
Static Compiler Optimization TechniquesStatic Compiler Optimization Techniques
• We examined the following static ISA/compiler techniques aimed at g p q

improving pipelined CPU performance:
– Static pipeline scheduling.
– Loop unrolling.
– Static branch prediction.
– Static multiple instruction issue:  VLIW.
– Conditional or predicted instructions/predication.

St ti l ti

e.g. IA-64
(EPIC)

– Static speculation

• Here we examine two additional static compiler-based techniques:

Loop Level Parallelism (LLP) analysis: + l ti hi t D t P ll li– Loop-Level Parallelism (LLP) analysis:
• Detecting and enhancing loop iteration parallelism

– Greatest Common Divisor (GCD) test.
S ft i li i (S b li l lli )

+ relationship to Data Parallelism1

– Software pipelining (Symbolic loop unrolling).

• In addition a brief introduction to vector processing (Appendix G) is 
included to emphasize the importance/origin of LLP analysis. FYI}

2
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4th Edition: Appendix G.1-G.3, vector processing: Appendix F
(3rd Edition: Chapter 4.4, vector processing: Appendix G)
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Data Parallelism & Loop Level Parallelism (LLP)Data Parallelism & Loop Level Parallelism (LLP)
• Data Parallelism: Similar independent/parallel  computations on different 

elements of arrays that usually result in independent (or parallel) loop iterationselements of arrays that usually result in independent (or parallel) loop iterations
when such computations are implemented as sequential programs.

• A common way to increase parallelism among instructions is to exploit data 
parallelism among independent iterations of a loop

( l it L L l P ll li LLP) Usually:   Data Parallelism  LLP(e.g exploit Loop Level Parallelism, LLP).
– One method covered earlier to accomplish this is by unrolling the loop either 

statically by the compiler, or dynamically by hardware, which increases the size of 
the basic block present.  This resulting larger basic block provides more 
instructions that can be scheduled or re ordered by the compiler/hardware to

y

instructions that can be scheduled or re-ordered by the compiler/hardware to 
eliminate more stall cycles.

• The following loop has parallel loop iterations since computations in each 
iterations are data parallel and are performed on different elements of the arrays.  

for (i=1; i<=1000; i=i+1;)
x[i] = x[i] + y[i];

4 vector instructions:
Load Vector X
Load Vector Y
Add Vector X, X, Y

LV
LV
ADDV
SV

Example

• In supercomputing applications, data parallelism/LLP has been traditionally 
exploited by vector ISAs/processors, utilizing vector instructions

– Vector instructions operate on a number of data items (vectors) producing             

Store Vector XSV

#1   Winter 2010  lec#7   1-17-2011
Modified from Loop-unrolling lecture # 3 

a vector of elements not just a single result value.  The above loop might require 
just four such instructions.
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Loop Unrolling ExampleLoop Unrolling Example
Wh h d l d f i li

From Lecture #3 (slide # 11)

f (i 1000 i>0 i i 1)Note:When scheduled for pipeline

Loop:    L.D             F0, 0(R1)
L.D F6,-8 (R1)

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

Note:
Independent Loop Iterations
Resulting from data parallel
operations on elements of array X

Usually:   Data Parallelism  LLP
L.D             F6, 8 (R1)
L.D             F10, -16(R1)
L.D             F14, -24(R1)
ADD D F4 F0 F2

The execution time of the loop
has dropped to 14 cycles, or 14/4 = 3.5 
clock cycles per element
compared to 7 before scheduling

d 6 h h d l d b t ll dADD.D       F4, F0, F2
ADD.D       F8, F6, F2
ADD.D       F12, F10, F2

and 6 when scheduled but unrolled.
Speedup = 6/3.5 = 1.7

Unrolling the loop exposed more 
computations that can be scheduled 
t i i i t ll b i i th

i.e more ILP
exposed

ADD.D       F16, F14, F2
S.D             F4, 0(R1)
S.D F8, -8(R1)

to minimize stalls by increasing the 
size of the basic block from 5 instructions
in the original loop to 14 instructions
in the unrolled loop.

