
Multiprocessors CoherenceMultiprocessors Coherence

Review: Small-Scale—Shared Memory

 Caches serve to:
– Increase bandwidth versus bus/memoryIncrease bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared datap

 What about cache consistency?
Time Event $A $B X

(memory)

0 1

1 CPU A: R x 1 11 CPU A: R x 1 1
2 CPU B: R x 1 1 1
3 CPU A: W x,0 0 1 0

2

What Does Coherency Mean?

 Informally:
– “Any read of a data item must return the most recently written

l ”value”
– this definition includes both coherence and consistency

• coherence: what values can be returned by a read
• consistency: when a written value will be returned by a read• consistency: when a written value will be returned by a read

 Memory system is coherent if
– a read(X) by P1 that follows a write(X) by P1, with no writes of

X by another processor occurring between these two eventsX by another processor occurring between these two events,
always returns the value written by P1

– a read(X) by P1 that follows a write(X) by another processor,
returns the written value if the read and write are sufficientlyreturns the written value if the read and write are sufficiently
separated and no other writes occur between

– writes to the same location are serialized: two writes to the
same location by any two CPUs are seen in the same order
by all CPUs

3

Potential HW Coherence Solutions

 Snooping Solution (Snoopy Bus):
– every cache that has a copy of the data also has a copy of the

h i t t f th bl ksharing status of the block
– Processors snoop to see if they have a copy and respond

accordingly
Requires broadcast since caching information is at– Requires broadcast, since caching information is at
processors

– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)– Dominates for small scale machines (most of the market)

 Directory-Based Schemes (discuss later)
– Keep track of what is being shared in 1 centralized place

(logically)(logically)
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network– Send point-to-point requests to processors via network
– Scales better than Snooping
– Actually existed BEFORE Snooping-based schemes 4

Basic Snoopy Protocols

 Write Invalidate Protocol
– A CPU has exclusive access to a data item before it writes

that item
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copyp py

 Write Update Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop,

and update any copiesand update any copies
– Read miss: memory is always up-to-date

 Write serialization: bus serializes requests!
– Bus is single point of arbitration

5

Write Invalidate versus Update

 Multiple writes to the same word with no
intervening readsintervening reads
– Update: multiple broadcasts

 For multiword cache blocks o u t o d cac e b oc s
– Update: each word written in a cache block

requires a write broadcast
– Invalidate: only the first write to any word in the

block requires an invalidation
 Update has lower latency between write and Update has lower latency between write and

read

6

Snooping Cache Variations

BerkeleBasic Illinois MESIBerkeley
Protocol

Owned Exclusive
Owned Shared

Basic
Protocol

Exclusive

Illinois
Protocol
Private Dirty
Private Clean

MESI
Protocol

Modfied (private,!=Memory)
eXclusive (private =Memory)Owned Shared

Shared
Invalid

Exclusive
Shared
Invalid

Private Clean
Shared
Invalid

O d t i b i lid t ti

eXclusive (private,=Memory)
Shared (shared,=Memory)

Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if d d f th h th Sh dif read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

7

An Example Snoopy Protocol

 Invalidation protocol, write-back cache
 Each block of memory is in one state:y

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)

OR Not in any caches– OR Not in any caches

 Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy,

its writeable, and dirty
– OR Invalid : block contains no dataOR Invalid : block contains no data

 Read misses: cause all caches to snoop bus
 Writes to clean line are treated as misses

8

Snoopy-Cache State Machine-I

State machine
for CPU requests
for each SharedCPU Read

CPU Read hit

cache block Invalid
Shared

(read/only)
Place read miss
on bus

CPU Write
Place Write
Miss on bus

CPU read miss
Write back block,

CPU Read miss
Place read miss

Place read miss
on bus

CPU Write
Place Write Miss on Bus

on bus

Exclusive
(read/write)

Place Write Miss on Bus

CPU Write Miss
Write back cache block
Pl it i bCPU read hit Place write miss on busCPU read hit

