

BlueGene

Luigi Brochard EMEA HPC Architect IBM Deep Computing

- Motivations
- Architecture
- Software
- Applications

BlueGene/L Project Motivations

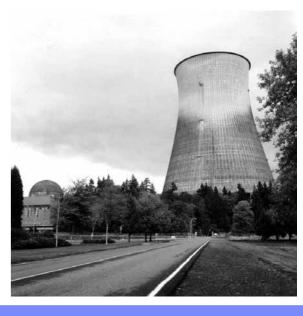
- Traditional supercomputer-processor design is hitting power/cost limits
- Complexity and power are major driver for cost and reliability
- Optimal design point is very different from standard approach based on highend superscalar nodes
- Integration, power, and technology directions are driving toward multiple modest cores on a single chip rather than one high-performance processor
 - Watts/FLOP will not improve much from future technologies.
- Applications for supercomputers do scale fairly well
 - Growing volume of parallel applications
 - Physics is mostly local
- But collective communications are becoming most important on large parallel systems

Performance per rack

type	POWER5	Xeon EMT	
peak TF	0.7	0,6	
#cpu	96	84	
max memory GB	3072	1344	
frequency GHz	1.9	3.6	
technology um	0.13	0.13	

What about a 360 TFlops system:

Floor

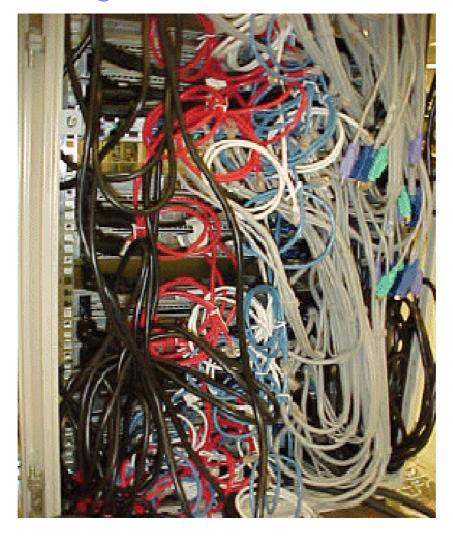

Cluster ~1000 SqM (extrapolation)

Power

Cluster ~15 MW (extrapolation)

Cost of energy:

1 MW/yr = \$1 M



BlueGene/L Project Motivations

- Traditional supercomputer-processor design is hitting power/cost limits
- Complexity and power are major driver for cost and reliability
- Optimal design point is very different from standard approach based on high-end superscalar nodes
- Integration, power, and technology directions are driving toward multiple modest cores on a single chip rather than one high-performance processor
 - Watts/FLOP will not improve much from future technologies.
- Applications for supercomputers do scale fairly well
 - Growing volume of parallel applications
 - Physics is mostly local
- But collective communications are becoming most important on large parallel systems

Complexity of wiring

BlueGene/L Project Motivations

- Traditional supercomputer-processor design is hitting power/cost limits
- Complexity and power are major driver for cost and reliability
- Optimal design point is very different from standard approach based on high-end superscalar nodes
- Integration, power, and technology directions are driving toward multiple modest cores on a single chip rather than one high-performance processor
 - Watts/FLOP will not improve much from future technologies.
- Applications for supercomputers do scale fairly well
 - Growing volume of parallel applications
 - Physics is mostly local
- Collective communications are becoming most important on large parallel systems

IBM approach

- Use embedded system-on-a-chip (SOC) design
 - Significant reduction of complexity
 - Simplicity is critical, enough complexity already due to scale
 - Significant reduction of power
 - Critical to achieving a dense and inexpensive packaging solution.
 - An absolute requirement for the future. (PowerPC 440 processor is ~1Watt)
 - Significant reduction in time to market, lower development cost and lower risk
 - Much of the technology is qualified.
- Utilize PowerPC architecture and standard messaging interface (MPI).
 - Standard, familiar programming model and mature compiler support.
- Advantages in utilizing SOC technique
- Integrated and tighly coupled networks
 - To sustain performance of applications on large number of nodes
- Close attention to RAS (reliability, availability, and serviceability) at all system levels.
 - One of the biggest challenges