S.D             F8, 8(R1)
DADDUI   R1, R1,# -32
S.D             F12, 16(R1),F12
BNE R1 R2 L

Larger Basic Block            More ILP

Loop unrolling exploits data parallelism 
among independent iterations of a loop
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BNE           R1,R2, Loop
S.D             F16, 8(R1), F16    ;8-32 = -24

Loop unrolled four times and scheduled 

Exposed
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LoopLoop--Level Parallelism (LLP) AnalysisLevel Parallelism (LLP) Analysis
• Loop-Level Parallelism (LLP) analysis focuses on whether data accesses in later 

iterations of a loop are data dependent on data values produced in earlieriterations of a loop are data dependent on data values produced in earlier 
iterations and possibly making loop iterations independent (parallel).

e.g.  in      for (i=1; i<=1000; i++)
[i] [i] + S1 S1 S1 S1 S1

Iteration # 1               2                  3             …..           1000

…x[i] = x[i] + s;

the computation in each iteration is independent of the  previous iterations and the 
loop is thus parallel. The use of  X[i] twice is within a single iteration.

S1
(Body of Loop)

S1 S1 S1 S1

Dependency Graph

…
Usually:   Data Parallelism  LLP

p p [ ] g
 Thus loop iterations are parallel (or independent from each other).

• Loop-carried Data Dependence: A data dependence between different loop 
iterations (data produced in an earlier iteration used in a later one)

Classification of Date Dependencies in Loops:

1
iterations (data produced in an earlier iteration used in a later one).

• Not Loop-carried Data Dependence: Data dependence within the same loop 
iteration.

• LLP analysis is important in software optimizations such as  loop unrolling since it 
ll i l it ti t b i d d t ( d i t i )

2

usually requires loop iterations to be independent (and in vector processing).
• LLP analysis is normally done at the source code level or close to it since assembly 

language and target machine code generation introduces  loop-carried name 
dependence in the registers used in the loop.

#1   Winter 2010  lec#7   1-17-2011

– Instruction level parallelism (ILP) analysis, on the other hand, is usually done when 
instructions are generated by the compiler.

4th Edition: Appendix G.1-G.2 (3rd Edition: Chapter 4.4) 4



LLP Analysis Example 1LLP Analysis Example 1
• In the loop: Iteration # i                              i+1

Loop-carried Dependence

for (i=1; i<=100; i=i+1)  {
A[i+1] = A[i] + C[i]; /*  S1 */
B[i 1] B[i] A[i 1] } /* S2 */

S1 S1A i+1

A i+1 A i+1

Not Loop
Carried
Dependence
(within the

B[i+1] = B[i] + A[i+1];} /* S2 */
}

(Where A, B, C are distinct non-overlapping arrays)

S2 S2

Dependency Graph

B i+1

(
same iteration)

Produced in previous iteration Produced in same iteration

– S2 uses the value  A[i+1], computed by S1 in the same iteration.  This 
data dependence is within the same iteration  (not a loop-carried data 
dependence).

Dependency Graph

i.e.    S1   S2    on   A[i+1]    Not loop-carried data dependence

 does not prevent loop iteration parallelism. 

– S1 uses a value computed by S1 in the earlier iteration, since iteration 
i computes  A[i+1] read in iteration  i+1 (loop-carried dependence, 
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

Th t d t d d i l i d i th

i.e.    S1   S1    on   A[i]    Loop-carried data dependence
S2   S2    on   B[i]    Loop-carried data dependence

Loop-level

#1   Winter 2010  lec#7   1-17-2011

These two data dependencies are loop-carried spanning more than one 
iteration (two iterations) preventing loop parallelism.

