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I’m certainly not inventing vector processors. There are three kinds 
that I know of existing today. They are represented by the Illiac-IV, the 
(CDC) Star processor, and the TI (ASC) processor. Those three were all 
pioneering processors. . . . One of the problems of being a pioneer is 
you always make mistakes and I never, never want to be a pioneer. It’s
always best to come second when you can look at the mistakes the 
pioneers made.

 

Seymour Cray

 

Public lecture at Lawrence Livermore Laboratories
on the introduction of the Cray-1 

 

(1976)
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In Chapters 3 and 4 we saw how we could significantly increase the performance
of a processor by issuing multiple instructions per clock cycle and by more
deeply pipelining the execution units to allow greater exploitation of instruction-
level parallelism. (This appendix assumes that you have read Chapters 3 and 4
completely; in addition, the discussion on vector memory systems assumes that
you have read Chapter 5.) Unfortunately, we also saw that there are serious diffi-
culties in exploiting ever larger degrees of ILP.

As we increase both the width of instruction issue and the depth of the
machine pipelines, we also increase the number of independent instructions
required to keep the processor busy with useful work. This means an increase in
the number of partially executed instructions that can be in flight at one time. For
a dynamically-scheduled machine, hardware structures, such as instruction win-
dows, reorder buffers, and rename register files, must grow to have sufficient
capacity to hold all in-flight instructions, and worse, the number of ports on each
element of these structures must grow with the issue width. The logic to track
dependencies between all in-flight instructions grows quadratically in the number
of instructions. Even a statically scheduled VLIW machine, which shifts more of
the scheduling burden to the compiler, requires more registers, more ports per
register, and more hazard interlock logic (assuming a design where hardware
manages interlocks after issue time) to support more in-flight instructions, which
similarly cause quadratic increases in circuit size and complexity. This rapid
increase in circuit complexity makes it difficult to build machines that can control
large numbers of in-flight instructions, and hence limits practical issue widths
and pipeline depths.

 

Vector processors

 

 were successfully commercialized long before instruction-
level parallel machines and take an alternative approach to controlling multiple
functional units with deep pipelines. Vector processors provide high-level opera-
tions that work on 

 

vectors

 

—

 

linear arrays of numbers. A typical vector operation
might add two 64-element, floating-point vectors to obtain a single 64-element
vector result. The vector instruction is equivalent to an entire loop, with each itera-
tion computing one of the 64 elements of the result, updating the indices, and
branching back to the beginning.

Vector instructions have several important properties that solve most of the
problems mentioned above:

 

�

 

A single vector instruction specifies a great deal of work—it is equivalent to
executing an entire loop. Each instruction represents tens or hundreds of
operations, and so the instruction fetch and decode bandwidth needed to keep
multiple deeply pipelined functional units busy is dramatically reduced.

 

�

 

By using a vector instruction, the compiler or programmer indicates that the
computation of each result in the vector is independent of the computation of
other results in the same vector and so hardware does not have to check for
data hazards within a vector instruction. The elements in the vector can be
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computed using an array of parallel functional units, or a single very deeply
pipelined functional unit, or any intermediate configuration of parallel and
pipelined functional units.

 

�

 

Hardware need only check for data hazards between two vector instructions
once per vector operand, not once for every element within the vectors. That
means the dependency checking logic required between two vector instructions
is approximately the same as that required between two scalar instructions, but
now many more elemental operations can be in flight for the same complexity
of control logic.

 

�

 

Vector instructions that access memory have a known access pattern. If the
vector’s elements are all adjacent, then fetching the vector from a set of
heavily interleaved memory banks works very well (as we saw in Section
5.8). The high latency of initiating a main memory access versus accessing a
cache is amortized, because a single access is initiated for the entire vector
rather than to a single word. Thus, the cost of the latency to main memory is
seen only once for the entire vector, rather than once for each word of the
vector.

 

�

 

Because an entire loop is replaced by a vector instruction whose behavior is
predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

For these reasons, vector operations can be made faster than a sequence of scalar
operations on the same number of data items, and designers are motivated to
include vector units if the application domain can use them frequently.

As mentioned above, vector processors pipeline and parallelize the operations
on the individual elements of a vector. The operations include not only the arith-
metic operations (multiplication, addition, and so on), but also memory accesses
and effective address calculations. In addition, most high-end vector processors
allow multiple vector instructions to be in progress at the same time, creating fur-
ther parallelism among the operations on different vectors.

Vector processors are particularly useful for large scientific and engineering
applications, including car crash simulations and weather forecasting, for which a
typical job might take dozens of hours of supercomputer time running over multi-
gigabyte data sets. Multimedia applications can also benefit from vector process-
ing, as they contain abundant data parallelism and process large data streams. A
high-speed pipelined processor will usually use a cache to avoid forcing memory
reference instructions to have very long latency. Unfortunately, big, long-running,
scientific programs often have very large active data sets that are sometimes
accessed with low locality, yielding poor performance from the memory hierar-
chy. This problem could be overcome by not caching these structures if it were
possible to determine the memory access patterns and pipeline the memory
accesses efficiently. Novel cache architectures and compiler assistance through
blocking and prefetching are decreasing these memory hierarchy problems, but
they continue to be serious in some applications.
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A vector processor typically consists of an ordinary pipelined scalar unit plus a
vector unit. All functional units within the vector unit have a latency of several
clock cycles. This allows a shorter clock cycle time and is compatible with long-
running vector operations that can be deeply pipelined without generating haz-
ards. Most vector processors allow the vectors to be dealt with as floating-point
numbers, as integers, or as logical data. Here we will focus on floating point. The
scalar unit is basically no different from the type of advanced pipelined CPU dis-
cussed in Chapters 3 and 4, and commercial vector machines have included both
out-of-order scalar units (NEC SX/5) and VLIW scalar units (Fujitsu VPP5000).

There are two primary types of architectures for vector processors: 

 

vector-
register processors

 

 and 

 

memory-memory vector processors

 

. In a vector-register
processor, all vector operations—except load and store—are among the vector
registers. These architectures are the vector counterpart of a load-store architec-
ture. All major vector computers shipped since the late 1980s use a vector-register
architecture, including the Cray Research processors (Cray-1, Cray-2, X-MP, Y-
MP, C90, T90, and SV1), the Japanese supercomputers (NEC SX/2 through SX/5,
Fujitsu VP200 through VPP5000, and the Hitachi S820 and S-8300), and the mini-
supercomputers (Convex C-1 through C-4). In a memory-memory vector proces-
sor, all vector operations are memory to memory. The first vector computers were
of this type, as were CDC’s vector computers. From this point on we will focus on
vector-register architectures only; we will briefly return to memory-memory vec-
tor architectures at the end of the appendix (Section G.9) to discuss why they have
not been as successful as vector-register architectures. 

We begin with a vector-register processor consisting of the primary com-
ponents shown in Figure G.1. This processor, which is loosely based on the Cray-
1, is the foundation for discussion throughout most of this appendix. We will call
it VMIPS; its scalar portion is MIPS, and its vector portion is the logical vector
extension of MIPS. The rest of this section examines how the basic architecture
of VMIPS relates to other processors. 

The primary components of the instruction set architecture of VMIPS are the
following:

 

�

 

Vector registers

 

—Each vector register is a fixed-length bank holding a single
vector. VMIPS has eight vector registers, and each vector register holds 64
elements. Each vector register must have at least two read ports and one write
port in VMIPS. This will allow a high degree of overlap among vector opera-
tions to different vector registers. (We do not consider the problem of a short-
age of vector-register ports. In real machines this would result in a structural
hazard.) The read and write ports, which total at least 16 read ports and 8
write ports, are connected to the functional unit inputs or outputs by a pair of
crossbars. (The description of the vector-register file design has been simpli-
fied here. Real machines make use of the regular access pattern within a vec-
tor instruction to reduce the costs of the vector-register file circuitry
[Asanovic 1998]. For example, the Cray-1 manages to implement the register
file with only a single port per register.)
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�

 

Vector functional units

 

—Each unit is fully pipelined and can start a new oper-
ation on every clock cycle. A control unit is needed to detect hazards, both
from conflicts for the functional units (structural hazards) and from conflicts
for register accesses (data hazards). VMIPS has five functional units, as shown
in Figure G.1. For simplicity, we will focus exclusively on the floating-point
functional units. Depending on the vector processor, scalar operations either
use the vector functional units or use a dedicated set. We assume the func-
tional units are shared, but again, for simplicity, we ignore potential conflicts. 

 

�

 

Vector load-store unit

 

—This is a vector memory unit that loads or stores a
vector to or from memory. The VMIPS vector loads and stores are fully pipe-
lined, so that words can be moved between the vector registers and memory

 

Figure G.1

 

The basic structure of a vector-register architecture, VMIPS.

 

 

 

This proces-
sor has a scalar architecture just like MIPS. There are also eight 64-element vector regis-
ters, and all the functional units are vector functional units. Special vector instructions
are defined both for arithmetic and for memory accesses. We show vector units for log-
ical and integer operations. These are included so that VMIPS looks like a standard vec-
tor processor, which usually includes these units. However, we will not be discussing
these units except in the exercises. The vector and scalar registers have a significant
number of read and write ports to allow multiple simultaneous vector operations.
These ports are connected to the inputs and outputs of the vector functional units by a
set of crossbars (shown in thick gray lines). In Section G.4 we add chaining, which will
require additional interconnect capability.

Main memory

Vector
registers

Scalar
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load-store
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with a bandwidth of 1 word per clock cycle, after an initial latency. This unit
would also normally handle scalar loads and stores. 

 

�

 

A set of scalar registers

 

—Scalar registers can also provide data as input to the
vector functional units, as well as compute addresses to pass to the vector
load-store unit. These are the normal 32 general-purpose registers and 32
floating-point registers of MIPS. Scalar values are read out of the scalar regis-
ter file, then latched at one input of the vector functional units. 

Figure G.2 shows the characteristics of some typical vector processors,
including the size and count of the registers, the number and types of functional
units, and the number of load-store units. The last column in Figure G.2 shows
the number of 

 

lanes

 

 in the machine, which is the number of parallel pipelines
used to execute operations within each vector instruction. Lanes are described
later in Section G.4; here we assume VMIPS has only a single pipeline per vector
functional unit (one lane).

In VMIPS, vector operations use the same names as MIPS operations, but
with the letter “V” appended. Thus, 

 

ADDV.D

 

 is an add of two double-precision
vectors. The vector instructions take as their input either a pair of vector registers
(

 

ADDV.D

 

) or a vector register and a scalar register, designated by appending “VS”
(

 

ADDVS.D

 

). In the latter case, the value in the scalar register is used as the input
for all operations—the operation 

 

ADDVS.D

 

 will add the contents of a scalar regis-
ter to each element in a vector register. The scalar value is copied over to the vec-
tor functional unit at issue time. Most vector operations have a vector destination
register, although a few (population count) produce a scalar value, which is stored
to a scalar register. The names 

 

LV

 

 and 

 

SV

 

 denote vector load and vector store, and
they load or store an entire vector of double-precision data. One operand is
the vector register to be loaded or stored; the other operand, which is a MIPS
general-purpose register, is the starting address of the vector in memory.
Figure G.3 lists the VMIPS vector instructions. In addition to the vector registers,
we need two additional special-purpose registers: the vector-length and vector-
mask registers. We will discuss these registers and their purpose in Sections G.3
and G.4, respectively.

 

How Vector Processors Work: An Example

 

A vector processor is best understood by looking at a vector loop on VMIPS.
Let’s take a typical vector problem, which will be used throughout this appendix:

 

Y = a

 

 ×

 

 X + Y

 

X and Y are vectors, initially resident in memory, and a is a scalar. This is the so-
called 

 

SAXPY

 

 or

 

 DAXPY

 

 loop that forms the inner loop of the Linpack bench-
mark. (SAXPY stands for single-precision a 

 

×

 

 X plus Y; DAXPY for double-
precision a 

 

×

 

 X plus Y.) Linpack is a collection of linear algebra routines, and the
routines for performing Gaussian elimination constitute what is known as the
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Processor (year)

Clock
rate

(MHz)
Vector

registers 

Elements per
register
(64-bit

elements) Vector arithmetic units

Vector
load-store

units Lanes

 

Cray-1 (1976) 80 8 64 6: FP add, FP multiply, FP reciprocal, 
integer add, logical, shift

1 1

Cray X-MP 
(1983) 
Cray Y-MP (1988)

118

166
8 64

8: FP add, FP multiply, FP reciprocal, 
integer add, 2 logical, shift, population 
count/parity

2 loads
1 store

1

Cray-2 (1985) 244 8 64 5: FP add, FP multiply, FP reciprocal/
sqrt, integer add/shift/population 
count, logical

1 1

Fujitsu VP100/
VP200 (1982)

133 8–256 32–1024 3: FP or integer add/logical, multiply, 
divide

2 1 (VP100)
2 (VP200)

Hitachi S810/
S820 (1983)

71 32 256 4: FP multiply-add, FP multiply/
divide-add unit, 2 integer add/logical

3 loads
1 store

1 (S810)
2 (S820)

Convex C-1 
(1985)

10 8 128 2: FP or integer multiply/divide, add/
logical

1 1 (64 bit)
2 (32 bit)

NEC SX/2 (1985) 167 8 + 32 256 4: FP multiply/divide, FP add, integer 
add/logical, shift

1 4

Cray C90 (1991)

Cray T90 (1995)

240

460
8 128

8: FP add, FP multiply, FP reciprocal, 
integer add, 2 logical, shift, population 
count/parity

2 loads
1 store

2

NEC SX/5 (1998) 312 8 + 64 512 4: FP or integer add/shift, multiply, 
divide, logical

1 16

Fujitsu VPP5000
(1999)

300 8–256 128–4096 3: FP or integer multiply, add/logical, 
divide

1 load
1 store

16

Cray SV1 (1998)

SV1ex (2001)

300

500
8 64

8: FP add, FP multiply, FP reciprocal, 
integer add, 2 logical, shift, population 
count/parity

1 load-store
1 load

2
8 (MSP)

VMIPS (2001) 500 8 64 5: FP multiply, FP divide, FP add, 
integer add/shift, logical

1 load-store 1

 

Figure G.2

 

Characteristics of several vector-register architectures. 