CPU write hit

9

Snoopy-Cache State Machine-II

Invalid Shared
Write miss
for this block

State machine
for bus requests
for each

Invalid (read/only)
for this block

cache block

Write miss

Write Back
Block; (abort
memory access)

for this block
Read miss
for this block
Write Back

Exclusive
(read/write)

memory access) Write Back
Block; (abort
memory access)

10

Snoopy-Cache State Machine-III

State machine
for CPU requests
for each SharedCPU R d

CPU Read hit
Write miss
for this block

Place read miss
on bus

cache block and
for bus requests
for each
cache block

Invalid
Shared

(read/only)CPU Read

CPU Write
Place Write
Miss on bus

CPU read miss
Write back block,

CPU Read miss
Place read miss

Write miss
for this block

Place read miss
on bus CPU Write

Place Write Miss on Bus

on bus

Cache Block

Write Back
Block; (abort
memory
access) Write Back

Exclusive
(read/write) CPU Write Miss

W it b k h bl kCPU read hit

Cache Block
State

access) Read miss
for this block

Write Back
Block; (abort
memory access)

Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

11

Example
P 1 P 2 B M

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1 R d A1

Processor 1 Processor 2 Bus Memory

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 12

Example: Step 1

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.
Active arrow =

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Active arrow = Remote
Write

Write Back

miss on bus CPU Write
Place Write
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 13

Example: Step 2

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 14

Example: Step 3

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl A1 10P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10

A1
A1

P2: Write 40 to A2 10
10

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 15

Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

A1
A1
A1

P2: Write 40 to A2 10
10

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 16

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar A1 RdMs P2 A1P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

A1
A1
A1
A1

Remote Write CPU Read hit

Excl. A2 40 WrBk P2 A1 20 20A1

Assumes initial cache state

R t

Invalid Shared
Read
miss on bus

Write
CPU W it

is invalid and A1 and A2 map
to same cache block,
but A1 != A2

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 17

Implementation Complications

 Write Races:
– Cannot update cache until bus is obtained

• Otherwise, another processor may get bus first,
and then write the same cache block!

– Two step process:
• Arbitrate for bus• Arbitrate for bus
• Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restarthandle miss (invalidate may be needed) and then restart

– Split transaction bus:
• Bus transaction is not atomic:

can have multiple outstanding transactions for a block
• Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
• Must track and prevent multiple misses for one block

M t t i t ti d i lid ti Must support interventions and invalidations

18

Implementing Snooping Caches

 Multiple processors must be on bus,
access to both addresses and data

 Add a few new commands to perform coherency,
in addition to read and write
P ti l dd b Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

 Since every bus transaction checks cache tags,Since every bus transaction checks cache tags,
could interfere with CPU just to check:
– solution 1: duplicate set of tags for L1 caches just to allow

checks in parallel with CPUchecks in parallel with CPU
– solution 2: L2 cache already duplicate,

provided L2 obeys inclusion with L1 cache
• block size associativity of L2 affects L1• block size, associativity of L2 affects L1

19

Implementing Snooping Caches

 Bus serializes writes, getting bus ensures
no one else can perform memory operationno one else can perform memory operation

 On a miss in a write back cache, may have the
desired copy and its dirty, so must replypy y, p y

 Add extra state bit to cache to determine
shared or not

 Add 4th state (MESI)

20

MESI: CPU Requests

CPU Read
BusRd / NoSh

CPU Read hit CPU Read miss
BusRd / NoSh

Invalid ExclusiveBusRd / NoSh

CPU read miss
CPU Write
/BusRdEx

CPU read miss
BusWB, BusRd / NoSh CPU read miss

BusWB, BusRd / NoSh

CPU read hit

CPU write hit /-

CPU read miss
BusWB, BusRd / Sh

Modified
(read/write)

