100] + B[100];
// //') // //
S2 B[21=C[1]+D[1]; { B[3]=C[2]+D[2]; '[-)ggg;]‘aaer;;d B[100] = C[99] + D[99]; | B[101] = C[100] + D[100]:

All] =A[1] + B[1];
for (i=1; 1<=99; i=i+1) {

Modified Parallel Loop: At = At 2 B
}

B[101] = C[100] + D[100];

e VETALION 98 . Iteration 99

Loop Start-up code Iteration 1

.......................

A=A+ BIL | ARI=ARI+BRL T . A[991=A[99] + BI9ST; | A[100] = A[100] + B[100];

e 4 - =

' B[2]=C[1]+D[ll; | B[3]=C[2] + D[2; (N:Ztr:jggp B[100] = C[99] + D[99]; B[101] = C[100] + D[100]:
Dependence Loop Completion code

40

ILP Compiler Support:
Software Pipelining (Symbolic Loop Unrolling)

— A compiler technigue where loops are reorganized:

e Each new iteration is made from instructions selected
from a_ number of independent iterations of the original
loop.

— The instructions are selected to separate dependent
Instructions within the original loop iteration.

— No actual loop-unrolling is performed.
» A software equivalent to the Tomasulo approach?
— Requires:

o Additional start-up code to execute code left out from
the first original loop iterations.

o Additional finish code to execute instructions left out
from the last original loop iterations.

41
(In Chapter 4.4)

Software Pipelining Example

Show a software-pipelined version of the code: 24 if;'i‘j;'“p Software Pipsl_ige
Inis
Loop: L.D FO,0(R1) .g\code
ADD.D F4,FO,F2 g e, e >
S.D F4,0(R1) S Time
DADDUI R1,R1,#-8 =~ Loop Unrolled
BNE R1,R2,LOOP g } L.L'L. \
> | ,
Time
Before: Unrolled 3 times After: Software Pipelined
1 L.D FO,0(R1) L.D FO,0(R1) ot
2 ADD.D F4,FO0,F2 ADD.D F4,FO0,F2 code
3 S.D F4,0(R1) L.D FO,-8(R1)
4 L.D FO,—8(R15\\\\\‘* 1 S.D F4,0(R1) ;Stores M[i]
5 ADD.D F4,FO,F2 —— 2 ADD.D F4,F0,F2 ;Adds to M[i-1]
6 S.D F4,-8(R1) ‘/////vs L.D FO,-16(R1) ;Loads M[i-2]
7 L.D FO,-16(R1) 4 DADDUI R1,R1,#-8
8 ADD.D F4,FO0,F2 5 BNE R1,R2,LO0OP
9 S.D F4,-16(R1) S.D F4, O(R1) finich
10 DADDUI R1,R1,#-24 ADDD F4,F0,F2 code
11 BNE R1,R2,LOOP S.D F4,-8(R1)

2 fewer loop iterations

42

Software Pipelining Example Illustrated

_ L _ L.D FO,0(R1)
Assuming 6 original iterations ADD D F4 FO_F2
for illustration purposes: S D F4 O(F’il)
1 2 3 4 5 6
start-up
code

S.D
finish
code

4 Software Pipelined loop iterations (2 iterations fewer)

43

Cache Concepts

Cache is the first level of the memory hierarchy once the address leaves
the CPU and is searched first for the requested data.

If the data requested by the CPU is present in the cache, it is retrieved
from cache and the data access is a cache hit otherwise a cache miss
and data must be read from main memory.

On a cache miss a block of data must be brought in from main memory
to cache to possibly replace an existing cache block.

The allowed block addresses where blocks can be mapped into cache
from main memory is determined by cache placement strategy.

Locating a block of data in cache is handled by cache block
identification mechanism.

On a cache miss the cache block being removed is handled by the block
replacement strategy in place.

When a write to cache is requested, a number of main memory update
strategies exist as part of the cache write policy.

44
(Review from 550)

Cache Performance:
Average Memory Access Time (AMAT), Memory Stall cycles

e The Average Memory Access Time (AMAT): The number of
cycles required to complete an average memory access request
by the CPU.

« Memory stall cycles per memory access: The number of stall
cycles added to CPU execution cycles for one memory access.

e Forideal memory: AMAT = 1 cycle, this results in zero
memory stall cycles.
 Memory stall cycles per average memory access = (AMAT -1)
 Memory stall cycles per average instruction =
Memory stall cycles per average memory access
X Number of memory accesses per instruction

= (AMAT -1) x (1 + fraction of loads/stores)
7

Instruction Fetch

45

Cache Performance

Princeton (Unified L1) Memory Architecture
CPUtime = Instruction count x CPI x Clock cycle time