 

If the machine is a multiprocessor, the entries
correspond to the characteristics of one processor. Several of the machines have different clock rates in the vector
and scalar units; the clock rates shown are for the vector units. The Fujitsu machines’ vector registers are config-
urable: The size and count of the 8K 64-bit entries may be varied inversely to one another (e.g., on the VP200, from
eight registers each 1K elements long to 256 registers each 32 elements long). The NEC machines have eight fore-
ground vector registers connected to the arithmetic units plus 32–64 background vector registers connected
between the memory system and the foreground vector registers. The reciprocal unit on the Cray processors is used
to do division (and square root on the Cray-2). Add pipelines perform add and subtract. The multiply/divide-add unit
on the Hitachi S810/820 performs an FP multiply or divide followed by an add or subtract (while the multiply-add
unit performs a multiply followed by an add or subtract). Note that most processors use the vector FP multiply and
divide units for vector integer multiply and divide, and several of the processors use the same units for FP scalar and
FP vector operations. Each vector load-store unit represents the ability to do an independent, overlapped transfer to
or from the vector registers. The number of lanes is the number of parallel pipelines in each of the functional units as
described in Section G.4. For example, the NEC SX/5 can complete 16 multiplies per cycle in the multiply functional
unit. The Convex C-1 can split its single 64-bit lane into two 32-bit lanes to increase performance for applications that
require only reduced precision. The Cray SV1 can group four CPUs with two lanes each to act in unison as a single
larger CPU with eight lanes, which Cray calls a Multi-Streaming Processor (MSP).
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Linpack benchmark. The DAXPY routine, which implements the preceding loop,
represents a small fraction of the source code of the Linpack benchmark, but it
accounts for most of the execution time for the benchmark.

For now, let us assume that the number of elements, or length, of a vector reg-
ister (64) matches the length of the vector operation we are interested in. (This
restriction will be lifted shortly.)

 

Instruction Operands Function

 

ADDV.D
ADDVS.D

V1,V2,V3
V1,V2,F0

 

Add elements of 

 

V2

 

 and 

 

V3

 

, then put each result in 

 

V1

 

.
Add 

 

F0

 

 to each element of 

 

V2

 

, then put each result in 

 

V1

 

.

 

SUBV.D
SUBVS.D
SUBSV.D

V1,V2,V3
V1,V2,F0
V1,F0,V2

 

Subtract elements of 

 

V3

 

 from 

 

V2

 

, then put each result in 

 

V1

 

.
Subtract 

 

F0

 

 from elements of 

 

V2

 

, then put each result in 

 

V1

 

.
Subtract elements of 

 

V2

 

 from 

 

F0

 

, then put each result in 

 

V1

 

.

 

MULV.D
MULVS.D

V1,V2,V3
V1,V2,F0

 

Multiply elements of 

 

V2

 

 and 

 

V3

 

, then put each result in 

 

V1

 

.
Multiply each element of 

 

V2 

 

by 

 

F0

 

, then put each result in 

 

V1

 

.

 

DIVV.D
DIVVS.D
DIVSV.D

V1,V2,V3
V1,V2,F0
V1,F0,V2

 

Divide elements of 

 

V2

 

 by 

 

V3

 

, then put each result in 

 

V1

 

.
Divide elements of 

 

V2

 

 by 

 

F0

 

, then put each result in 

 

V1

 

.
Divide 

 

F0

 

 by elements of 

 

V2

 

, then put each result in 

 

V1

 

.

 

LV V1,R1

 

Load vector register 

 

V1

 

 from memory starting at address 

 

R1

 

.

 

SV R1,V1

 

Store vector register 

 

V1 into memory starting at address R1.

LVWS V1,(R1,R2) Load V1 from address at R1 with stride in R2, i.e., R1+i × R2.

SVWS (R1,R2),V1 Store V1 from address at R1 with stride in R2, i.e., R1+i × R2.

LVI V1,(R1+V2) Load V1 with vector whose elements are at R1+V2(i), i.e., V2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1+V2(i), i.e., V2 is an index.

CVI V1,R1 Create an index vector by storing the values 0, 1 × R1, 2 × R1,...,63 × R1 into V1.

S--V.D
S--VS.D

V1,V2
V1,F0

Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put
a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in the vector-mask register and store count in R1.

CVM Set the vector-mask register to all 1s.

MTC1
MFC1

VLR,R1
R1,VLR

Move contents of R1 to the vector-length register.
Move the contents of the vector-length register to R1.

MVTM
MVFM

VM,F0
F0,VM

Move contents of F0 to the vector-mask register.
Move contents of vector-mask register to F0.

Figure G.3 The VMIPS vector instructions. Only the double-precision FP operations are shown. In addition to the
vector registers, there are two special registers, VLR (discussed in Section G.3) and VM (discussed in Section G.4).
These special registers are assumed to live in the MIPS coprocessor 1 space along with the FPU registers. The opera-
tions with stride are explained in Section G.3, and the use of the index creation and indexed load-store operations
are explained in Section G.4.
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Example Show the code for MIPS and VMIPS for the DAXPY loop. Assume that the start-
ing addresses of X and Y are in Rx and Ry, respectively.

Answer Here is the MIPS code. 

 L.D F0,a ;load scalar a
 DADDIU R4,Rx,#512 ;last address to load 

Loop:  L.D F2,0(Rx)   ;load X(i)
 MUL.D F2,F2,F0 ;a × X(i)
 L.D F4,0(Ry) ;load Y(i)
 ADD.D F4,F4,F2 ;a × X(i) + Y(i)
 S.D 0(Ry),F4 ;store into Y(i)
 DADDIU Rx,Rx,#8 ;increment index to X
 DADDIU Ry,Ry,#8 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

Here is the VMIPS code for DAXPY. 

 L.D F0,a ;load scalar a
 LV V1,Rx ;load vector X
 MULVS.D V2,V1,F0 ;vector-scalar multiply
 LV V3,Ry ;load vector Y
 ADDV.D V4,V2,V3 ;add
 SV Ry,V4 ;store the result

There are some interesting comparisons between the two code segments in this
example. The most dramatic is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only six instructions versus almost 600
for MIPS. This reduction occurs both because the vector operations work on 64
elements and because the overhead instructions that constitute nearly half the
loop on MIPS are not present in the VMIPS code. 

Another important difference is the frequency of pipeline interlocks. In the
straightforward MIPS code every ADD.D must wait for a MUL.D, and every S.D
must wait for the ADD.D. On the vector processor, each vector instruction will
only stall for the first element in each vector, and then subsequent elements will
flow smoothly down the pipeline. Thus, pipeline stalls are required only once per
vector operation, rather than once per vector element. In this example, the
pipeline stall frequency on MIPS will be about 64 times higher than it is on
VMIPS. The pipeline stalls can be eliminated on MIPS by using software pipelin-
ing or loop unrolling (as we saw in Chapter 4). However, the large difference in
instruction bandwidth cannot be reduced.
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Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: the length of the operand vectors, structural hazards among the opera-
tions, and the data dependences. Given the vector length and the initiation rate,
which is the rate at which a vector unit consumes new operands and produces
new results, we can compute the time for a single vector instruction. All modern
supercomputers have vector functional units with multiple parallel pipelines (or
lanes) that can produce two or more results per clock cycle, but may also have
some functional units that are not fully pipelined. For simplicity, our VMIPS
implementation has one lane with an initiation rate of one element per clock
cycle for individual operations. Thus, the execution time for a single vector
instruction is approximately the vector length. 

To simplify the discussion of vector execution and its timing, we will use the
notion of a convoy, which is the set of vector instructions that could potentially
begin execution together in one clock period. (Although the concept of a convoy
is used in vector compilers, no standard terminology exists. Hence, we created
the term convoy.) The instructions in a convoy must not contain any structural or
data hazards (though we will relax this later); if such hazards were present, the
instructions in the potential convoy would need to be serialized and initiated in
different convoys. Placing vector instructions into a convoy is analogous to plac-
ing scalar operations into a VLIW instruction. To keep the analysis simple, we
assume that a convoy of instructions must complete execution before any other
instructions (scalar or vector) can begin execution. We will relax this in Section
G.4 by using a less restrictive, but more complex, method for issuing instructions.

Accompanying the notion of a convoy is a timing metric, called a chime, that
can be used for estimating the performance of a vector sequence consisting of
convoys. A chime is the unit of time taken to execute one convoy. A chime is an
approximate measure of execution time for a vector sequence; a chime measure-
ment is independent of vector length. Thus, a vector sequence that consists of m
convoys executes in m chimes, and for a vector length of n, this is approximately
m × n clock cycles. A chime approximation ignores some processor-specific over-
heads, many of which are dependent on vector length. Hence, measuring time in
chimes is a better approximation for long vectors. We will use the chime mea-
surement, rather than clock cycles per result, to explicitly indicate that certain
overheads are being ignored. 

If we know the number of convoys in a vector sequence, we know the execu-
tion time in chimes. One source of overhead ignored in measuring chimes is any
limitation on initiating multiple vector instructions in a clock cycle. If only one
vector instruction can be initiated in a clock cycle (the reality in most vector
processors), the chime count will underestimate the actual execution time of a
convoy. Because the vector length is typically much greater than the number of
instructions in the convoy, we will simply assume that the convoy executes in one
chime. 
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Example Show how the following code sequence lays out in convoys, assuming a single
copy of each vector functional unit:

LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
SV Ry,V4 ;store the result

How many chimes will this vector sequence take? How many cycles per FLOP
(floating-point operation) are needed ignoring vector instruction issue overhead?

Answer The first convoy is occupied by the first LV instruction. The MULVS.D is dependent
on the first LV, so it cannot be in the same convoy. The second LV instruction can
be in the same convoy as the MULVS.D. The ADDV.D is dependent on the second
LV, so it must come in yet a third convoy, and finally the SV depends on the
ADDV.D, so it must go in a following convoy. This leads to the following layout of
vector instructions into convoys:

1. LV

2. MULVS.D LV

3. ADDV.D

4. SV

The sequence requires four convoys and hence takes four chimes. Since the
sequence takes a total of four chimes and there are two floating-point operations
per result, the number of cycles per FLOP is 2 (ignoring any vector instruction
issue overhead). Note that although we allow the MULVS.D and the LV both to exe-
cute in convoy 2, most vector machines will take 2 clock cycles to initiate the
instructions. 

The chime approximation is reasonably accurate for long vectors. For exam-
ple, for 64-element vectors, the time in chimes is four, so the sequence would
take about 256 clock cycles. The overhead of issuing convoy 2 in two separate
clocks would be small.

Another source of overhead is far more significant than the issue limitation.
The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a con-
voy to more than one chime. Because of our assumption that convoys do not
overlap in time, the start-up time delays the execution of subsequent convoys. Of
course the instructions in successive convoys have either structural conflicts for
some functional unit or are data dependent, so the assumption of no overlap is
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reasonable. The actual time to complete a convoy is determined by the sum of the
vector length and the start-up time. If vector lengths were infinite, this start-up
overhead would be amortized, but finite vector lengths expose it, as the following
example shows.

Example Assume the start-up overhead for functional units is shown in Figure G.4.

Show the time that each convoy can begin and the total number of cycles needed.
How does the time compare to the chime approximation for a vector of length
64?

Answer Figure G.5 provides the answer in convoys, assuming that the vector length is n.
One tricky question is when we assume the vector sequence is done; this deter-
mines whether the start-up time of the SV is visible or not. We assume that the
instructions following cannot fit in the same convoy, and we have already
assumed that convoys do not overlap. Thus the total time is given by the time
until the last vector instruction in the last convoy completes. This is an approxi-
mation, and the start-up time of the last vector instruction may be seen in some
sequences and not in others. For simplicity, we always include it. 

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock
cycles, while the chime approximation would be 4. The execution time with start-
up overhead is 1.16 times higher. 

Unit Start-up overhead (cycles)

Load and store unit 12

Multiply unit 7

Add unit 6

Figure G.4 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11 + n

2. MULVS.D LV 12 + n 12 + n + 12 23 + 2n

3. ADDV.D 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

Figure G.5 Starting times and first- and last-result times for convoys 1 through 4.
The vector length is n.
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For simplicity, we will use the chime approximation for running time, incor-
porating start-up time effects only when we want more detailed performance or to
illustrate the benefits of some enhancement. For long vectors, a typical situation,
the overhead effect is not that large. Later in the appendix we will explore ways
to reduce start-up overhead. 