CPU Write Miss

CPU read hit
CPU write hit

Shared

CPU read miss
BusWB, BusRd / Sh

,

BusRdEx
CPU Write Hit
BusInv

CPU Read hit

21

MESI: Bus Requests

Invalid Exclusive
BusRdEx

Invalid Exclusive

BusRd / => Sh

BusRdEx / =>BusWB

BusRdEx

Modified
(read/write)

Shared
BusRd / =>BusWB

22

Fundamental Issues

 3 Issues to characterize parallel machines
– 1) Naming1) Naming
– 2) Synchronization
– 3) Performance: Latency and Bandwidth) y

(covered earlier)

23

Fundamental Issue #1: Naming

 Naming: how to solve large problem fast
– what data is shared
– how it is addressed
– what operations can access data

h f t h th– how processes refer to each other
 Choice of naming affects code produced by a

compiler; via load where just remembercompiler; via load where just remember
address or keep track of processor number
and local virtual address for msg. passing

 Choice of naming affects replication of data;
via load in cache memory hierarchy or via SW
replication and consistencyreplication and consistency

24

Fundamental Issue #1: Naming

 Global physical address space:
any processor can generate,
address and access it in a single operation
– memory can be anywhere:

virtual addr. translation handles it

 Global virtual address space: if the address space of
each process can be configured to contain all shared
d t f th ll ldata of the parallel program

 Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel program

25

Fundamental Issue #2: Synchronization

 To cooperate, processes must coordinate
 Message passing is implicit coordination with Message passing is implicit coordination with

transmission or arrival of data
 Shared address Shared address

=> additional operations to explicitly
coordinate:
e.g., write a flag, awaken a thread,
interrupt a processor

26

Summary: Parallel Framework

 Layers:
– Programming Model:

Programming Model
Communication
Abstraction
I t tig g

• Multiprogramming :
lots of jobs, no communication

• Shared address space:

Interconnection
SW/OS
Interconnection HW

p
communicate via memory

• Message passing: send and receive messages
• Data Parallel: several agents operate on several data sets

simultaneously and then exchange information globally
and simultaneously (shared or message passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

27

Larger MPs

 Separate Memory per Processor
 Local or Remote access via memory controller
 One Cache Coherency solution: non-cached pages
 Alternative: directory per cache that tracks state of

every block in every cacheevery block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

 Info per memory block vs. per cache block?
PLUS I i l t l (t li d/– PLUS: In memory => simpler protocol (centralized/one
location)

– MINUS: In memory => directory is ƒ(memory size) vs.
ƒ(cache size)ƒ(cache size)

 Prevent directory as bottleneck?
distribute directory entries with memory, each keeping
track of which Procs have copies of their blockstrack of which Procs have copies of their blocks

28

Distributed Directory MPs

P0 P1 PP0

C

P1

C

Pn

C
...M IO M IO M IO

C C h

Interconnection Network

C - Cache

M - Memory

IO - Input/Output

29

Directory Protocol

 Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-datey

 In addition to cache state, must track which
processors have data when in the shared state
(ll bit t 1 if h)(usually bit vector, 1 if processor has copy)

 Keep it simple(r):
– Writes to non-exclusive dataWrites to non exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received– Assume messages received

and acted upon in order sent

30

Directory Protocol

 No bus and don’t want to broadcast:
– interconnect no longer single arbitration pointinterconnect no longer single arbitration point
– all messages have explicit responses

 Terms: typically 3 processors involvedTerms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block whether exclusive or sharedblock, whether exclusive or shared
 Example messages on next slide:

P = processor number A = addressP processor number, A address

31

Directory Protocol Messages

Message type Source Destination Msg
Content

Read miss Local cache Home directory P, Aead ss oca cac e o e d ecto y ,
Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
Processor P writes data at address A;Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory;Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

D i b k R h H di A DData write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

32

State Transition Diagram for an Individual
Cache Block in a Directory Based Systemy y
 States identical to snoopy case; transactions very

similar
 Transitions caused by read misses, write misses,

invalidates, data fetch requests
G t d i & it i t h Generates read miss & write miss msg to home
directory