CPI = CPI with ideal memory

execution

CPl = CPleuion ¥ Mem Stall cycles per instruction

CPUtime = Instruction Count X (CPl .. tion

Mem Stall cycles per instruction) x Clock cycle time

Mem Stall cycles per instruction =
Mem accesses per instruction x Miss rate x Miss penalty

CPUtime = IC X (CPl cuion ¥ Mem accesses per instruction X
Miss rate x Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per instruction x Miss rate

CPUtime = 1C X (CPI .. tion + Misses per instruction x Miss penalty) x
Clock cycle time

46
(Review from 550)

Memory Access Tree
For Unified Level 1 Cache

CPU Memory Access

/\

L1 Hit: L1 Miss:
L, %= Hit Rate = H1 % = (1- Hitrate) = (1-H1)
Access Time =1 Access time=M +1
Stalls=H1x0=0 Stall cycles per access = M x (1-H1)
(No Stall)
AMAT = HIx1 + (1-H1) x M+1) =1 + M x (1-H1)

Stall Cycles Per Access= AMAT-1 = M x (1 -Hl)
CPI =CPI + Mem accesses per instructionx M x (1 -H1)

execution

M = Miss Penalty
H1l = Level 1 Hit Rate
1- H1 = Level 1 Miss Rate
47

Cache Performance

Harvard Memory Architecture

For a CPU with separate or split level one (L1) caches for
Instructions and data (Harvard memory architecture) and no

stalls for cache hits:
CPUtime = Instruction count X CPI x Clock cycle time

CPl = CPleuion T Mem Stall cycles per instruction

CPUtime = Instruction Count X (CPIl_ . tion
Mem Stall cycles per instruction) x Clock cycle time

Mem Stall cycles per instruction =
Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

48

Memory Access Tree
For Separate Level 1 Caches

CPU Memory Access

/\

Instruction Data
Ll
Instruction L1 Hit: Instruction L1 Miss: _ _
Access Time =1 Access Time = M + 1 Data L1 Hit: Data L1 Miss:
Stalls=0 Stalls Per access Access Time: 1 Access Time: M+1
%instructions x (1 - Instruction H1) x M Stalls =0 OS/zaéI;tge;aézlc(_as[s)éta H1) X M

Stall Cycles Per Access = % Instructions x (1 - InstructionH1)xM + %data x (1-DataHl1)x M

AMAT = 1+ Stall Cycles per access

49

Cache Write Strategies

1 Write Though: Data is written to both the cache block and to
a block of main memory.

— The lower level always has the most updated data; an important
feature for 1/O and multiprocessing.

— Easier to implement than write back.

— A write buffer is often used to reduce CPU write stall while data
IS written to memory.

2 Write back: Data is written or updated only to the cache
block. The modified or dirty cache block is written to main
memory when it’s being replaced from cache.

— Writes occur at the speed of cache

— A status bit called a dirty or modified bit, is used to indicate
whether the block was modified while in cache; if not the block is
not written back to main memory.

— Uses less memory bandwidth than write through.

50

Cache Write Miss Policy

» Since data is usually not needed immediately on a write miss
two options exist on a cache write miss:

Write Allocate:
The cache block is loaded on a write miss followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower cache level, or main
memory) and not loaded into cache.

While any of the above two write miss policies can be used with
either write back or write through:

» \Write back caches always use write allocate to capture
subsequent writes to the block in cache.

« Write through caches usually use no-write allocate since
subsequent writes still have to go to memory.

51

Memory Access Tree, Unified L,
Write Through, No Write Allocate, No Write Buffer

CPU Memory Access

/\

Read Write
L1Read Hit: L1 Read Miss: o o
Access Time =1 Access Time = M + 1 L1 Write Hit: L1 Write Miss:
Stalls=0 Stalls Per access gccizlssl;l'ime: M +1 ?CCﬁSS Time: M+1
talls Per access: talls per access:
0, -
voreadsx (1- H1)xM % write X (HL)x M % write X (1- HL)xM

Stall Cycles Per Memory Access= % readsx(1- HL)XxM + % write x M

AMAT = 1+ %readsx(1- HL) XM + % write XM
M = Miss Penalty

H1l = Level 1 Hit Rate
1- H1 = Level 1 Miss Rate

52

Reducing Write Stalls For Write Though Cache

e To reduce write stalls when write though is used, a write
buffer is used to eliminate or reduce write stalls:

— Perfect write buffer: All writes are handled by write
buffer, no stalling for writes

— In this case:
Stall Cycles Per Memory Access= % readsx (1- H1)x M

(No stalls for writes)
— Realistic Write buffer: A percentage of write stalls are
not eliminated when the write buffer is full.
— In this case:

Stall Cycles/Memory Access = (% reads x (1 - H1) + % write stalls not eliminated) x M

53

Write Through Cache Performance Example

« ACPUwith CPIl .uion = 1.1 Mem accesses per instruction = 1.3
o Uses aunified L1 Write Through, No Write Allocate, with:
— No write buffer.
— Perfect Write buffer
— A realistic write buffer that eliminates 85% of write stalls
e Instruction mix: 50% arith/logic, 15% load, 15%o store, 20% control

« Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
CPl = CPl . uon + mMmem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3= 11.5%

With No Write Buffer :

Mem Stalls/ instruction = 1.3x50 x (88.5% x 1.5% + 11.5%) = 8.33 cycles
CPI=11 +8.33= 943

With Perfect Write Buffer (all write stalls eliminated):

Mem Stalls/ instruction = 1.3 x50 x (88.5% x 1.5%) =0.86 cycles
CPI=11+086= 1.96

With Realistic Write Buffer (eliminates 85% of write stalls)

Mem Stalls/ instruction = 1.3x50 x (88.5% x 1.5% + 15% x 11.5%) = 1.98 cycles
CPI=11+198= 3.08

54

Memory Access Tree Unified L,
Write Back, With Write Allocate

CPU Memory Access

TN

L1 Hit: L1 Miss
% write x H1

Access Time=1
Stalls=0
2M needed to
/ Write Dirty Block

cl and Read new block
ean Dirty

Access Time = M +1 Access Time = 2M +1
Stall cycles = M x (1 -H1) X Stall cycles = 2M x (1-H1) x
% clean % dirty

i |

Stall Cycles Per Memory Access = (1-H1) x (Mx %clean + 2M x % dirty)

AMAT = 1 + Stall Cycles Per Memory Access

55

Write Back Cache Performance Example

« A CPUwith CPI = 1.1 uses a unified L1 with with write back,

execution
with write allocate, and the probability a cache block is dirty = 10%

« Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
e Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPl = CPl_ ..y + mem stalls per instruction
Mem Stalls per instruction =
Mem accesses per instruction x Stalls per access
Mem accesses per instruction=1 + .3 = 1.3
Stalls per access = (1-H1) x (Mx %clean + 2M x % dirty)

Stalls per access =1.5% x (50 x 90% + 100 x 10%) = .825 cycles
Mem Stalls per instruction = 1.3 x .825 = 1.07 cycles

AMAT =1 + 1.07= 2.07 cycles

CPI=11 +107 = 217

The ideal CPU with no missesis 2.17/1.1 = 1.97 times faster

56

2 Levels of Unified Cache: L,, L,

CPU
Hit Rate= H,, Hit time = 1 cycle
L, Cache (No Stall)
L, Cache Hit Rate= H,, Hittime =T, cycles

Main Memory

Memory access penalty, M

57

Miss Rates For Multi-Level Caches

Local Miss Rate: This rate i1s the number of misses in a
cache level divided by the number of memory accesses to
this level. Local Hit Rate = 1 - Local Miss Rate

Global Miss Rate: The number of misses in a cache level
divided by the total number of memory accesses generated
by the CPU.
Since level 1 receives all CPU memory accesses, for level 1:
Local Miss Rate = Global Miss Rate= 1-H1
For level 2 since it only receives those accesses missed in 1:
Local Miss Rate = Miss rate, ,= 1- H2

Global Miss Rate = Miss rate, ; x Miss rate,
= (1-H1) x(1-H2)

58

2-Level (Both Unified) Cache Performance
(Ignoring Write Policy)

CPUtime = ICx (CPI + Mem Stall cycles per instruction) x C

execution

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

* For asystem with 2 levels of cache, assuming no penalty
when found in L, cache:
Stall cycles per memory access =
[miss rate L,] x [Hitrate L, x Hittime L,
+ Miss rate L; x Memory access penalty) | =

(I-H1) xH2xT2 + (1-H1)(1-H2)x M

_ / L1 Miss, L2 Miss:
L1 Miss, L2 Hit Must Access Main Memory

59

2-Level Cache (Both Unified) Performance
Memory Access Tree (ignoring Write Policy)

CPU Stall Cycles Per Memory Access

CPU Memory Access

TN

L L1 Hit: L1 Miss:
1 Stalls=H1x0=0 % = (1-H1)
(No Stall) /\
L, L2 Hit: L2 Miss:
(1-H1) x H2 X T2 Stalls= (1-H1)(1-H2) x M

T l

Stall cycles per memory access = (1-H1)xH2xT2 + (1-H1)(1-H2)xM
AMAT =1 +(1-H1) xH2xT2 + (1-H1)(1-H2)x M

60

Two-Level Cache Example

e CPU with CPI .. ion = 1.1 running at clock rate = 500 MHz
« 1.3 memory accesses per instruction.

e L, cache operates at 500 MHz with a miss rate of 5%

* L, cache operates at 250 MHz with local miss rate 40%, (T, =2 cycles)

« Memory access penalty, M =100 cycles. Find CPI.