Start-up time for an instruction comes from the pipeline depth for the func-
tional unit implementing that instruction. If the initiation rate is to be kept at 1
clock cycle per result, then

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—from 2 to 20 stages is
not uncommon—although the most heavily used units have pipeline depths of 4–
8 clock cycles.

For VMIPS, we will use the same pipeline depths as the Cray-1, although
latencies in more modern processors have tended to increase, especially for loads.
All functional units are fully pipelined. As shown in Figure G.6, pipeline depths
are 6 clock cycles for floating-point add and 7 clock cycles for floating-point mul-
tiply. On VMIPS, as on most vector processors, independent vector operations
using different functional units can issue in the same convoy.

Vector Load-Store Units and Vector Memory Systems

The behavior of the load-store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which
new words are fetched or stored. Unlike simpler functional units, the initiation
rate may not necessarily be 1 clock cycle because memory bank stalls can reduce
effective throughput.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

Figure G.6 Start-up penalties on VMIPS. These are the start-up penalties in clock
cycles for VMIPS vector operations. 

Pipeline depth Total functional unit time
Clock cycle time

-------------------------------------------------------------=
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Typically, penalties for start-ups on load-store units are higher than those for
arithmetic functional units—over 100 clock cycles on some processors. For
VMIPS we will assume a start-up time of 12 clock cycles, the same as the Cray-
1. Figure G.6 summarizes the start-up penalties for VMIPS vector operations.

To maintain an initiation rate of 1 word fetched or stored per clock, the mem-
ory system must be capable of producing or accepting this much data. This is
usually done by creating multiple memory banks, as discussed in Section 5.8. As
we will see in the next section, having significant numbers of banks is useful for
dealing with vector loads or stores that access rows or columns of data. 

Most vector processors use memory banks rather than simple interleaving for
three primary reasons:

1. Many vector computers support multiple loads or stores per clock, and the
memory bank cycle time is often several times larger than the CPU cycle
time. To support multiple simultaneous accesses, the memory system needs to
have multiple banks and be able to control the addresses to the banks inde-
pendently.

2. As we will see in the next section, many vector processors support the ability
to load or store data words that are not sequential. In such cases, independent
bank addressing, rather than interleaving, is required. 

3. Many vector computers support multiple processors sharing the same mem-
ory system, and so each processor will be generating its own independent
stream of addresses.

In combination, these features lead to a large number of independent memory
banks, as shown by the following example.

Example The Cray T90 has a CPU clock cycle of 2.167 ns and in its largest configuration
(Cray T932) has 32 processors each capable of generating four loads and two
stores per CPU clock cycle. The CPU clock cycle is 2.167 ns, while the cycle
time of the SRAMs used in the memory system is 15 ns. Calculate the minimum
number of memory banks required to allow all CPUs to run at full memory band-
width.

Answer The maximum number of memory references each cycle is 192 (32 CPUs times 6
references per CPU). Each SRAM bank is busy for 15/2.167 = 6.92 clock cycles,
which we round up to 7 CPU clock cycles. Therefore we require a minimum of
192 × 7 = 1344 memory banks! 

The Cray T932 actually has 1024 memory banks, and so the early models
could not sustain full bandwidth to all CPUs simultaneously. A subsequent mem-
ory upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchro-
nous SRAMs that more than halved the memory cycle time, thereby providing
sufficient bandwidth.
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In Chapter 5 we saw that the desired access rate and the bank access time
determined how many banks were needed to access a memory without a stall.
The next example shows how these timings work out in a vector processor.

Example Suppose we want to fetch a vector of 64 elements starting at byte address 136,
and a memory access takes 6 clocks. How many memory banks must we have to
support one fetch per clock cycle? With what addresses are the banks accessed?
When will the various elements arrive at the CPU?

Answer Six clocks per access require at least six banks, but because we want the number
of banks to be a power of two, we choose to have eight banks. Figure G.7 shows
the timing for the first few sets of accesses for an eight-bank system with a 6-
clock-cycle access latency.

Bank

Cycle no. 0 1 2 3 4 5 6 7

0 136

1 busy 144

2 busy busy 152

3 busy busy busy 160

4 busy busy busy busy 168

5 busy busy busy busy busy 176

6 busy busy busy busy busy 184

7 192 busy busy busy busy busy

8 busy 200 busy busy busy busy

9 busy busy 208 busy busy busy

10 busy busy busy 216 busy busy

11 busy busy busy busy 224 busy

12 busy busy busy busy busy 232

13 busy busy busy busy busy 240

14 busy busy busy busy busy 248

15 256 busy busy busy busy busy

16 busy 264 busy busy busy busy

Figure G.7 Memory addresses (in bytes) by bank number and time slot at which
access begins. Each memory bank latches the element address at the start of an access
and is then busy for 6 clock cycles before returning a value to the CPU. Note that the
CPU cannot keep all eight banks busy all the time because it is limited to supplying one
new address and receiving one data item each cycle.
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The timing of real memory banks is usually split into two different compo-
nents, the access latency and the bank cycle time (or bank busy time). The access
latency is the time from when the address arrives at the bank until the bank
returns a data value, while the busy time is the time the bank is occupied with one
request. The access latency adds to the start-up cost of fetching a vector from
memory (the total memory latency also includes time to traverse the pipelined
interconnection networks that transfer addresses and data between the CPU and
memory banks). The bank busy time governs the effective bandwidth of a mem-
ory system because a processor cannot issue a second request to the same bank
until the bank busy time has elapsed.

For simple unpipelined SRAM banks as used in the previous examples, the
access latency and busy time are approximately the same. For a pipelined SRAM
bank, however, the access latency is larger than the busy time because each ele-
ment access only occupies one stage in the memory bank pipeline. For a DRAM
bank, the access latency is usually shorter than the busy time because a DRAM
needs extra time to restore the read value after the destructive read operation. For
memory systems that support multiple simultaneous vector accesses or allow
nonsequential accesses in vector loads or stores, the number of memory banks
should be larger than the minimum; otherwise, memory bank conflicts will exist.
We explore this in more detail in the next section.

This section deals with two issues that arise in real programs: What do you do
when the vector length in a program is not exactly 64? How do you deal with
nonadjacent elements in vectors that reside in memory? First, let’s consider the
issue of vector length.

Vector-Length Control

A vector-register processor has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for VMIPS, is
unlikely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example,
consider this code:

 do 10 i = 1,n
10     Y(i) = a ∗ X(i) + Y(i)

The size of all the vector operations depends on n, which may not even be known
until run time! The value of n might also be a parameter to a procedure containing
the above loop and therefore be subject to change during execution.

G.3 Two Real-World Issues: Vector Length and Stride
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The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be greater than the length of the
vector registers. This solves our problem as long as the real length is less than or
equal to the maximum vector length (MVL) defined by the processor. 

What if the value of n is not known at compile time, and thus may be greater
than MVL? To tackle the second problem where the vector is longer than the
maximum length, a technique called strip mining is used. Strip mining is the gen-
eration of code such that each vector operation is done for a size less than or
equal to the MVL. We could strip-mine the loop in the same manner that we
unrolled loops in Chapter 4: create one loop that handles any number of iterations
that is a multiple of MVL and another loop that handles any remaining iterations,
which must be less than MVL. In practice, compilers usually create a single strip-
mined loop that is parameterized to handle both portions by changing the length.
The strip-mined version of the DAXPY loop written in FORTRAN, the major
language used for scientific applications, is shown with C-style comments:

low = 1
VL = (n mod MVL) /*find the odd-size piece*/
do 1 j = 0,(n / MVL) /*outer loop*/
     do 10 i = low, low + VL - 1 /*runs for length VL*/
         Y(i) = a * X(i) + Y(i) /*main operation*/

10      continue
     low = low + VL /*start of next vector*/
     VL = MVL /*reset the length to max*/

1 continue

The term n/MVL represents truncating integer division (which is what FOR-
TRAN does) and is used throughout this section. The effect of this loop is to
block the vector into segments that are then processed by the inner loop. The
length of the first segment is (n mod MVL), and all subsequent segments are of
length MVL. This is depicted in Figure G.8. 

Figure G.8 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector processor. In this figure,
the variable m is used for the expression (n mod MVL).
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The inner loop of the preceding code is vectorizable with length VL, which is
equal to either (n mod MVL) or MVL. The VLR register must be set twice—once
at each place where the variable VL in the code is assigned. With multiple vector
operations executing in parallel, the hardware must copy the value of VLR to the
vector functional unit when a vector operation issues, in case VLR is changed for
a subsequent vector operation.

Several vector ISAs have been developed that allow implementations to have
different maximum vector-register lengths. For example, the IBM vector exten-
sion for the IBM 370 series mainframes supports an MVL of anywhere between
8 and 512 elements. A “load vector count and update” (VLVCU) instruction is
provided to control strip-mined loops. The VLVCU instruction has a single sca-
lar register operand that specifies the desired vector length. The vector-length
register is set to the minimum of the desired length and the maximum available
vector length, and this value is also subtracted from the scalar register, setting
the condition codes to indicate if the loop should be terminated. In this way,
object code can be moved unchanged between two different implementations
while making full use of the available vector-register length within each strip-
mined loop iteration.

In addition to the start-up overhead, we need to account for the overhead of
executing the strip-mined loop. This strip-mining overhead, which arises from the
need to reinitiate the vector sequence and set the VLR, effectively adds to the
vector start-up time, assuming that a convoy does not overlap with other instruc-
tions. If that overhead for a convoy is 10 cycles, then the effective overhead per
64 elements increases by 10 cycles, or 0.15 cycles per element. 

There are two key factors that contribute to the running time of a strip-mined
loop consisting of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chimes.
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead con-
sists of the cost of executing the scalar code for strip-mining each block,
Tloop, plus the vector start-up cost for each convoy, Tstart. 

There may also be a fixed overhead associated with setting up the vector
sequence the first time. In recent vector processors this overhead has become
quite small, so we ignore it.

The components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The
register allocation and scheduling of the instructions affect both what goes in a
convoy and the start-up overhead of each convoy.

Tn
n

MVL
------------- Tloop Tstart+( )× n T× chime+=
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For simplicity, we will use a constant value for Tloop on VMIPS. Based on a
variety of measurements of Cray-1 vector execution, the value chosen is 15 for
Tloop. At first glance, you might think that this value is too small. The overhead in
each loop requires setting up the vector starting addresses and the strides, incre-
menting counters, and executing a loop branch. In practice, these scalar instruc-
tions can be totally or partially overlapped with the vector instructions,
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compared with
the connection between the vector code and the values of Tchime and Tstart.

Example What is the execution time on VMIPS for the vector operation A = B × s, where s
is a scalar and the length of the vectors A and B is 200?

Answer Assume the addresses of A and B are initially in Ra and Rb, s is in Fs, and recall
that for MIPS (and VMIPS) R0 always holds 0. Since (200 mod 64) = 8, the first
iteration of the strip-mined loop will execute for a vector length of 8 elements,
and the following iterations will execute for a vector length of 64 elements. The
starting byte addresses of the next segment of each vector is eight times the vec-
tor length. Since the vector length is either 8 or 64, we increment the address reg-
isters by 8 × 8 = 64 after the first segment and 8 × 64 = 512 for later segments.
The total number of bytes in the vector is 8 × 200 = 1600, and we test for comple-
tion by comparing the address of the next vector segment to the initial address
plus 1600. Here is the actual code:

DADDUI R2,R0,#1600 ;total # bytes in vector
DADDU R2,R2,Ra    ;address of the end of A vector
DADDUI R1,R0,#8    ;loads length of 1st segment
MTC1 VLR,R1      ;load vector length in VLR
DADDUI R1,R0,#64   ;length in bytes of 1st segment
DADDUI R3,R0,#64 ;vector length of other segments

Loop: LV V1,Rb       ;load B
MULVS.D V2,V1,Fs ;vector * scalar
SV Ra,V2       ;store A
DADDU Ra,Ra,R1    ;address of next segment of A
DADDU Rb,Rb,R1    ;address of next segment of B
DADDUI R1,R0,#512  ;load byte offset next segment
MTC1 VLR,R3      ;set length to 64 elements
DSUBU R4,R2,Ra ;at the end of A?
BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into three
convoys, hence Tchime = 3. Let’s use our basic formula:

Tn
n

MVL
-------------- Tloop Tstart+( )× n Tchime×+=

T200 4 15 Tstart+( ) 200 3×+×=

T200 60 4 Tstart×( ) 600+ + 660 4 Tstart×( )+= =
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The value of Tstart is the sum of 

� The vector load start-up of 12 clock cycles

� A 7-clock-cycle start-up for the multiply

� A 12-clock-cycle start-up for the store

Thus, the value of Tstart is given by

Tstart = 12 + 7 + 12 = 31

So, the overall value becomes

T200 = 660 + 4 × 31= 784

The execution time per element with all start-up costs is then 784/200 = 3.9,
compared with a chime approximation of three. In Section G.4, we will be more
ambitious—allowing overlapping of separate convoys.