In this example the loop carried dependencies  form two dependency chains 
starting from the very first iteration and ending at the last iteration
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LLP Analysis Example 2LLP Analysis Example 2
• In the loop:

Dependency Graph

Iteration # i                              i+1

Loop-carried Dependence

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /*  S1 */
B[i+1] = C[i] + D[i]; /* S2 */

S1 S1

B i+1

B[i+1]  C[i] + D[i]; /   S2 / 
}

– S1 uses the value B[i] computed by S2 in the previous iteration (loop-
carried dependence)

S2 S2

carried dependence)
– This dependence is not circular:

• S1 depends on S2 but S2 does not depend on S1.

i.e.    S2   S1    on   B[i]    Loop-carried data dependence

i.e. loop

And does not form a data dependence chain

– Can be made parallel by replacing the code with the following:
A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1)  {

Loop Start-up code

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}

Parallel  loop iterations
(data parallelism in computation
exposed in loop code)

#1   Winter 2010  lec#7   1-17-2011

}
B[101] = C[100] + D[100]; Loop Completion code

4th Edition: Appendix G.2 (3rd Edition: Chapter 4.4)
6



LLP Analysis Example 2LLP Analysis Example 2
for (i=1; i<=100; i=i+1) {

A[i] A[i] + B[i] /* S1 */Original Loop: A[i] = A[i] + B[i]; /*  S1 */
B[i+1] = C[i] + D[i]; /*  S2 */ 

}
Iteration 1 Iteration 2 Iteration 100Iteration 99

. . . . . .
A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];Loop-carried 
Dependence 

. . . . . .S1

S2

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1)  {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];Modified Parallel Loop: A[i+1]  A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Loop Start-up code Iteration 1
Iteration 98 Iteration 99. . . .

(one less iteration)

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];Not Loop
Carried 
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Loop Completion codeDependence
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ILP Compiler Support: ILP Compiler Support: 
LoopLoop--Carried Dependence DetectionCarried Dependence Detection

For access to elements of an array

pp pp
• To detect loop-carried dependence in a loop, the Greatest Common 

Divisor (GCD) test can be used by the compiler, which is based on the 
following: i.e written to

• If an array element with index: a  x  i  +  b is  stored and  element:           
c  x  i  +  d of the same array is  loaded later where index runs from  m
to  n, a dependence exists if the following two conditions hold:, p g

1 There are two iteration indices,  j and  k ,   m  j ,   k   n
(within iteration limits)

2 m n2 The loop stores into an array element indexed by:
a  x  j  + b

and later loads from the same array the element indexed by:
Produce or write (store) element with this Index

m, n

y y
c  x  k  +  d

Thus:   
a  x  j  +  b  =  c   x   k   +  d j  <  k

Later read (load) element with this index

#1   Winter 2010  lec#7   1-17-2011

Index of element read(loaded) laterIndex of element written (stored) earlier

Here  a, b, c, d  are constants

i.e later iteration
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The Greatest Common Divisor (GCD) TestThe Greatest Common Divisor (GCD) Test
• If a loop carried dependence exists, then :p p ,

GCD(c, a) must divide  (d-b)
The GCD test is sufficient to guarantee no loop carried dependenceThe GCD test is sufficient to guarantee no loop carried dependence
However there are cases where GCD test succeeds but no 
dependence exits because GCD test does not take loop 
bounds into account

Index of element stored:
a x i + b

In an earlier iteration

Example:

for(i=1; i<=100; i=i+1) {

a  x  i   b
Index of element loaded:

c  x  i  +  d

( ; ; ) {
x[2*i+3] = x[2*i] * 5.0;

} + 0

In a later iteration

Index of written element:
a  x  i  + b  = 2i + 3

a = 2     b = 3      c = 2      d = 0
GCD(a, c)  =   2

d - b =  -3   
Index of read element:
c  x  i  +  d = 2i

#1   Winter 2010  lec#7   1-17-2011

2  does not divide -3   No loop carried dependence possible.