CPl = CPl_.ii,n ¥ Mem Stall cycles per instruction
With No Cache, CPI = 1.1+ 1.3x100 = 131.1

With singleL,, CPlI =11 + 1.3x.05x100= 7.6
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

Stall cycles per memory access = (1-H1) xH2xT2 + (1-H1)(1-H2)xM
= .05x 6 x2 + .05x .4 x 100
= 06+ 2 = 2.06
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access
= 206 x 1.3 = 2678
CPI=11+ 2,678 =3.778
Speedup = 7.6/3.778 = 2

61

Write Policy For 2-Level Cache

Write Policy For Level 1 Cache:
— Usually Write through to Level 2
— Write allocate Is used to reduce level 1 miss reads.
— Use write buffer to reduce write stalls

Write Policy For Level 2 Cache:

— Usually write back with write allocate is used.
* To minimize memory bandwidth usage.

The above 2-level cache write policy results in inclusive L2 cache
since the content of L1 is also in L2

« Common in the majority of all CPUs with 2-levels of cache

62

2-Level (Both Unified) Memory Access Tree

L1: Write Through to L2, Write Allocate, With Perfect Write Buffer
L2: Write Back with Write Allocate

CPU Memory Access

(H1) NHl) L,

L1 Hit: L1 Miss:

Stalls Per access =0
L2

L2 Hit (1-H1) x (1-H2)

Stalls = (1-H1) x H2 x T2

L2 Miss
e /\
Dirty
Stall cycles =
Stall cycles =
Mx (1-HI) x (1-H2) x 2M x (1-H1) x (1-H2) X
% clean % dirty
Stall cycles per memory access = (1-H1)xH2x T2+ Mx (1-H1) x(1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= (I-H)xH2xT2+ (1-H1) x(1-H2) x (% clean xM + % dirty x 2M)

(quiz 7) o3

Two-Level Cache Example With Write Policy

CPU with CPI,..ion = 1.1 running at clock rate = 500 MHz
1.3 memory accesses per instruction.
For L, :

— Cache operates at 500 MHz with a miss rate of 1-H1 = 5%

— Write though to L, with perfect write buffer with write allocate

For L,:
— Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T, = 2 cycles)
— Write back to main memory with write allocate

— Probability a cache block is dirty = 10%
Memory access penalty, M =100 cycles. Find CPI.

Stall cycles per memory access = (1-H1) x H2x T2 +
(1-H1) x(1-H2) x (% clean x M + % dirty x 2M)
= .05x.6 x2 + .05x.4x(.9x100+.1x200)
= .06+ 0.02x110=.06+2.2= 2.26

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

= 226 x 13 = 2938
CPI=11+2938=4.038=4

64

3 Levels of Unified Cache

CPU
Hit Rate= H., Hit time = 1 cycl
L1 Cache it Rate= H,, Hit time = 1 cycle
Hit Rate= H,, Hit time =T, cycles
L2 Cache
Hit R =H Hit ti =T
L3 Cache it Rate= Hg, Hittime =T,

Main Memory

Memory access penalty, M

65

3-Level Cache Performance

(Ignoring Write Policy)
CPUtime = ICx (CPl .uiion T Mem Stall cycles per instruction) x C
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

* For asystem with 3 levels of cache, assuming no penalty
when found in L, cache:
Stall cycles per memory access =
[miss rate L,] x [Hitrate L, x Hittime L,
+ Miss rate L, x (Hit rate L3 x Hit time L,

+ Miss rate L; x Memory access penalty) | =
L1 Miss, L2 Miss:

(1-H1) XH2XT2 Must Access Main Memory
7+ (@H)X@-H)xHIXT3
L1 Miss, L2 Hit 7+ (1-H1)(1-H2) (1-H3)x M

L2 Miss, L3 Hit
66

3-Level Cache Performance

Memory Access Tree (Ignoring Write Policy)
CPU Stall Cycles Per Memory Access

CPU Memory Access

/\

L1 Hit: L1 Miss:
|—1 Stalls=H1x0=0 % = (1-H1)
(No Stall) /\
L L2 Hit: L2 Miss:
2 (1-H1) x H2 x T2 % = (1-H1)(1-H2)
L, L3 Hit: L3 Miss:
(l-Hl) X (1-H2) XH3x T3 (l-Hl)(l-HZ)(l-HB) X M

\ l

Stall cycles per memory access = (1-H1)xH2xT2 + (1-H1) x (1-H2) x H3x T3 + (1-H1)(1-H2) (1-H3)x M
AMAT = 1 + Stall cycles per memory access

67

Three-Level Cache Example

e CPU with CPI_,.tion = 1.1 running at clock rate = 500 MHz
« 1.3 memory accesses per instruction.
e L, cache operates at 500 MHz with a miss rate of 5%
* L, cache operates at 250 MHz with a local miss rate 40%, (T, = 2 cycles)
e L, cache operates at 100 MHz with a local miss rate 50%, (T3 =5 cycles)
 Memory access penalty, M= 100 cycles. Find CPI.