Figure G.9 shows the overhead and effective rates per element for the previ-
ous example (A = B × s) with various vector lengths. A chime counting model
would lead to 3 clock cycles per element, while the two sources of overhead add
0.9 clock cycles per element in the limit. 

The next few sections introduce enhancements that reduce this time. We will
see how to reduce the number of convoys and hence the number of chimes using
a technique called chaining. The loop overhead can be reduced by further over-
lapping the execution of vector and scalar instructions, allowing the scalar loop
overhead in one iteration to be executed while the vector instructions in the previ-
ous instruction are completing. Finally, the vector start-up overhead can also be
eliminated, using a technique that allows overlap of vector instructions in sepa-
rate convoys. 

Vector Stride

The second problem this section addresses is that the position in memory of adja-
cent elements in a vector may not be sequential. Consider the straightforward
code for matrix multiply:

do 10 i = 1,100
       do 10 j = 1,100
              A(i,j) = 0.0
              do 10 k = 1,100

10               A(i,j) = A(i,j)+B(i,k)*C(k,j)

At the statement labeled 10 we could vectorize the multiplication of each row of B
with each column of C and strip-mine the inner loop with k as the index variable. 
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To do so, we must consider how adjacent elements in B and adjacent elements
in C are addressed. As we discussed in Section 5.5, when an array is allocated
memory, it is linearized and must be laid out in either row-major or column-
major order. This linearization means that either the elements in the row or the
elements in the column are not adjacent in memory. For example, if the preceding
loop were written in FORTRAN, which allocates column-major order, the ele-
ments of B that are accessed by iterations in the inner loop are separated by the
row size times 8 (the number of bytes per entry) for a total of 800 bytes. In Chap-
ter 5, we saw that blocking could be used to improve the locality in cache-based
systems. For vector processors without caches, we need another technique to
fetch elements of a vector that are not adjacent in memory. 

This distance separating elements that are to be gathered into a single register
is called the stride. In the current example, using column-major layout for the
matrices means that matrix C has a stride of 1, or 1 double word (8 bytes), sepa-
rating successive elements, and matrix B has a stride of 100, or 100 double words
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically adja-
cent elements. Thus a vector-register processor can handle strides greater than
one, called nonunit strides, using only vector-load and vector-store operations
with stride capability. This ability to access nonsequential memory locations and

Figure G.9 The total execution time per element and the total overhead time per
element versus the vector length for the example on page G-19. For short vectors the
total start-up time is more than one-half of the total time, while for long vectors it
reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase Tn by Tloop + Tstart.
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to reshape them into a dense structure is one of the major advantages of a vector
processor over a cache-based processor. Caches inherently deal with unit stride
data, so that while increasing block size can help reduce miss rates for large sci-
entific data sets with unit stride, increasing block size can have a negative effect
for data that is accessed with nonunit stride. While blocking techniques can
solve some of these problems (see Section 5.5), the ability to efficiently access
data that is not contiguous remains an advantage for vector processors on certain
problems. 

On VMIPS, where the addressable unit is a byte, the stride for our example
would be 800. The value must be computed dynamically, since the size of the
matrix may not be known at compile time, or—just like vector length—may
change for different executions of the same statement. The vector stride, like the
vector starting address, can be put in a general-purpose register. Then the VMIPS
instruction LVWS (load vector with stride) can be used to fetch the vector into a
vector register. Likewise, when a nonunit stride vector is being stored, SVWS
(store vector with stride) can be used. In some vector processors the loads and
stores always have a stride value stored in a register, so that only a single load and
a single store instruction are required. Unit strides occur much more frequently
than other strides and can benefit from special case handling in the memory sys-
tem, and so are often separated from nonunit stride operations as in VMIPS.

Complications in the memory system can occur from supporting strides
greater than one. In Chapter 5 we saw that memory accesses could proceed at full
speed if the number of memory banks was at least as large as the bank busy time
in clock cycles. Once nonunit strides are introduced, however, it becomes pos-
sible to request accesses from the same bank more frequently than the bank busy
time allows. When multiple accesses contend for a bank, a memory bank conflict
occurs and one access must be stalled. A bank conflict, and hence a stall, will
occur if

Example Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 1? With a stride of 32?

Answer Since the number of banks is larger than the bank busy time, for a stride of 1, the
load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element. The worst
possible stride is a value that is a multiple of the number of memory banks, as in
this case with a stride of 32 and 8 memory banks. Every access to memory (after
the first one) will collide with the previous access and will have to wait for the 6-
clock-cycle bank busy time. The total time will be 12 + 1 + 6 * 63 = 391 clock
cycles, or 6.1 clocks per element.

Number of banks
Least common multiple (Stride, Number of banks)
------------------------------------------------------------------------------------------------------------------------- Bank busy time<
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Memory bank conflicts will not occur within a single vector memory instruc-
tion if the stride and number of banks are relatively prime with respect to each
other and there are enough banks to avoid conflicts in the unit stride case. When
there are no bank conflicts, multiword and unit strides run at the same rates.
Increasing the number of memory banks to a number greater than the minimum
to prevent stalls with a stride of length 1 will decrease the stall frequency for
some other strides. For example, with 64 banks, a stride of 32 will stall on every
other access, rather than every access. If we originally had a stride of 8 and 16
banks, every other access would stall; with 64 banks, a stride of 8 will stall on
every eighth access. If we have multiple memory pipelines and/or multiple pro-
cessors sharing the same memory system, we will also need more banks to pre-
vent conflicts. Even machines with a single memory pipeline can experience
memory bank conflicts on unit stride accesses between the last few elements of
one instruction and the first few elements of the next instruction, and increasing
the number of banks will reduce the probability of these interinstruction conflicts.
In 2001, most vector supercomputers have at least 64 banks, and some have as
many as 1024 in the maximum memory configuration. Because bank conflicts
can still occur in nonunit stride cases, programmers favor unit stride accesses
whenever possible. 

A modern supercomputer may have dozens of CPUs, each with multiple
memory pipelines connected to thousands of memory banks. It would be imprac-
tical to provide a dedicated path between each memory pipeline and each mem-
ory bank, and so typically a multistage switching network is used to connect
memory pipelines to memory banks. Congestion can arise in this switching net-
work as different vector accesses contend for the same circuit paths, causing
additional stalls in the memory system.

In this section we present five techniques for improving the performance of a vec-
tor processor. The first, chaining, deals with making a sequence of dependent
vector operations run faster, and originated in the Cray-1 but is now supported on
most vector processors. The next two deal with expanding the class of loops that
can be run in vector mode by combating the effects of conditional execution and
sparse matrices with new types of vector instruction. The fourth technique
increases the peak performance of a vector machine by adding more parallel exe-
cution units in the form of additional lanes. The fifth technique reduces start-up
overhead by pipelining and overlapping instruction start-up.

Chaining—the Concept of Forwarding Extended 
to Vector Registers

Consider the simple vector sequence

G.4 Enhancing Vector Performance
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MULV.D  V1,V2,V3
ADDV.D  V4,V1,V5

In VMIPS, as it currently stands, these two instructions must be put into two sep-
arate convoys, since the instructions are dependent. On the other hand, if the vec-
tor register, V1 in this case, is treated not as a single entity but as a group of
individual registers, then the ideas of forwarding can be conceptually extended to
work on individual elements of a vector. This insight, which will allow the
ADDV.D to start earlier in this example, is called chaining. Chaining allows a vec-
tor operation to start as soon as the individual elements of its vector source oper-
and become available: The results from the first functional unit in the chain are
“forwarded” to the second functional unit. In practice, chaining is often imple-
mented by allowing the processor to read and write a particular register at the
same time, albeit to different elements. Early implementations of chaining
worked like forwarding, but this restricted the timing of the source and destina-
tion instructions in the chain. Recent implementations use flexible chaining,
which allows a vector instruction to chain to essentially any other active vector
instruction, assuming that no structural hazard is generated. Flexible chaining
requires simultaneous access to the same vector register by different vector
instructions, which can be implemented either by adding more read and write
ports or by organizing the vector-register file storage into interleaved banks in a
similar way to the memory system. We assume this type of chaining throughout
the rest of this appendix.

Even though a pair of operations depend on one another, chaining allows the
operations to proceed in parallel on separate elements of the vector. This permits
the operations to be scheduled in the same convoy and reduces the number of
chimes required. For the previous sequence, a sustained rate (ignoring start-up) of
two floating-point operations per clock cycle, or one chime, can be achieved,
even though the operations are dependent! The total running time for the above
sequence becomes

Vector length + Start-up timeADDV + Start-up timeMULV

Figure G.10 shows the timing of a chained and an unchained version of the above
pair of vector instructions with a vector length of 64. This convoy requires one
chime; however, because it uses chaining, the start-up overhead will be seen in
the actual timing of the convoy. In Figure G.10, the total time for chained opera-
tion is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operations
done in that time, 1.7 FLOPS per clock cycle are obtained. For the unchained ver-
sion, there are 141 clock cycles, or 0.9 FLOPS per clock cycle. 

Although chaining allows us to reduce the chime component of the execution
time by putting two dependent instructions in the same convoy, it does not
eliminate the start-up overhead. If we want an accurate running time estimate, we
must count the start-up time both within and across convoys. With chaining, the
number of chimes for a sequence is determined by the number of different vector
functional units available in the processor and the number required by the appli-
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cation. In particular, no convoy can contain a structural hazard. This means, for
example, that a sequence containing two vector memory instructions must take at
least two convoys, and hence two chimes, on a processor like VMIPS with only
one vector load-store unit. 

We will see in Section G.6 that chaining plays a major role in boosting vector
performance. In fact, chaining is so important that every modern vector processor
supports flexible chaining.

Conditionally Executed Statements

From Amdahl’s Law, we know that the speedup on programs with low to moder-
ate levels of vectorization will be very limited. Two reasons why higher levels of
vectorization are not achieved are the presence of conditionals (if statements)
inside loops and the use of sparse matrices. Programs that contain if statements in
loops cannot be run in vector mode using the techniques we have discussed so far
because the if statements introduce control dependences into a loop. Likewise,
sparse matrices cannot be efficiently implemented using any of the capabilities
we have seen so far. We discuss strategies for dealing with conditional execution
here, leaving the discussion of sparse matrices to the following subsection.

Consider the following loop:

do 100 i = 1, 64
       if (A(i).ne. 0) then
              A(i) = A(i) – B(i)
       endif

100 continue

This loop cannot normally be vectorized because of the conditional execution of
the body; however, if the inner loop could be run for the iterations for which
A(i) ≠ 0, then the subtraction could be vectorized. In Chapter 4, we saw that the
conditionally executed instructions could turn such control dependences into data
dependences, enhancing the ability to parallelize the loop. Vector processors can
benefit from an equivalent capability for vectors.

Figure G.10 Timings for a sequence of dependent vector operations ADDV and
MULV, both unchained and chained. The 6- and 7-clock-cycle delays are the latency of
the adder and multiplier.
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The extension that is commonly used for this capability is vector-mask
control. The vector-mask control uses a Boolean vector of length MVL to control
the execution of a vector instruction just as conditionally executed instructions
use a Boolean condition to determine whether an instruction is executed. When
the vector-mask register is enabled, any vector instructions executed operate only
on the vector elements whose corresponding entries in the vector-mask register
are 1. The entries in the destination vector register that correspond to a 0 in the
mask register are unaffected by the vector operation. If the vector-mask register is
set by the result of a condition, only elements satisfying the condition will be
affected. Clearing the vector-mask register sets it to all 1s, making subsequent
vector instructions operate on all vector elements. The following code can now be
used for the previous loop, assuming that the starting addresses of A and B are in
Ra and Rb, respectively:

LV  V1,Ra ;load vector A into V1
LV  V2,Rb ;load vector B
L.D  F0,#0 ;load FP zero into F0
SNEVS.D  V1,F0 ;sets VM(i) to 1 if V1(i)!=F0 
SUBV.D  V1,V1,V2 ;subtract under vector mask 
CVM ;set the vector mask to all 1s
SV  Ra,V1 ;store the result in A

Most recent vector processors provide vector-mask control. The vector-mask
capability described here is available on some processors, but others allow the
use of the vector mask with only a subset of the vector instructions. 

Using a vector-mask register does, however, have disadvantages. When we
examined conditionally executed instructions, we saw that such instructions still
require execution time when the condition is not satisfied. Nonetheless, the elim-
ination of a branch and the associated control dependences can make a condi-
tional instruction faster even if it sometimes does useless work. Similarly, vector
instructions executed with a vector mask still take execution time, even for the
elements where the mask is 0. Likewise, even with a significant number of 0s in
the mask, using vector-mask control may still be significantly faster than using
scalar mode. In fact, the large difference in potential performance between vector
and scalar mode makes the inclusion of vector-mask instructions critical. 

Second, in some vector processors the vector mask serves only to disable the
storing of the result into the destination register, and the actual operation still
occurs. Thus, if the operation in the previous example were a divide rather than a
subtract and the test was on B rather than A, false floating-point exceptions might
result since a division by 0 would occur. Processors that mask the operation as
well as the storing of the result avoid this problem. 