4th Edition: Appendix G.2 (3rd Edition: Chapter 4.4)
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Showing Example Loop Iterations to Be 
IndependentIndependent

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5 0;

Index of element stored:
a  x  i  + b

Index of element loaded:x[2 i+3]  x[2 i]  5.0;
} c  x  i  +  d

a = 2     b = 3      c = 2      d = 0a  x  i  + b
= 2 x i + 3

c  x  i  +  d
= 2 x i + 0

Iteration i            Index of  x  loaded             Index of x stored

2
4
6

5
7
9

GCD(a, c)  =   2
d - b =  -3   
2  does not divide -3 

N d d ibl

  2 x  i  +  3 2 x  i   +  0

1
2
3

8
10
12
14

11
13
15
17

 No dependence possible.
What if GCD (a, c)
divided  d - b  ?

4
5
6
7

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15] x[16] x[17] x[18]

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

#1   Winter 2010  lec#7   1-17-2011

x[1]     x[2]      x[3]      x[4]     x[5]     x[6]      x[7]     x[8]       x[9]     x[10]    x[11]   x[12]    x[13]   x[14] x[15]    x[16]   x[17]   x[18]

For example from last slide 10



ILP Compiler Support:ILP Compiler Support:
Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)
– A compiler technique where loops are reorganized:

• Each new iteration is made from instructions selected
from a number of independent iterations of the original 
loop.

– The instructions are selected to separate dependent
i.e parallel iterations

Why?
The instructions are selected to separate dependent
instructions within the original loop iteration.

– No actual loop-unrolling is performed. By one or more
• A software equivalent to the Tomasulo approach?

– Requires:
Additional start p code to e ec te code left o t from

iterations

This static optimization is done at machine code level

• Additional start-up code to execute code left out from 
the first original loop iterations.

• Additional finish code to execute instructions left out 
f th l t i i l l it ti

#1   Winter 2010  lec#7   1-17-2011

from the last original loop iterations.

4th Edition: Appendix G.3 (3rd Edition: Chapter 4.4) 11



Software Pipelining (Symbolic Loop Unrolling)Software Pipelining (Symbolic Loop Unrolling)

New loop iteration body is made from instructions selectedp y
from a number of independent iterations of the original loop.
Purpose: Separate dependent instructions by one or more loop iterations.

#1   Winter 2010  lec#7   1-17-2011
4th Edition: Appendix G.3 (3rd Edition: Chapter 4.4) 12



Software Pipelining (Symbolic Loop Unrolling) ExampleSoftware Pipelining (Symbolic Loop Unrolling) Example
Show a software-pipelined version of the code: Software Pipeline

op
s

finish

start-up 
code

Loop Unrolledrla
pp

ed
 o

Time

finish 
codeLoop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI   R1,R1,#-8

ov
er

Time

3 times because chain of dependence of length 3 instructions
exist in body of original loop

, ,#
BNE R1,R2,LOOP

i.e.    L.D        ADD.D         S.D

er
at

io
n

Before:  Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

Time

start-up 
code

LOOP: }1

It
e

, ( )
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)

. 0, 8( )
1 S.D F4,0(R1)  ;Stores M[i]
2 ADD.D F4,F0,F2  ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI  R1,R1,#-8

2

, ( )
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI  R1,R1,#-24
11 BNE R1,R2,LOOP

, ,#
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

finish 
code}

3

#1   Winter 2010  lec#7   1-17-2011

, , , ( )

2 fewer loop iterations

No actual loop unrolling is done (do not rename registers)

No Branch delay slot in this example
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Software Pipelining Example Illustrated
L D F0 0(R1)Assuming 6 original iterations

(for illustration purposes):

L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Body
of  original  loop

1                      2                     3                        4                          5                         6
start-up 
code