With No Cache, CPI = 1.1+ 1.3x100 = 131.1

With singleL,, CPI =11 + 1.3x.05x100= 7.6

With L1, L2 CPl =11+ 13x (05x .6 x2 + .05x .4 x 100) =3.778

CPl = CPleuion ¥ M™Mem Stall cycles per instruction
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

Stall cycles per memory access = (1-H1)xH2xT2 + (1-H1) x (1-H2) x H3x T3 + (1-H1)(1-H2) (1-H3)x M
= 05x .6 x2 +.05x.4x.5x5+.05x.4x.5x100
= .097 + .00/5 + .00225 = 1.11

CPI=11+13x111 = 254

Speedup comparedto L1only = 7.6/254 = 3
Speedup comparedto L1, L2 = 3.778/254 = 1.49
68

Main Memory

 Main memory generally utilizes Dynamic RAM (DRAM),

which use a single transistor to store a bit, but require a periodic data
refresh by reading every row.

o Static RAM may be used for main memory if the added expense, low
density, high power consumption, and complexity is feasible (e.qg.

Cray Vector Supercomputers).
 Main memory performance is affected by:

— Memory latency: Affects cache miss penalty, M. Measured by:
* Access time: The time it takes between a memory access request is
Issued to main memory and the time the requested information is
available to cache/CPU.
e Cycle time: The minimum time between requests to memory
(greater than access time in DRAM to allow address lines to be stable)

— Memory bandwidth: The maximum sustained data transfer
rate between main memory and cache/CPU.

69
(In Chapter 5.8 - 5.10)

Basic Memory Bandwidth Improvement Techniques

e Wider Main Memory:

Memory width is increased to a number of words (usually up to the
size of a cache block).

— Memory bandwidth is proportional to memory width.
e.g Doubling the width of cache and memory doubles
potential memory bandwidth available to the CPU.

e Interleaved (Multi-Bank) Memory:

Memory is organized as a number of independent banks.

— Multiple interleaved memory reads or writes are accomplished
by sending memory addresses to several memory banks at once.

— Interleaving factor: Refers to the mapping of memory
addressees to memory banks. Goal reduce bank conflicts.

e.g. using 4 banks (width one word), bank 0 has all words whose
address is:

(word addressmod) 4 = 0

70

Memory Bank Interleaving

Access Pattern without Interleaving: (One Bank)

CPU p=t—= Memory

D1 available (4 banks similar to the organization

Start Access for D1 Start Access for D2 of DDR SDRAM memory chips

Memory

Access Pattern with 4-way Interleaving: Bank 0

Memory

Bank Cycle Time Bank 1

r CPU |at——
Access Bank 1 ‘
Access Bank 2

Memory
Bank 2

Memory
Bank 3

S IR

Access Bank 3

Access Bank

We can Access Bank 0 again
Number of banks > Number of cycles to access word in a bank

71

Memory Width, Interleaving: Performance Example

Given the following system parameters with single unified cache level L, (ignoring write policy):

Block size= 1 word Memory bus width=1 word Miss rate =3% M = Miss penalty = 32 cycles
(4 cycles to send address 24 cycles access time, 4 cycles to send a word)
Memory access/instruction =1.2 CPI_ . in (igNOring cache misses) = 2
Miss rate (block size =2 word =8 bytes) = 2% Miss rate (block size = 4 words = 16 bytes) = 1%

e The CPI of the base machine with 1-word blocks = 2 + (1.2 x 0.03 x 32) = 3.15

Increasing the block size to two words gives the following CPI:

e 32-bit bus and memory, no interleaving, M =2 x 32 = 64 cycles CPI=2+(12x .02x64)=3.54
o 32-bit bus and memory, interleaved, M=4+24+8 =36cycles CPI=2+(1.2x.02x36) =2.86
* 64-bit bus and memory, no interleaving, M =32 cycles CPI=2+(1.2x0.02x32)=2.77

Increasing the block size to four words; resulting CPI:

e 32-bit bus and memory, no interleaving, M =4x32=128cycles CPlI=2+(1.2x0.01 x 128) =3.54
o 32-bit bus and memory, interleaved, M=4+24+16=44cycles CPl=2+(1.2x0.01x44) =253
e 64-bit bus and memory, no interleaving, M =2x32= 64cycles CPlI=2+(1.2x0.01x64)=2.77
e 64-bit bus and memory, interleaved, M=4+24+8 =36c¢cycles CPI=2+(1.2x0.01x36)=243
e 128-bit bus and memory, no interleaving, M = 32 cycles CPI=2+(1.2x0.01x32)=2.38

72

Program Steady-State Main Memory Bandwidth-Usage Example

* In the example with three levels of cache (all unified, ignore write policy)

 CPU with CPI . iion = 1.1 running at clock rate = 500 MHZ

* 1.3 memory accesses per instruction.

e L, cache operates at 500 MHz with a miss rate of 5%

» L, cache operates at 250 MHz with a local miss rate 40%, (T, =2 cycles)
e L, cache operates at 100 MHz with a local miss rate 50%, (T =15 cycles)

 Memory access penalty, M= 100 cycles.