Sparse Matrices

There are techniques for allowing programs with sparse matrices to execute in
vector mode. In a sparse matrix, the elements of a vector are usually stored in
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some compacted form and then accessed indirectly. Assuming a simplified sparse
structure, we might see code that looks like this:

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them.) Another common representation
for sparse matrices uses a bit vector to say which elements exist and a dense vec-
tor for the nonzero elements. Often both representations exist in the same pro-
gram. Sparse matrices are found in many codes, and there are many ways to
implement them, depending on the data structure used in the program. 

A primary mechanism for supporting sparse matrices is scatter-gather opera-
tions using index vectors. The goal of such operations is to support moving
between a dense representation (i.e., zeros are not included) and normal represen-
tation (i.e., the zeros are included) of a sparse matrix. A gather operation takes an
index vector and fetches the vector whose elements are at the addresses given by
adding a base address to the offsets given in the index vector. The result is a non-
sparse vector in a vector register. After these elements are operated on in dense
form, the sparse vector can be stored in expanded form by a scatter store, using
the same index vector. Hardware support for such operations is called scatter-
gather and appears on nearly all modern vector processors. The instructions LVI
(load vector indexed) and SVI (store vector indexed) provide these operations in
VMIPS. For example, assuming that Ra, Rc, Rk, and Rm contain the starting
addresses of the vectors in the previous sequence, the inner loop of the sequence
can be coded with vector instructions such as

LV   Vk,Rk ;load K 
LVI Va,(Ra+Vk) ;load A(K(I))
LV  Vm,Rm ;load M
LVI Vc,(Rc+Vm) ;load C(M(I))
ADDV.D Va,Va,Vc ;add them
SVI (Ra+Vk),Va ;store A(K(I))

This technique allows code with sparse matrices to be run in vector mode. A
simple vectorizing compiler could not automatically vectorize the source code
above because the compiler would not know that the elements of K are distinct
values, and thus that no dependences exist. Instead, a programmer directive
would tell the compiler that it could run the loop in vector mode.

More sophisticated vectorizing compilers can vectorize the loop automatically
without programmer annotations by inserting run time checks for data depen-
dences. These run time checks are implemented with a vectorized software version
of the advanced load address table (ALAT) hardware described in Chapter 4 for
the Itanium processor. The associative ALAT hardware is replaced with a software
hash table that detects if two element accesses within the same strip-mine iteration
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are to the same address. If no dependences are detected, the strip-mine iteration
can complete using the maximum vector length. If a dependence is detected, the
vector length is reset to a smaller value that avoids all dependency violations, leav-
ing the remaining elements to be handled on the next iteration of the strip-mined
loop. Although this scheme adds considerable software overhead to the loop, the
overhead is mostly vectorized for the common case where there are no depen-
dences, and as a result the loop still runs considerably faster than scalar code
(although much slower than if a programmer directive was provided).

A scatter-gather capability is included on many of the recent supercomputers.
These operations often run more slowly than strided accesses because they are
more complex to implement and are more susceptible to bank conflicts, but they
are still much faster than the alternative, which may be a scalar loop. If the spar-
sity properties of a matrix change, a new index vector must be computed. Many
processors provide support for computing the index vector quickly. The CVI (cre-
ate vector index) instruction in VMIPS creates an index vector given a stride (m),
where the values in the index vector are 0, m, 2 × m, . . . , 63 × m. Some proces-
sors provide an instruction to create a compressed index vector whose entries cor-
respond to the positions with a 1 in the mask register. Other vector architectures
provide a method to compress a vector. In VMIPS, we define the CVI instruction
to always create a compressed index vector using the vector mask. When the vec-
tor mask is all 1s, a standard index vector will be created. 

The indexed loads-stores and the CVI instruction provide an alternative
method to support conditional vector execution. Here is a vector sequence that
implements the loop we saw on page G-25:

LV  V1,Ra   ;load vector A into V1
L.D  F0,#0    ;load FP zero into F0
SNEVS.D  V1,F0  ;sets the VM to 1 if V1(i)!=F0 
CVI  V2,#8    ;generates indices in V2
POP  R1,VM    ;find the number of 1’s in VM
MTC1  VLR,R1   ;load vector-length register
CVM   ;clears the mask
LVI  V3,(Ra+V2) ;load the nonzero A elements
LVI  V4,(Rb+V2) ;load corresponding B elements
SUBV.D  V3,V3,V4   ;do the subtract
SVI  (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the condition-
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the first ver-
sion (on page G-25) is 5n + c1. The running time of the second version, using
indexed loads and stores with a running time of one element per clock, is 4n + 4fn
+ c2, where f is the fraction of elements for which the condition is true (i.e.,
A(i) ≠ 0). If we assume that the values of c1 and c2 are comparable, or that they
are much smaller than n, we can find when this second technique is better.
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We want Time1 ≥ Time2, so 

That is, the second method is faster if less than one-quarter of the elements are
nonzero. In many cases the frequency of execution is much lower. If the index
vector can be reused, or if the number of vector statements within the if statement
grows, the advantage of the scatter-gather approach will increase sharply.

Multiple Lanes

One of the greatest advantages of a vector instruction set is that it allows software
to pass a large amount of parallel work to hardware using only a single short
instruction. A single vector instruction can include tens to hundreds of indepen-
dent operations yet be encoded in the same number of bits as a conventional sca-
lar instruction. The parallel semantics of a vector instruction allows an
implementation to execute these elemental operations using either a deeply pipe-
lined functional unit, as in the VMIPS implementation we’ve studied so far, or by
using an array of parallel functional units, or a combination of parallel and pipe-
lined functional units. Figure G.11 illustrates how vector performance can be
improved by using parallel pipelines to execute a vector add instruction.

The VMIPS instruction set has been designed with the property that all vector
arithmetic instructions only allow element N of one vector register to take part in
operations with element N from other vector registers. This dramatically simpli-
fies the construction of a highly parallel vector unit, which can be structured as
multiple parallel lanes. As with a traffic highway, we can increase the peak
throughput of a vector unit by adding more lanes. The structure of a four-lane
vector unit is shown in Figure G.12.

Each lane contains one portion of the vector-register file and one execution
pipeline from each vector functional unit. Each vector functional unit executes
vector instructions at the rate of one element group per cycle using multiple pipe-
lines, one per lane. The first lane holds the first element (element 0) for all vector
registers, and so the first element in any vector instruction will have its source and
destination operands located in the first lane. This allows the arithmetic pipeline
local to the lane to complete the operation without communicating with other
lanes. Interlane wiring is only required to access main memory. This lack of inter-
lane communication reduces the wiring cost and register file ports required to
build a highly parallel execution unit, and helps explains why current vector
supercomputers can complete up to 64 operations per cycle (2 arithmetic units
and 2 load-store units across 16 lanes).

Time1 5 n( )=

Time2 4n 4 fn+=

5n 4n 4 fn+≥
1
4
--- f≥
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Adding multiple lanes is a popular technique to improve vector performance
as it requires little increase in control complexity and does not require changes to
existing machine code. Several vector supercomputers are sold as a range of
models that vary in the number of lanes installed, allowing users to trade price
against peak vector performance. The Cray SV1 allows four two-lane CPUs to be
ganged together using operating system software to form a single larger eight-
lane CPU.

Pipelined Instruction Start-Up

Adding multiple lanes increases peak performance, but does not change start-up
latency, and so it becomes critical to reduce start-up overhead by allowing the
start of one vector instruction to be overlapped with the completion of preceding
vector instructions. The simplest case to consider is when two vector instructions
access a different set of vector registers. For example, in the code sequence

ADDV.D V1,V2,V3
ADDV.D V4,V5,V6

Figure G.11 Using multiple functional units to improve the performance of a single
vector add instruction, C = A + B. The machine shown in (a) has a single add pipeline
and can complete one addition per cycle. The machine shown in (b) has four add pipe-
lines and can complete four additions per cycle. The elements within a single vector
add instruction are interleaved across the four pipelines. The set of elements that move
through the pipelines together is termed an element group. (Reproduced with permis-
sion from Asanovic [1998].)
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an implementation can allow the first element of the second vector instruction to
immediately follow the last element of the first vector instruction down the FP
adder pipeline. To reduce the complexity of control logic, some vector machines
require some recovery time or dead time in between two vector instructions dis-
patched to the same vector unit. Figure G.13 is a pipeline diagram that shows
both start-up latency and dead time for a single vector pipeline.

The following example illustrates the impact of this dead time on achievable
vector performance.

Example The Cray C90 has two lanes but requires 4 clock cycles of dead time between any
two vector instructions to the same functional unit, even if they have no data
dependences. For the maximum vector length of 128 elements, what is the reduc-
tion in achievable peak performance caused by the dead time? What would be the
reduction if the number of lanes were increased to 16?

Figure G.12 Structure of a vector unit containing four lanes. The vector-register stor-
age is divided across the lanes, with each lane holding every fourth element of each
vector register. There are three vector functional units shown, an FP add, an FP multiply,
and a load-store unit. Each of the vector arithmetic units contains four execution pipe-
lines, one per lane, that act in concert to complete a single vector instruction. Note how
each section of the vector-register file only needs to provide enough ports for pipelines
local to its lane; this dramatically reduces the cost of providing multiple ports to the
vector registers. The path to provide the scalar operand for vector-scalar instructions is
not shown in this figure, but the scalar value must be broadcast to all lanes.
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Answer A maximum length vector of 128 elements is divided over the two lanes and
occupies a vector functional unit for 64 clock cycles. The dead time adds another
4 cycles of occupancy, reducing the peak performance to 64/(64 + 4) = 94.1% of
the value without dead time. If the number of lanes is increased to 16, maximum
length vector instructions will occupy a functional unit for only 128/16 = 8
cycles, and the dead time will reduce peak performance to 8/(8 + 4) = 66.6% of
the value without dead time. In this second case, the vector units can never be
more than 2/3 busy!

Pipelining instruction start-up becomes more complicated when multiple in-
structions can be reading and writing the same vector register, and when some
instructions may stall unpredictably, for example, a vector load encountering
memory bank conflicts. However, as both the number of lanes and pipeline laten-
cies increase, it becomes increasingly important to allow fully pipelined instruc-
tion start-up.

Two factors affect the success with which a program can be run in vector mode.
The first factor is the structure of the program itself: Do the loops have true data
dependences, or can they be restructured so as not to have such dependences?
This factor is influenced by the algorithms chosen and, to some extent, by how
they are coded. The second factor is the capability of the compiler. While no
compiler can vectorize a loop where no parallelism among the loop iterations

Figure G.13 Start-up latency and dead time for a single vector pipeline. Each ele-
ment has a 5-cycle latency: 1 cycle to read the vector-register file, 3 cycles in execution,
then 1 cycle to write the vector-register file. Elements from the same vector instruction
can follow each other down the pipeline, but this machine inserts 4 cycles of dead time
between two different vector instructions. The dead time can be eliminated with more
complex control logic. (Reproduced with permission from Asanovic [1998].)
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exists, there is tremendous variation in the ability of compilers to determine
whether a loop can be vectorized. The techniques used to vectorize programs are
the same as those discussed in Chapter 4 for uncovering ILP; here we simply
review how well these techniques work.

As an indication of the level of vectorization that can be achieved in scientific
programs, let's look at the vectorization levels observed for the Perfect Club
benchmarks. These benchmarks are large, real scientific applications. Figure
G.14 shows the percentage of operations executed in vector mode for two versions
of the code running on the Cray Y-MP. The first version is that obtained with just
compiler optimization on the original code, while the second version has been
extensively hand-optimized by a team of Cray Research programmers. The wide
variation in the level of compiler vectorization has been observed by several stud-
ies of the performance of applications on vector processors.

The hand-optimized versions generally show significant gains in vectoriza-
tion level for codes the compiler could not vectorize well by itself, with all codes
now above 50% vectorization. It is interesting to note that for MG3D, FLO52,
and DYFESM, the faster code produced by the Cray programmers had lower lev-
els of vectorization. The level of vectorization is not sufficient by itself to deter-
mine performance. Alternative vectorization techniques might execute fewer

Benchmark
name

Operations executed
in vector mode,

compiler-optimized

Operations executed
in vector mode,
hand-optimized

Speedup from
hand optimization

BDNA 96.1% 97.2% 1.52

MG3D 95.1% 94.5% 1.00

FLO52 91.5% 88.7% N/A

ARC3D 91.1% 92.0% 1.01

SPEC77 90.3% 90.4% 1.07

MDG 87.7% 94.2% 1.49

TRFD 69.8% 73.7% 1.67

DYFESM 68.8% 65.6% N/A

ADM 42.9% 59.6% 3.60

OCEAN 42.8% 91.2% 3.92

TRACK 14.4% 54.6% 2.52

SPICE 11.5% 79.9% 4.06

QCD 4.2% 75.1% 2.15

Figure G.14 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectorization
level obtained with the compiler, while the second column shows the results after the
codes have been hand-optimized by a team of Cray Research programmers. Speedup
numbers are not available for FLO52 and DYFESM as the hand-optimized runs used
larger data sets than the compiler-optimized runs.



G-34 � Appendix G  Vector Processors

instructions, or keep more values in vector registers, or allow greater chaining
and overlap among vector operations, and therefore improve performance even if
the vectorization level remains the same or drops. For example, BDNA has
almost the same level of vectorization in the two versions, but the hand-optimized
code is over 50% faster.