The BlueGene/L Project from a High Level

- A 64k-node highly integrated supercomputer
- 180–360 teraflops peak performance
- Based on embedded system-on-a-chip (SOC) technology
- Only two ASICs: node and link
- Focuses on numerically intensive scientific problems
- "Grand challenge" science projects in partnership with LLNL and high-performance computing customers
 - Validate and optimize architecture using real applications
 - Help us investigate the reach of this machine

Performance per rack

type	POWER5	Xeon EMT	BG/L
peak TF	0.7	0,6	5.8
#cpu	96	84	2048
max memory GB	3072	1344	512
frequency GHz	1.9	3.6	0.7
technology um	0.13	0.13	0.13

What about 360 TFlops system:

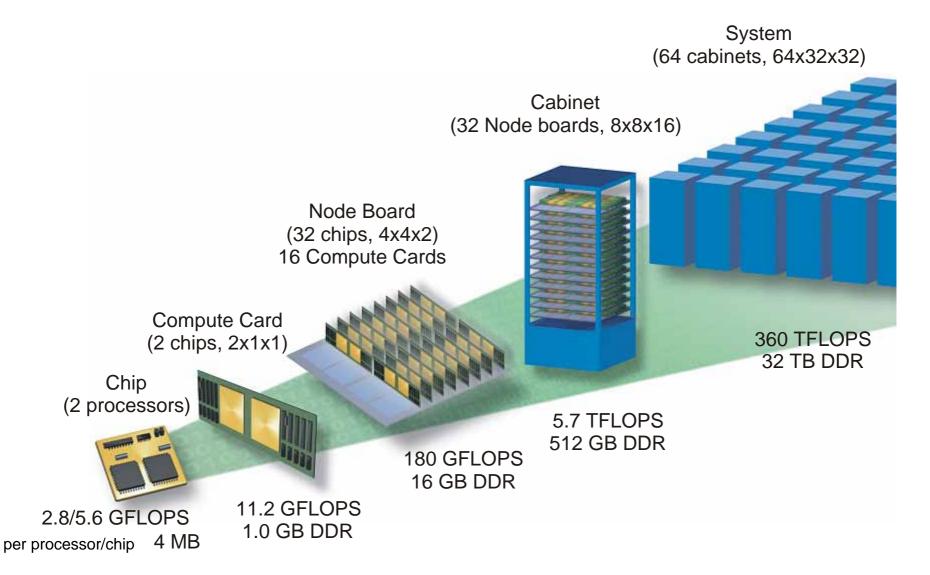
Floor

BG/L ~100 SqM

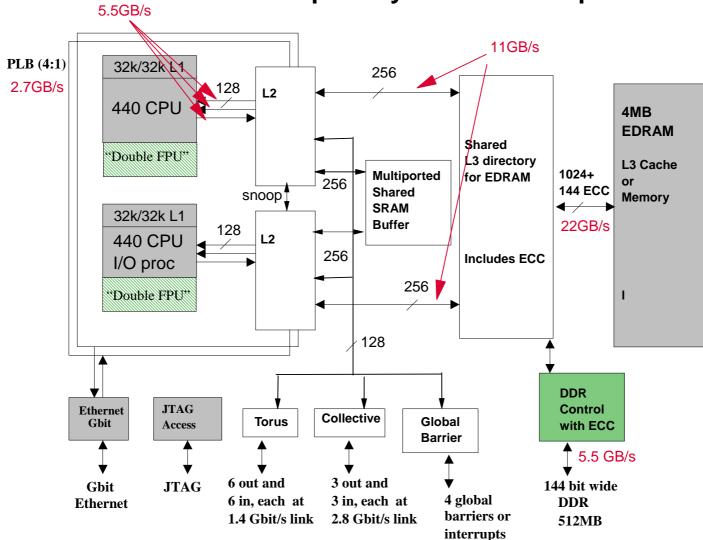
Cluster ~1000 SqM (extrapolation)