L.D

ADD.D

L.D

ADD.D

L.D

ADD.D

L.D

ADD.D

L.D

ADD.D

L.D

ADD.D

S.D S.D S.D S.D S.D S.D

1                         2                     3                     4
finish 

4 Software Pipelined loop iterations  (2 fewer iterations) code

Loop Body of software Pipelined Version

#1   Winter 2010  lec#7   1-17-2011

Loop Body of software Pipelined Version
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• Limits to conventional exploitation of ILP:

Problems with Superscalar approachProblems with Superscalar approach
Motivation for Vector Processing:

• Limits to conventional exploitation of ILP:
1) Pipelined clock rate:  Increasing clock rate requires deeper 

pipelines  with longer pipeline latency which increases the CPI 
increase (longer branch penalty , other hazards).increase (longer branch penalty , other hazards). 

2) Instruction Issue Rate:  Limited instruction level parallelism (ILP) 
reduces actual instruction issue/completion rate. (vertical & 
horizontal waste))

3) Cache hit rate:  Data-intensive scientific programs have very large 
data sets accessed with poor locality;  others have continuous data 
streams (multimedia) and hence poor locality.  (poor memory 
latency hiding).

4) Data Parallelism: Poor exploitation of data parallelism present in 
many scientific and multimedia applications, where similar 
i d d i f d l f dindependent computations are performed on large arrays of data 
(Limited ISA, hardware support).

• As a result, actual achieved performance is much less than peak 
potential performance and low computational energy efficiency

#1   Winter 2010  lec#7   1-17-2011

potential performance and low computational energy efficiency 
(computations/watt)

From Advanced Computer Architecture (EECC722), Appendix F (4th ) Appendix G (3rd )
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Flynn’s 1972 Classification of Computer Flynn’s 1972 Classification of Computer 
ArchitectureArchitecture

• Single Instruction stream over a Single Data stream 
(SISD):  Conventional sequential machines                                        
(e g single-threaded processors: Superscalar VLIW )

SISD

(e.g single-threaded processors: Superscalar, VLIW ..).

• Single Instruction stream over Multiple Data streams (SIMD):  
Vector computers, array of synchronized  processing elements. 
(exploit data parallelism)

SIMD

(exploit data parallelism)

• Multiple Instruction streams and a Single Data stream (MISD):  
Systolic arrays for pipelined execution.

MISD

AKA Data Parallel Systems

• Multiple Instruction streams over Multiple Data streams (MIMD):  
Parallel computers:

• Shared memory multiprocessors (e g SMP CMP NUMA
Parallel Processor Systems:   Exploit Thread Level Parallelism (TLP)

MIMD

Shared memory multiprocessors (e.g. SMP, CMP, NUMA, 
SMT)

• Multicomputers:  Unshared distributed memory, message-
passing used instead (e.g Computer Clusters)

#1   Winter 2010  lec#7   1-17-2011

p g g p

From Multiple Processor Systems EECC756 Lecture 1
16



Vector ProcessingVector Processing
• Vector processing exploits data parallelism by performing the same computation 

on linear arrays of numbers "vectors” using one instructionon linear arrays of numbers "vectors” using one instruction.  
• The maximum number of elements in a vector supported by a vector ISA is 

referred to as the Maximum Vector Length (MVL).

SCALAR
(1 operation)

VECTOR
(N operations)Scalar

r1 r2 v1 v2

ISA
(RISC
or CISC)

Vector
ISA

+

r1

r3 v3

+
Up tor3

Add.d F3, F1, F2

v3 vector
length

addv.d v3, v1, v2

Up to
Maximum
Vector
Length
(MVL)

Add vector

#1   Winter 2010  lec#7   1-17-2011

dd.d 3, , , , (MVL)

Typical MVL = 64 (Cray)Appendix F (4th ) Appendix G (3rd )
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Properties of Vector Processors/ISAsProperties of Vector Processors/ISAs
• Each result in a vector operation is independent of• Each result in a vector operation is independent of 

previous results (Data Parallelism, LLP exploited)
=> Multiple pipelined  Functional units (lanes) usually used, vector 
compiler ensures no dependencies between computations on elements p p p
of a single vector instruction 
=> higher clock rate (less complexity)