There is also tremendous variation in how well different compilers do in vec-
torizing programs. As a summary of the state of vectorizing compilers, consider
the data in Figure G.15, which shows the extent of vectorization for different pro-
cessors using a test suite of 100 handwritten FORTRAN kernels. The kernels
were designed to test vectorization capability and can all be vectorized by hand;
we will see several examples of these loops in the exercises.

In this section we look at different measures of performance for vector processors
and what they tell us about the processor. To determine the performance of a pro-
cessor on a vector problem we must look at the start-up cost and the sustained
rate. The simplest and best way to report the performance of a vector processor
on a loop is to give the execution time of the vector loop. For vector loops people
often give the MFLOPS (millions of floating-point operations per second) rating
rather than execution time. We use the notation Rn for the MFLOPS rating on a
vector of length n. Using the measurements Tn (time) or Rn (rate) is equivalent if
the number of FLOPS is agreed upon (see Chapter 1 for a longer discussion on
MFLOPS). In any event, either measurement should include the overhead.

Processor Compiler
Completely
vectorized

Partially 
vectorized

Not
vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

Convex C-series FC5.0 69 5 26

Cray X-MP CFT77 V3.0 69 3 28

Cray X-MP CFT V1.15 50 1 49

Cray-2 CFT2 V3.1a 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi S810/820 FORT77/HAP V20-2B 67 4 29

IBM 3090/VF VS FORTRAN V2.4 52 4 44

NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.15 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

G.6 Putting It All Together: Performance of Vector 
Processors
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In this section we examine the performance of VMIPS on our DAXPY loop
by looking at performance from different viewpoints. We will continue to com-
pute the execution time of a vector loop using the equation developed in
Section G.3. At the same time, we will look at different ways to measure perfor-
mance using the computed time. The constant values for Tloop used in this section
introduce some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a pro-
cessor, length-related measures are often applied in addition to time and
MFLOPS. These length-related measures tend to vary dramatically across differ-
ent processors and are interesting to compare. (Remember, though, that time is
always the measure of interest when comparing the relative speed of two proces-
sors.) Three of the most important length-related measures are

� R∞—The MFLOPS rate on an infinite-length vector. Although this measure
may be of interest when estimating peak performance, real problems do not
have unlimited vector lengths, and the overhead penalties encountered in real
problems will be larger.

� N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

� Nv—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors. 

Let’s look at these measures for our DAXPY problem running on VMIPS.
When chained, the inner loop of the DAXPY code in convoys looks like Figure
G.16 (assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop with
n elements, Tn:

Chaining allows the loop to run in three chimes (and no less, since there is one
memory pipeline); thus Tchime = 3. If Tchime were a complete indication of perfor-
mance, the loop would run at an MFLOPS rate of 2/3 × clock rate (since there are
2 FLOPS per iteration). Thus, based only on the chime count, a 500 MHz VMIPS
would run this loop at 333 MFLOPS assuming no strip-mining or start-up over-
head. There are several ways to improve the performance: add additional vector

LV V1,Rx MULVS.D V2,V1,F0 Convoy 1: chained load and multiply

LV V3,Ry ADDV.D V4,V2,V3 Convoy 2: second load and add, chained

SV Ry,V4 Convoy 3: store the result

Figure G.16 The inner loop of the DAXPY code in chained convoys.

Tn
n

MVL
-------------- Tloop Tstart+( )× n Tchime×+=
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load-store units, allow convoys to overlap to reduce the impact of start-up over-
heads, and decrease the number of loads required by vector-register allocation.
We will examine the first two extensions in this section. The last optimization is
actually used for the Cray-1, VMIPS’s cousin, to boost the performance by 50%.
Reducing the number of loads requires an interprocedural optimization; we
examine this transformation in Exercise G.6. Before we examine the first two
extensions, let’s see what the real performance, including overhead, is.

The Peak Performance of VMIPS on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 333 MFLOPS rate. For now, we continue to
use the simplifying assumption that a convoy cannot start until all the instructions
in an earlier convoy have completed; later we will remove this restriction. Using
this simplification, the start-up overhead for the vector sequence is simply the
sum of the start-up times of the instructions: 

Using MVL = 64, Tloop = 15, Tstart = 49, and Tchime = 3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is 

The sustained rate is actually over 4 clock cycles per iteration, rather than the
theoretical rate of 3 chimes, which ignores overhead. The major part of the differ-
ence is the cost of the start-up overhead for each block of 64 elements (49 cycles
versus 15 for the loop overhead). 

We can now compute R∞ for a 500 MHz clock as

The numerator is independent of n, hence

Tstart 12 7 12 6 12+ + + + 49= =

Tn
n
64
------ 15 49+( ) 3n+×=

n 64+( )≤ 3n+

4n 64+=
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---------------------------------------------------------------------------------------- 
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The performance without the start-up overhead, which is the peak performance
given the vector functional unit structure, is now 1.33 times higher. In actuality
the gap between peak and sustained performance for this benchmark is even
larger!

Sustained Performance of VMIPS on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100 × 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used k
times. Thus, the average vector length is given by

Now we can obtain an accurate estimate of the performance of DAXPY using a
vector length of 66.

The peak number, ignoring start-up overhead, is 1.64 times higher than this
estimate of sustained performance on the real vector lengths. In actual practice,
the Linpack benchmark contains a nontrivial fraction of code that cannot be vec-
torized. Although this code accounts for less than 20% of the time before vector-
ization, it runs at less than one-tenth of the performance when counted as FLOPS.
Thus, Amdahl’s Law tells us that the overall performance will be significantly
lower than the performance estimated from analyzing the inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv
measures are often used in comparing vector machines.

Example What is N1/2 for just the inner loop of DAXPY for VMIPS with a 500 MHz
clock?

Answer Using R∞ as the peak rate, we want to know the vector length that will achieve
about 125 MFLOPS. We start with the formula for MFLOPS assuming that the
measurement is made for N1/2 elements:

i
2

i 1=

99

∑

i
i 1=

99

∑
-------------- 66.3=

T66 2 15 49+( ) 66 3×+× 128 198+ 326= = =

R66
2 66 500××

326
------------------------------ MFLOPS  202 MFLOPS= =

MFLOPS
FLOPS executed in N1 2⁄ iterations

Clock cycles to execute  N1 2⁄ iterations
-------------------------------------------------------------------------------------------------- Clock cycles

Second
------------------------------ 10

6–××=

125
2 N1 2⁄×

TN1 2⁄

--------------------- 500×=
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Simplifying this and then assuming N1/2 ≤ 64, so that Tn ≤ 64 = 1 × 64 + 3 × n,
yields

So N1/2 = 13; that is, a vector of length 13 gives approximately one-half the peak
performance for the DAXPY loop on VMIPS.

Example What is the vector length, Nv, such that the vector operation runs faster than the
scalar? 

Answer Again, we know that Nv < 64. The time to do one iteration in scalar mode can be
estimated as 10 + 12 + 12 + 7 + 6 +12 = 59 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead. In
the last problem, we showed that this vector loop runs in vector mode in time
Tn ≤ 64 = 64 + 3 × n clock cycles. Therefore,

For the DAXPY loop, vector mode is faster than scalar as long as the vector has
at least two elements. This number is surprisingly small, as we will see in the next
section (“Fallacies and Pitfalls”).

DAXPY Performance on an Enhanced VMIPS

DAXPY, like many vector problems, is memory limited. Consequently, per-
formance could be improved by adding more memory access pipelines. This is
the major architectural difference between the Cray X-MP (and later processors)
and the Cray-1. The Cray X-MP has three memory pipelines, compared with the
Cray-1’s single memory pipeline, and the X-MP has more flexible chaining. How
does this affect performance?

Example What would be the value of T66 for DAXPY on VMIPS if we added two more
memory pipelines?

TN1 2⁄
8 N1 2⁄×=

1 64× 3 N1 2⁄×+ 8 N1 2⁄×=

5 N1 2⁄× 64=

N1 2⁄ 12.8=

64 3Nv+ 59Nv=

Nv
64
56
------=

Nv 2=
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Answer With three memory pipelines all the instructions fit in one convoy and take one
chime. The start-up overheads are the same, so

With three memory pipelines, we have reduced the clock cycle count for sus-
tained performance from 326 to 194, a factor of 1.7. Note the effect of Amdahl’s
Law: We improved the theoretical peak rate as measured by the number of
chimes by a factor of 3, but only achieved an overall improvement of a factor of
1.7 in sustained performance. 

Another improvement could come from allowing different convoys to overlap
and also allowing the scalar loop overhead to overlap with the vector instructions.
This requires that one vector operation be allowed to begin using a functional unit
before another operation has completed, which complicates the instruction issue
logic. Allowing this overlap eliminates the separate start-up overhead for every
convoy except the first and hides the loop overhead as well. 

To achieve the maximum hiding of strip-mining overhead, we need to be able
to overlap strip-mined instances of the loop, allowing two instances of a convoy
as well as possibly two instances of the scalar code to be in execution simulta-
neously. This requires the same techniques we looked at in Chapter 4 to avoid
WAR hazards, although because no overlapped read and write of a single vector
element is possible, copying can be avoided. This technique, called tailgating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to create
several instances of the vector sequence using different register sets (assuming
sufficient registers), just as we did in Chapter 4. By allowing maximum overlap
of the convoys and the scalar loop overhead, the start-up and loop overheads will
only be seen once per vector sequence, independent of the number of convoys
and the instructions in each convoy. In this way a processor with vector registers
can have both low start-up overhead for short vectors and high peak performance
for very long vectors.

Example What would be the values of R∞ and T66 for DAXPY on VMIPS if we added two
more memory pipelines and allowed the strip-mining and start-up overheads to
be fully overlapped?

Answer

Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus, 

T66
66
64
------ Tloop Tstart+( ) 66 Tchime×+×=

T66 2 15 49+( ) 66 1×+× 194= =

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
---------------------------------------------------------------------------------------- 

 
n ∞→
lim=

Clock cycles per iteration( )
n ∞→
lim

Tn

n
------ 

 
n ∞→
lim=
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Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T66 = 130, so for
shorter vectors, the sustained performance improvement is about 326/130 = 2.5
times.

In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Tchime as 

By including the loop overhead, we can calculate values for peak performance for
an infinite-length vector (R∞) and also for sustained performance, Rn for a vector
of length n, which is computed as

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar speed.
A wide variety of measures of performance of vector processors are useful in
understanding the range of performance that applications may see on a vector
processor.

Pitfall Concentrating on peak performance and ignoring start-up overhead.

Early memory-memory vector processors such as the TI ASC and the CDC
STAR-100 had long start-up times. For some vector problems, Nv could be
greater than 100! On the CYBER 205, derived from the STAR-100, the start-up
overhead for DAXPY is 158 clock cycles, substantially increasing the break-even
point. With a single vector unit, which contains 2 memory pipelines, the CYBER
205 can sustain a rate of 2 clocks per iteration. The time for DAXPY for a vector
of length n is therefore roughly 158 + 2n. If the clock rates of the Cray-1 and the
CYBER 205 were identical, the Cray-1 would be faster until n > 64. Because
the Cray-1 clock is also faster (even though the 205 is newer), the crossover
point is over 100. Comparing a four-lane CYBER 205 (the maximum-size pro-
cessor) with the Cray X-MP that was delivered shortly after the 205, the 205
has a peak rate of two results per clock cycle—twice as fast as the X-MP. How-
ever, vectors must be longer than about 200 for the CYBER 205 to be faster.

Tn

n
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lim
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1
-------------------------------- 1000 MFLOPS= =

Number of FLOPS per iteration Clock rate×
Tchime

-----------------------------------------------------------------------------------------------------------

Rn
Number of FLOPS per iteration n× Clock rate×

Tn
--------------------------------------------------------------------------------------------------------------------=

G.7 Fallacies and Pitfalls



G.7 Fallacies and Pitfalls � G-41

The problem of start-up overhead has been a major difficulty for the memory-
memory vector architectures, hence their lack of popularity.

Pitfall Increasing vector performance, without comparable increases in scalar per-
formance.

This was a problem on many early vector processors, and a place where Seymour
Cray rewrote the rules. Many of the early vector processors had comparatively
slow scalar units (as well as large start-up overheads). Even today, processors
with higher peak vector performance can be outperformed by a processor with
lower vector performance but better scalar performance. Good scalar perfor-
mance keeps down overhead costs (strip mining, for example) and reduces the
impact of Amdahl’s Law. A good example of this comes from comparing a fast
scalar processor and a vector processor with lower scalar performance. The Liv-
ermore FORTRAN kernels are a collection of 24 scientific kernels with varying
degrees of vectorization. Figure G.17 shows the performance of two different
processors on this benchmark. Despite the vector processor's higher peak perfor-
mance, its low scalar performance makes it slower than a fast scalar processor as
measured by the harmonic mean. The next fallacy is closely related.

Fallacy You can get vector performance without providing memory bandwidth.