Power

BG/L ~1.5 MW

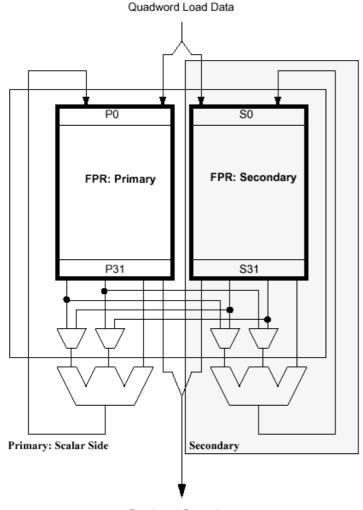

Cluster ~15 MW (extrapolation)

Architecture



BlueGene/L

BlueGene/L Compute System-on-a-Chip ASIC

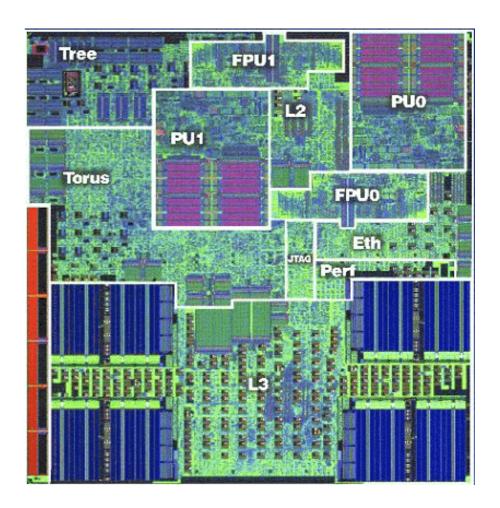

5.6**GF**

peak

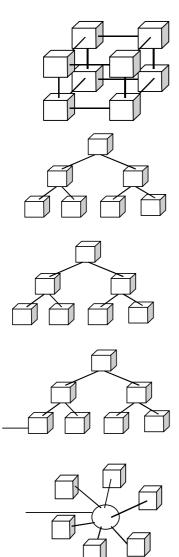
node

Double Hummer Floating-Point Unit

Quadword Store data


- 64-bit FPU
- Two replicas of a standard single-pipe PowerPC FPU
 - 2 x 32 64-bit registers
- Enhanced ISA, includes instructions:
 - Executed in either pipe
 - Simultaneously execute the same operation on both sides SIMD instructions
 - Simultaneously execute two different operations of limited types on different data

BlueGene/L Chip Physical Design and Power Measurements


- IBM CMOS 0.13µ Cu-11 ASIC process technology
- 123mm² chip, 95M transistors, ~15 Watt

Unit	Active power (W)	Size (cells)
Clock tree + access	1.15	264k
CPU/FPU/L1	7.54	14,700k
Torus network	0.67	4,963k
Collective network	0.25	2,350k
L2/L3/DDR control	2.6	18,310k
Others	0.49	10,720k
Leakage	0.2	

BlueGene/L - Five Independent Networks

3 Dimensional Torus

- 32x32x64 connectivity
- Backbone for one-to-one and one-to-some communications
- 1.4 Gb/s bi-directional bandwidth in all 6 directions (Total 2.1 GB/s/r
- ~100 ns hardware node latency

Collective Network

- Global Operations
- 2.8Gb/s per link, 68TB/s aggregate bandwidth
- Arithmetic operations implemented in tree
 - Integer/ Floating Point Maximum/Minimum
 - Integer addition/subtract, bitwise logical operations
- Latency of tree less than 2.5usec to top, additional 2.5usec to br
- Global sum over 64k in less than 2.5 usec (to top of tree)