 We found the CPI:
With No Cache, CPI =11+ 1.3x100 = 131.1
WithsingleL,, CPI =11 + 1.3x.05x100= 7.6
With L1, L2 CPI =11+ 13x (05x .6 x2 + .05x .4 x 100) =3.778
With L1, L2,L3 CPI=11+ 13x111 = 254

Assuming:
instruction size = data size = 4 bytes , all cache blocks are 32 bytes and
For each of the three cases with cache:
What is the total number of memory accesses generated by the CPU per second?
What is the percentage of these memory accesses satisfied by main memory?
Percentage of main memory bandwidth used by the CPU?

73

Program Steady-State Main Memory Bandwidth-Usage Example

Memory requires 100 CPU cycles = 200 ns to deliver 32 bytes, thus total main
memory bandwidth = 32 bytes/ (200 ns) =160 x 106 bytes/sec
The total number of memory accesses generated by the CPU per second =
(memory access/instruction) x clock rate/ CPlI = 1.3 x 500 x 106/ CPI = 650 x 10%/ CPI
— Withsingle L1 =650x109/7.6 = 85x 10% accesses/sec
— WithL1,L2 = 650x108/3.778= 172 x 10° accesses/sec
— With L1, L2, L3 =650x108/254 = 255x 108 accesses/sec
The percentage of these memory accesses satisfied by main memory:
— Withsingle L1 = L1 miss rate = 5%
— With L1, L2 = Ll missratex L2 missrate= .05x.4 =2%
— with L1, L2, L3 =L1miss rate x L2 miss rate x L3 miss rate =.05x.4x.5=1%
Memory Bandwidth used
— Withsingle L1 = 32 bytes x 85x10°% accesses/sec x .05 = 136 x10® bytes/sec
or 136/160 = 85 % of total memory bandwidth
— With L1,L2= 32bytes x 172 x10° accesses/sec x .02 = 110 x10% bytes/sec
or 110/160 = 69 % of total memory bandwidth
— With L1,L2,L3 = 32bytes x 255 x10° accesses/sec x .01 = 82 x10° bytes/sec
or 82/160 = 51 % of total memory bandwidth

74

Virtual Memory, Speeding Up Address Translation:
Translation Lookaside Buffer (TLB)

« TLB: A small on-chip fully-associative cache used for address translations.
o Ifavirtual address is found in TLB (a TLB hit), the page table in main memory is not

accessed. PPN
Physical Page TLB (on-chip)
: valid Tag Address) .
Virtual Page | | 32-128 Entries

Number 1 .

1 TLB Hits Physical Memory
(VPN) > 1

1

0

1

Physical Page
valid ©f Disk Address

1 «

1 — |

1 /./ TLB Misses Disk Storage

1
Page Table = .’74,

(in main memory) i ,/// | |
0 ~ Y | |
= : '

Page Table Entry (PTE) L
2 :/#/ Page Faults

75

CPU Performance with Real TLBs

When a real TLB is used with a TLB miss rate and a TLB miss penalty is used:

CPl = CPlwiion ¥ mem stalls per instruction + TLB stalls per instruction

Where:

Mem Stalls per instruction = Mem accesses per instruction x mem stalls per access
Similarly:

TLB Stalls per instruction = Mem accesses per instruction x TLB stalls per access

TLB stalls per access = TLB miss rate x TLB miss penalty

Example:
Given: CPl ..iion = 1.3 Mem accesses per instruction = 1.4
Mem stalls per access = .5 TLB miss rate = .3% TLB miss penalty = 30 cycles
What is the reluting CPU CPI?
Mem Stalls per instruction = 1.4x .5 = .7 cycles/instruction
TLB stalls per instruction = 1.4 x (TLB miss rate x TLB miss penalty)
= 1.4 x.003 x 30 = .126 cycles/instruction

CPI = 1.3+ .7+ .126 = 2126

76

/O Performance Metrics

Diversity: The variety of 1/O devices that can be connected to the system.

Capacity: The maximum number of 1/O devices that can be connected to
the system.

Producer/server Model of I/O: The producer (CPU, human etc.)
creates tasks to be performed and places them in a task buffer (queue);
the server (1/O device or controller) takes tasks from the queue and
performs them.

I/O Throughput: The maximum data rate that can be transferred
to/from an 1/O device or sub-system, or the maximum number of 1/O
tasks or transactions completed by 1/O in a certain period of time

— Maximized when task buffer is never empty.