• Vector instructions access memory with known patterns• Vector instructions access memory with known patterns
=> Highly interleaved memory with multiple banks used to provide       

the high bandwidth needed and hide memory latency.
=> Amortize memory latency of over many vector elements> Amortize memory latency of over many vector  elements
=> No (data) caches usually  used.  (Do use instruction cache)

• A single vector instruction implies a large number of g p g
computations (replacing  loops or reducing number of 
iterations needed)
=> Fewer instructions fetched/executed.

By a factor of MVL

#1   Winter 2010  lec#7   1-17-2011

=>  Reduces branches and branch problems (control hazards) in pipelines.

As if loop-unrolling by default MVL times?
Appendix F (4th ) Appendix G (3rd )
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Changes to Scalar Processor to Run Vector Changes to Scalar Processor to Run Vector 
InstructionsInstructions

• A vector processor typically consists of an ordinary pipelined scalar unit plus 
a vector unit.

• The scalar unit is basically not different than advanced pipelined CPUs

1

2

• The scalar unit is basically not different than advanced pipelined CPUs, 
commercial vector machines have included both out-of-order scalar units 
(NEC SX/5) and VLIW scalar units (Fujitsu VPP5000).

• Computations that don’t run in vector mode  don’t have high ILP, so can p g
make scalar CPU simple (e.g in-order).

• The vector unit supports a vector ISA including decoding of vector 
instructions which includes:

– Vector functional units.
– ISA vector register bank,  vector control registers (vector length, mask)
– Vector memory Load-Store Units (LSUs).

1

2

3

– Multi-banked main memory (to support the high data bandwidth 
needed, data cache not usually used)

• Send scalar registers to vector unit  (for vector-scalar ops).
S h i ti f lt b k f t i t i l di ti

4
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• Synchronization for results back from vector register, including exceptions.

Appendix F (4th ) Appendix G (3rd )
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Basic Types of Vector ArchitectureBasic Types of Vector Architectureypyp

• Types of architecture for vector ISAs/processors:

(ISAs)

Types of architecture for vector ISAs/processors:
– Memory-memory vector ISAs/processors:

All vector operations are memory to memoryAll  vector operations are memory to memory
– Vector-register ISAs/processors:

All vector operations between vector registers (except 
load and store)

• Vector equivalent of load-store architectures (ISAs)
• Includes all vector machines since the late 1980• Includes all vector machines since the late 1980

Cray, Convex, Fujitsu, Hitachi, NEC

#1   Winter 2010  lec#7   1-17-2011
Appendix F (4th ) Appendix G (3rd )
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Basic Structure of Vector Register Basic Structure of Vector Register 
Architecture (Vector MIPS)Architecture (Vector MIPS)Architecture (Vector MIPS)Architecture (Vector MIPS)

Multi-Banked
memory
for bandwidth 
and latency hiding Pipelined

4

Vector Load-Store

and latency-hiding Pipelined
Vector Functional Units

1

3
Units  (LSUs)

Each Vector Register
has MVL elements

3

Vector Control Registers

has MVL elements
(each 64 bits)

2

VLR 
Vector Length Register

VM 
MVL = Maximum Vector Length

#1   Winter 2010  lec#7   1-17-2011

Vector Mask Register

Typical MVL = 64 (Cray)
MVL range 64-4096 (4K)Appendix F (4th ) Appendix G (3rd )
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Example VectorExample Vector--Register ArchitecturesRegister Architectures

#1   Winter 2010  lec#7   1-17-2011
Appendix F (4th ) Appendix G (3rd )
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The VMIPS Vector FP Instructions
VMIPS = Vector MIPS

8 Vector Registers
V0-V7
MVL = 64
(Similar to Cray)

Vector FP

(Similar to Cray)