Global Barriers and Interrupts

Low Latency Barriers and Interrupts

Gbit Ethernet

- File I/O and Host Interface
- Funnel via Global Tree network

Control Network

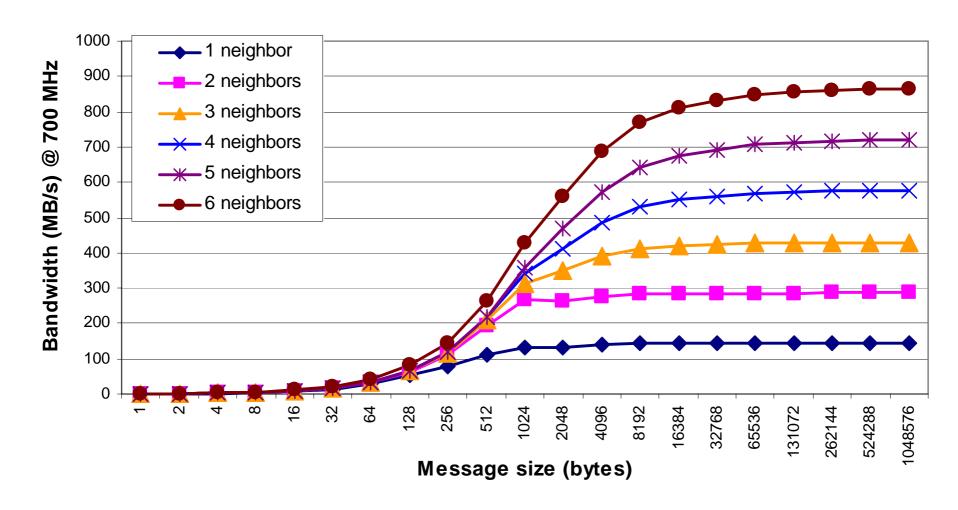
Boot, Monitoring and Diagnostics

Optimizing point-to-point communication (short messages: 0-10 KBytes)

The thing to watch is overhead

Bandwidth

CPU load


Not a factor: not enough network traffic

protocol	cycles	μS
short	2350	3.35
eager	4000	5.71
rendezvous	11000	15.71

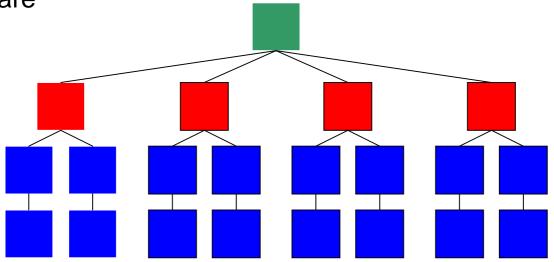
- Co-processor
- Network load
- Single-packet protocol: save overhead of chopping up message into packets

Measured MPI Send Bandwidth and Latency

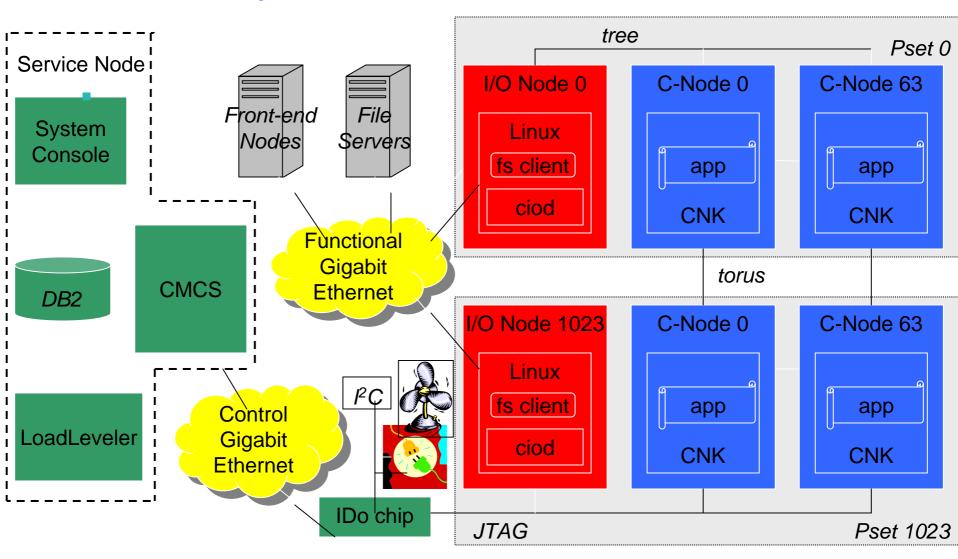
Latency @700 MHz = 3.3 + 0.090 * "Manhattan distance" + 0.045 * "Midplane hops" λ s