I/O Latency or response time: The time an 1/O task takes from the time
It is placed in the task buffer or queue until the server (1/O system)
finishes the task. Includes buffer waiting or queuing time.

— Maximized when task buffer is always empty.

77
In textbook: Ch. 7.1-7.3, 7.7,7.8

Producer-Server Queue
MOdeI Producer

User or CPU

1/0O device +

Response Time = TIMeg ey = TIMequeue + TIMegeryer
controller

300 -

Throughput
VS %Tleue
R 0] ST 1 L T U ———————— most of the

time.
More time
Response time in queue

(latency)
in ms

1'::'[] Lt oot o oo St nse ot s n et S e So oo o s o S e S &S S oo n e o oo S S oo S it S e T S oS s o ot a e So oS on &

Queue almost empty /
most of the time

Less time in queue T

0% 20% 40% B0% B0% 100%
Percent of maximum throughput (bandwidth)

/8

Magnetic Disks

Characteristics:

Platters
o Diameter: 2.5in - 5.25in
 Rotational speed: 3,600RPM-15,000 RPM
e Tracks per surface.
e Sectors per track: Outer tracks contain
Tracks

more sectors.
« Recording or Areal Density: Tracks/in X Bits/in 3
o Cost Per Megabyte. Platter
o« Seek Time: (2-12 ms)

The time needed to move the read/write head arm. Seclors
Reported values: Minimum, Maximum, Average. ‘f'/—}
 Rotation Latency or Delay: (2-8 ms) @ /
The time for the requested sector to be under
the read/write head.
e Transfer time: The time needed to transfer a sector of bits. Track
o Type of controller/interface: SCSI, EIDE
. Disk Controller delay or time.

« Average time to access a sector of data = a

average seek time + average rotational delay + transfer time
+ disk controller overhead

(ignoring queuing time)

Disk Performance Example

Given the following Disk Parameters:

— Average seek time is 5 ms
— Disk spins at 10,000 RPM
— Transfer rate is 40 MB/sec

Controller overhead is 0.1 ms
Assume that the disk is idle, so no queuing delay exist.

What is Average Disk read or write time for a 512-byte
Sector?
Ave. seek + ave. rot delay + transfer time + controller overhead
5 ms + 0.5/(10000 RPM/60) + 0.5 KB/40 MB/s + 0.1 ms
5 + 3 + 013 + 01 =823 ms

This time is service time T, for this task used for queuing delay computation

80

/O Performance & Little’s Queuing Law

System

Queue server

Proc | ——» — |IOC _

o Given: An 1/O system in equilibrium input rate is equal to output rate) and:

— Ty : Average time to service a task = 1/Service rate
- T, Average time per task in the queue
— Ty Average time per task in the system, or the response time,
the sumof Ty, and T, thus Ty, =Ty, + T,
- r: Average number of arriving tasks/sec
- L, Average number of tasks in service.
- Ly Average length of queue
— Ly, Average number of tasks in the system,
the sumof L ,and L,
« Little’sLawstates: L, = r Xx T, (applied to system)
L, = r x T, (appliedtoqueue)

e Server utilization = u= r / Servicerate = r x T

ser

u must be between 0 and 1 otherwise there would be more tasks arriving than could be serviced

81

A Little Queuing Theory: M/G/1 and M/M/1

e Assumptions:
— System in equilibrium
— Time between two successive arrivals in line are random
— Server can start on next customer immediately after prior finishes
— No limit to the queue: works First-In-First-Out
— Afterward, all customers in line must complete; each avg T,

o Described “memoryless” or Markovian request arrival

(M for C=1 exponentially random), General service distribution (no restrictions), 1
: M/G/1 queue

Server

Arrival
Distribution

e When Service times have C =1, M/M/1 queue

—

Service
Distribution

Tsys = Tq+ Tser

Tg= T xul/(l-u)

T., average time to service a task

r average number of arriving tasks/second
u server utilization (0..1):{u=rx T,

T, average time/task in queue

Tys Average time per task in the system

L, average length of queue:|L =rxT,

L

sys

Average number of tasks in the system L =r X T,

Number of

82

Multiple Server (Disk/Controller) 1/O Modeling:
_— M/M/m Queue

Arrival \
Service Number of servers

1/O system with Markovian request arrival rate r

A single queue serviced by m servers (disks + controllers) each
with Markovian Service rate = 1/ T,

Ty = Tee X U /M (1-u)]

u=rxTg/m

number of servers

average time to service a task
server utilization (0..1): u=rxT,/ m

average time/task in queue
Average time per task in the system T, = T, + T,
average length of queue: L,=r x T,

Lys Average number of tasks in the system L

(2]
@D
=

— = — 3

—

sys

I
I

-

X

_l

sys

83

1/O Queuing Performance: An M/M/1 Example

A processor sends 10 x 8KB disk 1/O requests per second, requests &
service are exponentially distributed, average disk service time = 20 ms

On average:
— How utilized is the disk, u?
— What is the average time spent in the queue, T,?
— What is the average response time for a disk request, T, ?
— What is the number of requests in the queue L,? Insystem, L,?