As we saw with the DAXPY loop, memory bandwidth is quite important. DAXPY
requires 1.5 memory references per floating-point operation, and this ratio is typical
of many scientific codes. Even if the floating-point operations took no time, a Cray-
1 could not increase the performance of the vector sequence used, since it is mem-
ory limited. The Cray-1 performance on Linpack jumped when the compiler used
clever transformations to change the computation so that values could be kept in the
vector registers. This lowered the number of memory references per FLOP and
improved the performance by nearly a factor of 2! Thus, the memory bandwidth on

Processor

Minimum rate 
for any loop

(MFLOPS)

Maximum rate 
for any loop

(MFLOPS)

Harmonic mean 
of all 24 loops

(MFLOPS)

MIPS M/120-5 0.80 3.89 1.85

Stardent-1500 0.41 10.08 1.72

Figure G.17 Performance measurements for the Livermore FORTRAN kernels on
two different processors. Both the MIPS M/120-5 and the Stardent-1500 (formerly the
Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-1500
uses its vector unit for scalar FP and has about half the scalar performance (as mea-
sured by the minimum rate) of the MIPS M/120, which uses the MIPS R2010 FP chip. The
vector processor is more than a factor of 2.5 times faster for a highly vectorizable loop
(maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic
mean on all 24 loops.
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the Cray-1 became sufficient for a loop that formerly required more bandwidth.
This ability to reuse values from vector registers is another advantage of vector-
register architectures compared with memory-memory vector architectures,
which have to fetch all vector operands from memory, requiring even greater
memory bandwidth.

During the 1980s and 1990s, rapid performance increases in pipelined scalar
processors led to a dramatic closing of the gap between traditional vector super-
computers and fast, pipelined, superscalar VLSI microprocessors. In 2002, it is
possible to buy a complete desktop computer system for under $1000 that has a
higher CPU clock rate than any available vector supercomputer, even those costing
tens of millions of dollars. Although the vector supercomputers have lower clock
rates, they support greater parallelism through the use of multiple lanes (up to 16
in the Japanese designs) versus the limited multiple issue of the superscalar micro-
processors. Nevertheless, the peak floating-point performance of the low-cost
microprocessors is within a factor of 4 of the leading vector supercomputer CPUs.
Of course, high clock rates and high peak performance do not necessarily translate
into sustained application performance. Main memory bandwidth is the key distin-
guishing feature between vector supercomputers and superscalar microprocessor
systems. The fastest microprocessors in 2002 can sustain around 1 GB/sec of main
memory bandwidth, while the fastest vector supercomputers can sustain around 50
GB/sec per CPU. For nonunit stride accesses the bandwidth discrepancy is even
greater. For certain scientific and engineering applications, performance correlates
directly with nonunit stride main memory bandwidth, and these are the applica-
tions for which vector supercomputers remain popular.

Providing this large nonunit stride memory bandwidth is one of the major
expenses in a vector supercomputer, and traditionally SRAM was used as main
memory to reduce the number of memory banks needed and to reduce vector
start-up penalties. While SRAM has an access time several times lower than that
of DRAM, it costs roughly 10 times as much per bit! To reduce main memory
costs and to allow larger capacities, all modern vector supercomputers now use
DRAM for main memory, taking advantage of new higher-bandwidth DRAM
interfaces such as synchronous DRAM. 

 This adoption of DRAM for main memory (pioneered by Seymour Cray in
the Cray-2) is one example of how vector supercomputers are adapting commod-
ity technology to improve their price-performance. Another example is that vec-
tor supercomputers are now including vector data caches. Caches are not
effective for all vector codes, however, and so these vector caches are designed to
allow high main memory bandwidth even in the presence of many cache misses.
For example, the cache on the Cray SV1 can support 384 outstanding cache
misses per CPU, while for microprocessors 8–16 outstanding misses is a more
typical maximum number.

G.8 Concluding Remarks
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Another example is the demise of bipolar ECL or gallium arsenide as technol-
ogies of choice for supercomputer CPU logic. Because of the huge investment in
CMOS technology made possible by the success of the desktop computer, CMOS
now offers competitive transistor performance with much greater transistor den-
sity and much reduced power dissipation compared with these more exotic tech-
nologies. As a result, all leading vector supercomputers are now built with the
same CMOS technology as superscalar microprocessors. The primary reason that
vector supercomputers now have lower clock rates than commodity microproces-
sors is that they are developed using standard cell ASIC techniques rather than
full custom circuit design to reduce the engineering design cost. While a micro-
processor design may sell tens of millions of copies and can amortize the design
cost over this large number of units, a vector supercomputer is considered a suc-
cess if over a hundred units are sold!

 Conversely, superscalar microprocessor designs have begun to absorb some
of the techniques made popular in earlier vector computer systems. Many multi-
media applications contain code that can be vectorized, and as discussed in Chap-
ter 2, most commercial microprocessor ISAs have added multimedia extensions
that resemble short vector instructions. A common technique is to allow a wide
64-bit register to be split into smaller subwords that are operated on in parallel.
This idea was used in the early TI ASC and CDC STAR-100 vector machines,
where a 64-bit lane could be split into two 32-bit lanes to give higher perfor-
mance on lower-precision data. Although the initial microprocessor multimedia
extensions were very limited in scope, newer extensions such as AltiVec for the
IBM/Motorola PowerPC and SSE2 for the Intel x86 processors have both
increased the vector length to 128 bits (still small compared with the 4096 bits in
a VMIPS vector register) and added better support for vector compilers. Vector
instructions are particularly appealing for embedded processors because they
support high degrees of parallelism at low cost and with low power dissipation,
and have been used in several game machines such as the Nintendo-64 and the
Sony Playstation 2 to boost graphics performance. We expect that microproces-
sors will continue to extend their support for vector operations, as this represents
a much simpler approach to boosting performance for an important class of appli-
cations compared with the hardware complexity of increasing scalar instruction
issue width, or the software complexity of managing multiple parallel processors.

The first vector processors were the CDC STAR-100 (see Hintz and Tate [1972])
and the TI ASC (see Watson [1972]), both announced in 1972. Both were
memory-memory vector processors. They had relatively slow scalar units—the
STAR used the same units for scalars and vectors—making the scalar pipeline
extremely deep. Both processors had high start-up overhead and worked on vec-
tors of several hundred to several thousand elements. The crossover between sca-
lar and vector could be over 50 elements. It appears that not enough attention was
paid to the role of Amdahl’s Law on these two processors. 

G.9 Historical Perspective and References
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Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research
and introduced the Cray-1 in 1976 (see Russell [1978]). The Cray-1 used a
vector-register architecture to significantly lower start-up overhead and to reduce
memory bandwidth requirements. He also had efficient support for nonunit stride
and invented chaining. Most importantly, the Cray-1 was the fastest scalar pro-
cessor in the world at that time. This matching of good scalar and vector perfor-
mance was probably the most significant factor in making the Cray-1 a success.
Some customers bought the processor primarily for its outstanding scalar perfor-
mance. Many subsequent vector processors are based on the architecture of this
first commercially successful vector processor. Baskett and Keller [1977] provide
a good evaluation of the Cray-1.

In 1981, CDC started shipping the CYBER 205 (see Lincoln [1982]). The
205 had the same basic architecture as the STAR, but offered improved perfor-
mance all around as well as expandability of the vector unit with up to four lanes,
each with multiple functional units and a wide load-store pipe that provided mul-
tiple words per clock. The peak performance of the CYBER 205 greatly exceeded
the performance of the Cray-1. However, on real programs, the performance dif-
ference was much smaller. 

The CDC STAR processor and its descendant, the CYBER 205, were
memory-memory vector processors. To keep the hardware simple and support the
high bandwidth requirements (up to three memory references per floating-point
operation), these processors did not efficiently handle nonunit stride. While most
loops have unit stride, a nonunit stride loop had poor performance on these pro-
cessors because memory-to-memory data movements were required to gather
together (and scatter back) the nonadjacent vector elements; these operations
used special scatter-gather instructions. In addition, there was special support for
sparse vectors that used a bit vector to represent the zeros and nonzeros and a
dense vector of nonzero values. These more complex vector operations were slow
because of the long memory latency, and it was often faster to use scalar mode for
sparse or nonunit stride operations. Schneck [1987] described several of the early
pipelined processors (e.g., Stretch) through the first vector processors, including
the 205 and Cray-1. Dongarra [1986] did another good survey, focusing on more
recent processors.

In 1983, Cray Research shipped the first Cray X-MP (see Chen [1983]). With
an improved clock rate (9.5 ns versus 12.5 ns on the Cray-1), better chaining sup-
port, and multiple memory pipelines, this processor maintained the Cray
Research lead in supercomputers. The Cray-2, a completely new design con-
figurable with up to four processors, was introduced later. A major feature of the
Cray-2 was the use of DRAM, which made it possible to have very large memo-
ries. The first Cray-2 with its 256M word (64-bit words) memory contained more
memory than the total of all the Cray machines shipped to that point! The Cray-2
had a much faster clock than the X-MP, but also much deeper pipelines; however,
it lacked chaining, had an enormous memory latency, and had only one memory
pipe per processor. In general, the Cray-2 is only faster than the Cray X-MP on
problems that require its very large main memory. 
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The 1980s also saw the arrival of smaller-scale vector processors, called mini-
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($0.5 to
$1 million versus $5 to $10 million), these processors caught on quickly.
Although many companies joined the market, the two companies that were most
successful were Convex and Alliant. Convex started with the uniprocessor C-1
vector processor and then offered a series of small multiprocessors ending with
the C-4 announced in 1994. The keys to the success of Convex over this period
were their emphasis on Cray software capability, the effectiveness of their com-
piler (see Figure G.15), and the quality of their UNIX OS implementation. The
C-4 was the last vector machine Convex sold; they switched to making large-
scale multiprocessors using Hewlett-Packard RISC microprocessors and were
bought by HP in 1995. Alliant [1987] concentrated more on the multiprocessor
aspects; they built an eight-processor computer, with each processor offering vec-
tor capability. Alliant ceased operation in the early 1990s. 

In the early 1980s, CDC spun out a group, called ETA, to build a new super-
computer, the ETA-10, capable of 10 GFLOPS. The ETA processor was delivered
in the late 1980s (see Fazio [1987]) and used low-temperature CMOS in a
configuration with up to 10 processors. Each processor retained the memory-
memory architecture based on the CYBER 205. Although the ETA-10 achieved
enormous peak performance, its scalar speed was not comparable. In 1989 CDC,
the first supercomputer vendor, closed ETA and left the supercomputer design
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extends the System/370 architecture with 171 vector instructions. The 3090/VF is
integrated into the 3090 CPU. Unlike most other vector processors, the 3090/VF
routes its vectors through the cache. 

In 1983, processor vendors from Japan entered the supercomputer market-
place, starting with the Fujitsu VP100 and VP200 (see Miura and Uchida [1983]),
and later expanding to include the Hitachi S810 and the NEC SX/2 (see
Watanabe [1987]). These processors have proved to be close to the Cray X-MP in
performance. In general, these three processors have much higher peak per-
formance than the Cray X-MP. However, because of large start-up overhead, their
typical performance is often lower than the Cray X-MP (see Figure 1.32 in
Chapter 1). The Cray X-MP favored a multiple-processor approach, first offering
a two-processor version and later a four-processor. In contrast, the three Japanese
processors had expandable vector capabilities. 

In 1988, Cray Research introduced the Cray Y-MP—a bigger and faster ver-
sion of the X-MP. The Y-MP allows up to eight processors and lowers the cycle
time to 6 ns. With a full complement of eight processors, the Y-MP was generally
the fastest supercomputer, though the single-processor Japanese supercomputers
may be faster than a one-processor Y-MP. In late 1989 Cray Research was split
into two companies, both aimed at building high-end processors available in the
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation,
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until its demise in 1995. Their initial processor, the Cray-3, was to be imple-
mented in gallium arsenide, but they were unable to develop a reliable and cost-
effective implementation technology. A single Cray-3 prototype was delivered to
the National Center for Atmospheric Research (NCAR) for evaluation purposes
in 1993, but no paying customers were found for the design. The Cray-4 proto-
type, which was to have been the first processor to run at 1 GHz, was close to
completion when the company filed for bankruptcy. Shortly before his tragic
death in a car accident in 1996, Seymour Cray started yet another company, SRC
Computers, to develop high-performance systems but this time using commodity
components. In 2000, SRC announced the SRC-6 system that combines 512 Intel
microprocessors, 5 billion gates of reconfigurable logic, and a high-performance
vector-style memory system.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
Typical configurations are about $15 million. In 1993, Cray Research introduced
their first highly parallel processor, the T3D, employing up to 2048 Digital Alpha
21064 microprocessors. In 1995, they announced the availability of both a new
low-end vector machine, the J90, and a high-end machine, the T90. The T90 is
much like the C90, but offers a clock that is twice as fast (460 MHz), using three-
dimensional packaging and optical clock distribution. Like the C90, the T90 costs
in the tens of millions, though a single CPU is available for $2.5 million. The T90
was the last bipolar ECL vector machine built by Cray. The J90 is a CMOS-based
vector machine using DRAM memory starting at $250,000, but with typical con-
figurations running about $1 million. In mid-1995, Cray Research was acquired
by Silicon Graphics, and in 1998 released the SV1 system, which grafted consid-
erably faster CMOS processors onto the J90 memory system, and which also
added a data cache for vectors to each CPU to help meet the increased memory
bandwidth demands. Silicon Graphics sold Cray Research to Tera Computer in
2000, and the joint company was renamed Cray Inc. Cray Inc. plans to release the
SV2 in 2002, which will be based on a completely new vector ISA.