 Write misses that were broadcast on the bus forWrite misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch requests

 Note: on a write, a cache block is bigger,
d t d th f ll h bl kso need to read the full cache block

33

CPU -Cache State Machine
C

 State machine
for CPU

t
Invalidate

Shared

CPU Read hit

requests
for each
memory block

Invalid (read/only)CPU Read
Send Read Miss

message CPU read miss:
 Invalid state

if in
memoryFetch/Invalidate

g
CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read miss:
Send Read Miss

Fetch/Invalidate
send Data Write Back message

to home directory

to home directory

Fetch: send Data Write Back
message to home directory

CPU read miss: send Data Write

CPU write miss:

Exclusive
(read/writ)

CPU read hit

CPU read miss: send Data Write
Back message and read miss to
home directory

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read hit
CPU write hit

34

State Transition Diagram for the Directory

 Same states & structure as the transition diagram for
an individual cache

 2 actions: update of directory state & send msgs to
statisfy requests
T k ll i f bl k Tracks all copies of memory block.

 Also indicates an action that updates the sharing set,
Sharers, as well as sending a message.Sharers, as well as sending a message.

35

Directory State Machine
Read miss:

 State machine
for Directory

Read miss:
Sharers = {P}

d D t V l

Sharers += {P};
send Data Value Reply

requests for each
memory block

 Uncached state

Uncached
Shared

(read only)

send Data Value
Reply

 Uncached state
if in memory

Data Write Back:
Sh {}

Write Miss:
send Invalidate
to Sharers;

Write Miss:
Sharers = {P};
send Data

Sharers = {}
(Write back block)

to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Value Reply
msg

Exclusive
(read/writ)

y g
Read miss:
Sharers += {P};
send Fetch;

d D t V l R l

Write Miss:
Sharers = {P};
send Fetch/Invalidate; (read/writ) send Data Value Reply

msg to remote cache
(Write back block)

send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

36

Example Directory Protocol

 Message sent to directory causes two actions:
– Update the directory

More messages to satisfy request– More messages to satisfy request
 Block is in Uncached state: the copy in memory is the current

value; only possible requests for that block are:
– Read miss: requesting processor sent data from memory &requestorRead miss: requesting processor sent data from memory &requestor

made only sharing node; state of block made Shared.
– Write miss: requesting processor is sent the value & becomes the

Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached Sharers indicates the identity of the ownervalid copy is cached. Sharers indicates the identity of the owner.

 Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory

& requesting processor is added to the sharing set.q g p g
– Write miss: requesting processor is sent the value. All processors in

the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
ExclusiveExclusive.

37

Example Directory Protocol

 Block is Exclusive: current value of the block is held in the cache
of the processor identified by the set Sharers (the owner) =>
three possible directory requests:three possible directory requests:
– Read miss: owner processor sent data fetch message, causing state

of block in owner’s cache to transition to Shared and causes owner
to send data to directory, where it is written to memory & sent back
to requesting processorto requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.
D t it b k i l i th bl k d h– Data write-back: owner processor is replacing the block and hence
must write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is
now Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory
from which it is sent to the requesting processor, which becomes the
new owner. Sharers is set to identity of new owner, and state of y ,
block is made Exclusive.

38

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

39

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl A1 10 DaRp P1 A1 0

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1
P2: Read A1

P2 W it 20 t A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

40

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

41

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

10
10

P2: Write 40 to A2 10

A1 and A2 map to the same cache block

Write BackWrite Back

42

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

A1 and A2 map to the same cache block

43

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0
WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

A1 and A2 map to the same cache block

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

44

Implementing a Directory

 We assume operations atomic, but they are
not; reality is much harder; must avoidnot; reality is much harder; must avoid
deadlock when run out of buffers in network
(see Appendix I) –
The devil is in the details

 Optimizations:
– read miss or write miss in Exclusive: send data

directly to requestor from owner vs. 1st to memory
and then from memory to requestorand then from memory to requestor

45