Sys*
We have:

r average number of arriving requests/second = 10
Teor average time to service a request = 20 ms (0.02s)
We obtain:

u server utilization: u=rxT,, =10/sx.02s= 0.2 =20%

T, average time/request in queue = T, x U /(1 -u)
=20x0.2/(1-0.2) =20x 0.25 = (0 .005s)

Toys average time/request in system: T, =T, + T, =

L, average length of queue: L =rxT,
= 10/s x .005s =

Lqys average # tasks in system: L, = r x T = 10/s x .025s =

84

Example: Determining the System 1/O
Bottleneck (ignoring queuing delays)

Assume the following system components:
— 500 MIPS CPU
— 16-byte wide memory system with 100 ns cycle time
— 200 MB/sec I/O bus
— 20 20 MB/sec SCSI-2 buses, with 1 ms controller overhead
— 5 disks per SCSI bus: 8 ms seek, 7,200 RPMS, 6MB/sec

Other assumptions
— All devices used to 100% capacity, always have average values
— Average I/O size is 16 KB
— OS uses 10,000 CPU instructions for a disk 1/0
— Ignore disk/controller queuing delays.

What is the average IOPS? What is the average 1/0
bandwidth?

85

Example: Determining the 1/0O Bottleneck
(ignoring queuing delays)

* The performance of 1/O systems is determined by the

portion with the lowest 1/O bandwidth
— CPU : (500 MIPS)/(10,000 instr. per 1/0O) = 50,000 1OPS
— Main Memory : (16 bytes)/(100 ns x 16 KB per 1/0) = 10,000 IOPS
— 1/0 bus: (200 MB/sec)/(16 KB per 1/0) = 12,500 IOPS
— SCSI-2: (20 buses)/((1 ms + (16 KB)/(20 MB/sec)) per 1/0) = 11,120 IOPS
— Disks: (100 disks)/((8 ms + 0.5/(7200 RPMS) + (16 KB)/(6 MB/sec)) per 1/0)
= 6,700 IOPS

 In this case, the disks limit the 1/O performance to 6,700
IOPS

* The average 1/0 bandwidth is
— 6,700 10OPS x (16 KB/sec) = 107.2 MB/sec

86

Example: Determining the 1/O Bottleneck

Accounting For 1/O Queue Time (M/M/m queue)

Assume the following system components: Here m = 100

— 500 MIPS CPU

— 16-byte wide memory system with 100 ns cycle time

— 200 MB/sec 1/0 bus

— 20, 20 MB/sec SCSI-2 buses, with 1 ms controller overhead
— 5 disks per SCSI bus: 8 ms seek, 7,200 RPMS, 6MB/sec

Other assumptions
— All devices used to 60% capacity (i.e maximum utilization allowed).
— Treat the 1/O system as an M/M/m queue.
— Requests are assumed spread evenly on all disks.
— Average 1/O size is 16 KB

— OS uses 10,000 CPU instructions for a disk 1/0

What is the average IOPS? What is the average bandwidth?

Average response time per 10 operation?

87

Example: Determining the 1/O Bottleneck

Accounting For 1/0 Queue Time (M/M/m queue)
* The performance of 1/O systems is still determined by the system
component with the lowest 1/O bandwidth
— CPU : (500 MIPS)/(10,000 instr. per 1/0) x .6 = 30,000 IOPS
CPU time per I/O = 10,000/500,000,000 = .02 ms
— Main Memory : (16 bytes)/(100 ns x 16 KB per 1/0) x .6 = 6,000 IOPS
Memory time per I/O = 1/10,000 = .1ms
— 1/O bus: (200 MB/sec)/(16 KB per 1/0) x .6 = 12,500 IOPS
— SCSI-2: (20 buses)/((1 ms + (16 KB)/(20 MB/sec)) per 1/0O) = 7,500 1OPS
SCSI bus time per I/O = Ims+ 16/20 ms = 1.8ms

— Disks: (100 disks)/((8 ms + 0.5/(7200 RPMS) + (16 KB)/(6 MB/sec)) per 1/0) x .6
6,700 x .6 = 4020 I0OPS

T, = (8 ms+0.5/(7200 RPMS) + (16 KB)/(6 MB/sec) = 8+4.2+2.7 = 14.9ms
The disks limit the 1/O performance to r = 4020 IOPS
The average 1/0O bandwidth is 4020 IOPS x (16 KB/sec) = 64.3 MB/sec
Ty = T xu/m(@L-u)] = 149ms x .6/ [100x 4] = .22ms
Response Time = Tser + Tg+ Tcpu + Tmemory + Tscsi =

149 +.22 + 02 + 1 + 1.8 = 17.04 ms
88