The Japanese supercomputer makers have continued to evolve their designs
and have generally placed greater emphasis on increasing the number of lanes in
their vector units. In 2001, the NEC SX/5 was generally held to be the fastest
available vector supercomputer, with 16 lanes clocking at 312 MHz and with up
to 16 processors sharing the same memory. The Fujitsu VPP5000 was announced
in 2001 and also had 16 lanes and clocked at 300 MHz, but connected up to 128
processors in a distributed-memory cluster. In 2001, Cray Inc. announced that
they would be marketing the NEC SX/5 machine in the United States, after many
years in which Japanese supercomputers were unavailable to U.S. customers after
the U.S. Commerce Department found NEC and Fujitsu guilty of bidding below
cost for a 1996 NCAR supercomputer contract and imposed heavy import duties
on their products.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University
of Illinois. Banerjee [1979] developed the test named after him. Padua and Wolfe
[1986] give a good overview of vectorizing compiler technology.
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Benchmark studies of various supercomputers, including attempts to under-
stand the performance differences, have been undertaken by Lubeck, Moore,
and Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 1, we dis-
cussed several benchmark suites aimed at scientific usage and often employed
for supercomputer benchmarking, including Linpack and the Lawrence Liver-
more Laboratories FORTRAN kernels. The University of Illinois coordinated
the collection of a set of benchmarks for supercomputers, called the Perfect
Club. In 1993, the Perfect Club was integrated into SPEC, which released a set
of benchmarks, SPEChpc96, aimed at high-end scientific processing in 1996.
The NAS parallel benchmarks developed at the NASA Ames Research Center
[Bailey et al. 1991] have become a popular set of kernels and applications used
for supercomputer evaluation.

In less than 30 years vector processors have gone from unproven, new archi-
tectures to playing a significant role in the goal to provide engineers and scien-
tists with ever larger amounts of computing power. However, the enormous price-
performance advantages of microprocessor technology are bringing this era to an
end. Advanced superscalar microprocessors are approaching the peak perfor-
mance of the fastest vector processors, and in 2001, most of the highest-
performance machines in the world were large-scale multiprocessors based on
these microprocessors. Vector supercomputers remain popular for certain appli-
cations including car crash simulation and weather prediction that rely heavily on
scatter-gather performance over large data sets and for which effective massively
parallel programs have yet to be written. Over time, we expect that microproces-
sors will support higher-bandwidth memory systems, and that more applications
will be parallelized and/or tuned for cached multiprocessor systems. As the set of
applications best suited for vector supercomputers shrinks, they will become less
viable as commercial products and will eventually disappear. But vector process-
ing techniques will likely survive as an integral part of future microprocessor
architectures, with the currently popular SIMD multimedia extensions represent-
ing the first step in this direction.
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In these exercises assume VMIPS has a clock rate of 500 MHz and that Tloop =
15. Use the start-up times from Figure G.4, and assume that the store latency is
always included in the running time.

G.1 [10] <G.1, G.2> Write a VMIPS vector sequence that achieves the peak MFLOPS
performance of the processor (use the functional unit and instruction description
in Section G.2). Assuming a 500-MHz clock rate, what is the peak MFLOPS?

G.2 [20/15/15] <G.1–G.6> Consider the following vector code run on a 500-MHz
version of VMIPS for a fixed vector length of 64:

LV       V1,Ra
MULV.D  V2,V1,V3
ADDV.D   V4,V1,V3
SV       Rb,V2
SV       Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be
included in the time to perform the loop. The entire sequence produces 64 results.

a. [20] <G.1–G.4> Assuming no chaining and a single memory pipeline, how
many chimes are required? How many clock cycles per result (including both
stores as one result) does this vector sequence require, including start-up
overhead?

b. [15] <G.1–G.4> If the vector sequence is chained, how many clock cycles per
result does this sequence require, including overhead?

c. [15] <G.1–G.6> Suppose VMIPS had three memory pipelines and chaining.
If there were no bank conflicts in the accesses for the above loop, how many
clock cycles are required per result for this sequence?

G.3 [20/20/15/15/20/20/20] <G.2–G.6> Consider the following FORTRAN code:

do 10 i=1,n
       A(i) = A(i) + B(i)
       B(i) = x * B(i)

10 continue

Use the techniques of Section G.6 to estimate performance throughout this exer-
cise, assuming a 500-MHz version of VMIPS.

a. [20] <G.2–G.6> Write the best VMIPS vector code for the inner portion of
the loop. Assume x is in F0 and the addresses of A and B are in Ra and Rb,
respectively.

Exercises
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b. [20] <G.2–G.6> Find the total time for this loop on VMIPS (T100). What is
the MFLOPS rating for the loop (R100)?

c. [15] <G.2–G.6> Find R∞ for this loop.

d. [15] <G.2–G.6> Find N1/2 for this loop.

e. [20] <G.2–G.6> Find Nv for this loop. Assume the scalar code has been pipe-
line scheduled so that each memory reference takes six cycles and each FP
operation takes three cycles. Assume the scalar overhead is also Tloop.

f. [20] <G.2–G.6> Assume VMIPS has two memory pipelines. Write vector
code that takes advantage of the second memory pipeline. Show the layout in
convoys.

g. [20] <G.2–G.6> Compute T100 and R100 for VMIPS with two memory pipe-
lines.

G.4 [20/10] <G.3> Suppose we have a version of VMIPS with eight memory banks
(each a double word wide) and a memory access time of eight cycles. 

a. [20] <G.3> If a load vector of length 64 is executed with a stride of 20 double
words, how many cycles will the load take to complete?

b. [10] <G.3> What percentage of the memory bandwidth do you achieve on a
64-element load at stride 20 versus stride 1?

G.5 [12/12] <G.5–G.6> Consider the following loop:

C = 0.0
do 10 i=1,64
       A(i) = A(i) + B(i)
       C = C + A(i)

10 continue

a. [12] <G.5–G.6> Split the loop into two loops: one with no dependence and
one with a dependence. Write these loops in FORTRAN—as a source-to-
source transformation. This optimization is called loop fission.

b. [12] <G.5–G.6> Write the VMIPS vector code for the loop without a dependence.

G.6 [20/15/20/20] <G.5–G.6> The compiled Linpack performance of the Cray-1
(designed in 1976) was almost doubled by a better compiler in 1989. Let's look at
a simple example of how this might occur. Consider the DAXPY-like loop (where
k is a parameter to the procedure containing the loop):

do 10 i=1,64
       do 10 j=1,64
       Y(k,j) = a*X(i,j) + Y(k,j)

10 continue

a. [20] <G.5–G.6> Write the straightforward code sequence for just the inner
loop in VMIPS vector instructions.

b. [15] <G.5–G.6> Using the techniques of Section G.6, estimate the perfor-
mance of this code on VMIPS by finding T64 in clock cycles. You may assume
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that Tloop of overhead is incurred for each iteration of the outer loop. What
limits the performance?

c. [20] <G.5–G.6> Rewrite the VMIPS code to reduce the performance limita-
tion; show the resulting inner loop in VMIPS vector instructions. (Hint: Think
about what establishes Tchime; can you affect it?) Find the total time for the
resulting sequence.

d. [20] <G.5–G.6> Estimate the performance of your new version, using the
techniques of Section G.6 and finding T64.

G.7 [15/15/25] <G.4> Consider the following code. 

do 10 i=1,64
       if (B(i) .ne. 0) then 
              A(i) = A(i) / B(i)

10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0
contains 0.

a. [15] <G.4> Write the VMIPS code for this loop using the vector-mask capa-
bility.

b. [15] <G.4> Write the VMIPS code for this loop using scatter-gather.

c. [25] <G.4> Estimate the performance (T100 in clock cycles) of these two vec-
tor loops, assuming a divide latency of 20 cycles. Assume that all vector
instructions run at one result per clock, independent of the setting of the
vector-mask register. Assume that 50% of the entries of B are 0. Considering
hardware costs, which would you build if the above loop were typical?

G.8 [15/20/15/15] <G.1–G.6> In “Fallacies and Pitfalls” of Chapter 1, we saw that
the difference between peak and sustained performance could be large: For one
problem, a Hitachi S810 had a peak speed twice as high as that of the Cray X-MP,
while for another more realistic problem, the Cray X-MP was twice as fast as the
Hitachi processor. Let’s examine why this might occur using two versions of
VMIPS and the following code sequences:

C        Code sequence 1
do 10 i=1,10000
       A(i) = x * A(i) + y * A(i)

10 continue

C        Code sequence 2
do 10 i=1,100
       A(i) = x * A(i)

10 continue

Assume there is a version of VMIPS (call it VMIPS-II) that has two copies of
every floating-point functional unit with full chaining among them. Assume that
both VMIPS and VMIPS-II have two load-store units. Because of the extra func-
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tional units and the increased complexity of assigning operations to units, all the
overheads (T

loop
 and T

start
) are doubled. 

a. [15] <G.1–G.6> Find the number of clock cycles for code sequence 1 on
VMIPS.

b. [20] <G.1–G.6> Find the number of clock cycles on code sequence 1 for
VMIPS-II. How does this compare to VMIPS?

c. [15] <G.1–G.6> Find the number of clock cycles on code sequence 2 for
VMIPS.

d. [15] <G.1–G.6> Find the number of clock cycles on code sequence 2 for
VMIPS-II. How does this compare to VMIPS?

G.9 [20] <G.5> Here is a tricky piece of code with two-dimensional arrays. Does this
loop have dependences? Can these loops be written so they are parallel? If so,
how? Rewrite the source code so that it is clear that the loop can be vectorized, if
possible.

do 290 j = 2,n
       do 290 i = 2,j
              aa(i,j)= aa(i-1,j)*aa(i-1,j)+bb(i,j)

290 continue

G.10 [12/15] <G.5> Consider the following loop:

do 10 i = 2,n
   A(i) = B

10    C(i) = A(i-1)

a. [12] <G.5> Show there is a loop-carried dependence in this code fragment.

b. [15] <G.5> Rewrite the code in FORTRAN so that it can be vectorized as two
separate vector sequences.

G.11 [15/25/25] <G.5> As we saw in Section G.5, some loop structures are not easily
vectorized. One common structure is a reduction—a loop that reduces an array to
a single value by repeated application of an operation. This is a special case of a
recurrence. A common example occurs in dot product:

dot = 0.0
do 10 i=1,64

10        dot = dot + A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec-
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recur-
rence and perhaps rewrite the loop as

do 10 i=1,64
10        dot(i) = A(i) * B(i)

do 20 i=2,64
20        dot(1) = dot(1) + dot(i) 
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The variable dot has been expanded into a vector; this transformation is called
scalar expansion. We can try to vectorize the second loop either relying strictly
on the compiler (part (a)) or with hardware support as well (part (b)). There is an
important caveat in the use of vector techniques for reduction. To make
reduction work, we are relying on the associativity of the operator being used for
the reduction. Because of rounding and finite range, however, floating-point
arithmetic is not strictly associative. For this reason, most compilers require the
programmer to indicate whether associativity can be used to more efficiently
compile reductions.

a. [15] <G.5> One simple scheme for compiling the loop with the recurrence is
to add sequences of progressively shorter vectors—two 32-element vectors,
then two 16-element vectors, and so on. This technique has been called recur-
sive doubling. It is faster than doing all the operations in scalar mode. Show
how the FORTRAN code would look for execution of the second loop in the
preceding code fragment using recursive doubling. 

b. [25] <G.5> In some vector processors, the vector registers are addressable,
and the operands to a vector operation may be two different parts of the same
vector register. This allows another solution for the reduction, called partial
sums. The key idea in partial sums is to reduce the vector to m sums where m
is the total latency through the vector functional unit, including the operand
read and write times. Assume that the VMIPS vector registers are addressable
(e.g., you can initiate a vector operation with the operand V1(16), indicating
that the input operand began with element 16). Also, assume that the total
latency for adds, including operand read and write, is eight cycles. Write a
VMIPS code sequence that reduces the contents of V1 to eight partial sums. It
can be done with one vector operation.

c. Discuss how adding the extension in part (b) would affect a machine that had
multiple lanes.

G.12 [40] <G.2–G.4> Extend the MIPS simulator to be a VMIPS simulator, including
the ability to count clock cycles. Write some short benchmark programs in MIPS
and VMIPS assembly language. Measure the speedup on VMIPS, the percentage
of vectorization, and usage of the functional units.

G.13 [50] <G.5> Modify the MIPS compiler to include a dependence checker. Run
some scientific code and loops through it and measure what percentage of the
statements could be vectorized. 

G.14 [Discussion] Some proponents of vector processors might argue that the vector
processors have provided the best path to ever-increasing amounts of processor
power by focusing their attention on boosting peak vector performance. Others
would argue that the emphasis on peak performance is misplaced because an
increasing percentage of the programs are dominated by nonvector performance.
(Remember Amdahl’s Law?) The proponents would respond that programmers
should work to make their programs vectorizable. What do you think about this
argument?
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G.15 [Discussion] Consider the points raised in “Concluding Remarks” (Section G.8).
This topic—the relative advantages of pipelined scalar processors versus FP vec-
tor processors—was the source of much debate in the 1990s. What advantages do
you see for each side? What would you do in this situation?