1 Unit Stride

Vector 
Memory

1- Unit Stride 
Access

2- Constant Stride 
Access

3- Variable Stride 
Access (indexed)

Vector Index

Vector Mask

Access (indexed)

Vector Length

#1   Winter 2010  lec#7   1-17-2011
In VMIPS:  Maximum Vector Length = MVL = 64

Vector Control Registers:  VM =  Vector Mask
VLR =  Vector Length Register

Appendix F (4th ) 
Appendix G (3rd )
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DAXPY (Y = DAXPY (Y = aa ** X + YX + Y))
Assuming vectors X Y

Scalar Vs. Vector
Code Example

Does it have good data
Parallelism?
Indication?

L.D     F0,a ;load scalar a
LV     V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar mult.
LV V3 Ry ;load vector Y

Assuming vectors X, Y 
are length 64 =MVL

Scalar vs. Vector

L D F0 a

LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
SV Ry,V4 ;store the result

VLR = 64
VM = (1,1,1,1 ..1)

As if the scalar loop code was unrolled MVL = 64 times:L.D F0,a
DADDIU       R4,Rx,#512 ;last address to load 

loop:  L.D F2, 0(Rx)   ;load X(i)
MUL D F2 F0 F2 ;a*X(i)

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)

As if the scalar loop code was unrolled MVL = 64 times: 
Every vector instruction replaces  64 scalar instructions.

Scalar Vs. Vector Code

MUL.D F2,F0,F2 ;a*X(i)
L.D F4, 0(Ry) ;load Y(i)
ADD.D F4,F2, F4 ;a*X(i) + Y(i)
S D F4 0(Ry) ;store into Y(i)

( ) p ( )
578 (2+9*64) vs.

6 instructions (96X)
64 operation vectors +      S.D F4 ,0(Ry) ;store into Y(i)

DADDIU        Rx,Rx,#8 ;increment index to X
DADDIU        Ry,Ry,#8 ;increment index to Y
DSUBU R20 R4 Rx ;compute bound

p
no loop overhead
also 64X fewer pipeline 
hazards
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DSUBU R20,R4,Rx ;compute bound
BNEZ R20,loop ;check if done

hazards

Unroll?  What does loop unrolling accomplish? Vector Control Registers:  
VM =  Vector Mask
VLR =  Vector Length Register
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Vector/SIMD/Multimedia Scalar ISA ExtensionsVector/SIMD/Multimedia Scalar ISA Extensions
• Vector or Multimedia ISA Extensions: Limited vector instructions added to 

scalar RISC/CISC ISAs with MVL = 2-8 Why? Improved exploitation of data parallelism scalar RISC/CISC ISAs with MVL = 2-8
• Example: Intel MMX: 57 new x86 instructions (1st since 386)

– similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC ...
3 integer vector element types: 8 8-bit (MVL =8) 4 16-bit (MVL =4) 2 32-

y p p p
in scalar ISAs/processors

– 3 integer vector element types: 8 8-bit (MVL =8), 4 16-bit (MVL =4) , 2 32-
bit (MVL =2) in packed in 64 bit registers

• reuse 8 FP registers (FP and MMX cannot mix)
- short vector: load, add, store 8, 8-bit operands

MVL = 8
for byte elements short vector: load, add, store 8, 8 bit operands

+

for byte elements
MMX

– Claim: overall speedup 1.5 to 2X for multimedia applications (2D/3D 
graphics, audio, video, speech …)g p , , , p )

• Intel SSE (Streaming SIMD Extensions) adds support for FP with MVL 
=2 to MMX

• Intel SSE2 Adds support of FP with MVL = 4 (4 single FP in 128 bit
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Intel SSE2  Adds support of FP with MVL  4 (4 single FP in 128 bit 
registers), 2 double FP MVL = 2, to SSE

Major Issue: Efficiently meeting the increased data memory bandwidth 
requirements of such instructions
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