BG/L is a well balanced system

System	Memory	Memory	Network	Network
	Bandwidth	Latency	Latency	Barrier
				128 cpu
	GB/s	ns	us	us
	Byte/Flop	cycles	cycles	cycles
BG/L	2.2	110	3.35	6,75
	0,39	77	2345	4725
Xeon	2.8	140	4.98	79,9
Infiniband	0,19	504	17900	287640
POWER5	35	120	4.5	29,5
Federation	0,55	240	9000	59000



Software


BlueGene/L Software Hierarchical Organization

- Compute nodes dedicated to running user application, and almost nothing else - simple compute node kernel (CNK)
- I/O nodes run Linux and provide a more complete range of OS services – files, sockets, process launch, signaling, debugging, and termination
- Service node performs system management services (e.g., heart beating, monitoring errors) - transparent to application software

BlueGene/L System Architecture

BG/L Integration with pSeries

- Programmer's view: Nearly identical software stack/interface to pSeries
 - Compilers: IBM XLF, XLC, VA C++ compilers, hosted on PPC/Linux
 - Operating System: Linux-compatible kernel with some restrictions (not a problem for most HPC codes)
 - Message passing library: MPI
 - Math libraries: ESSL, MASS, MASSV
 - Parallel file system: GPFS
 - Job scheduler: LoadLeveler
- System administrator's view: Look and feel of a PPC Linux cluster, managed from a PPC/Linux host, but diskless and managed by a novel control system
 - Potential technologies to migrate to BladeCenter and clusters
 - Database-centric control system design enhanced robustness, security
 - Ethernet based communication for control, via IDO chip

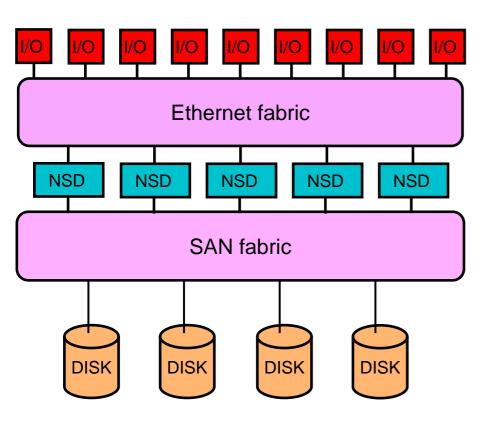
Job Scheduling in BlueGene/L

LoadLeveler solution

- BG/L specific job scheduler plugged into LoadLeveler as external scheduler
- Working on a integrated, internal scheduler, solution

Job scheduling strategies can significantly impact the utilization of large computer systems

- Machines with toroidal topology (as opposed to all-to-all switch) are particularly sensitive to job scheduling – this was demonstrated at LLNL with gang scheduling on Cray T3D
- BG/L scheduling strategies leveraging BG/L unique topology features can significantly enhance system utilization – from 45% to almost 90% (depends on workload)



Parallel File System for BlueGene/L

- BlueGene/L can generate enormous I/O demand
 - 10 GB/sec of writes per I/O-rich rack
 - 6 GB/sec of reads per I/O-rich rack
- Serving this kind of demand requires a parallel file system
- GPFS is being ported on BlueGene/L

GPFS for BlueGene/L

- GPFS solution for BlueGene/L is 3-tiered
 - First tier consists of the I/O nodes, which are GPFS clients
 - Second tier is a cluster of NSD (Network Shared Disk) servers
 - Third tier is a set of storage devices, typically Fiber Channel or iSCSI
- First-to-second tier interconnect has to be Ethernet
- Second-to-third tier can be fiber channel loop, fiber channel switch, or Ethernet (for iSCSI)
- Choice of NSD servers, SAN fabric and storage devices depends on specific requirements

Programming Models and Development Environment

- Familiar Aspects
 - SPMD model Fortran, C, C++ with MPI (MPI1 + subset of MPI2)
 - Full language support
 - Automatic SIMD FPU exploitation
 - Linux development environment
 - User interacts with system through FE nodes running Linux compilation, job submission, debugging
 - Compute Node Kernel provides look and feel of a Linux environment POSIX system calls (with restrictions)
 - Tools support for debuggers (Aetnus TotalView), MPI tracer, profiler, hardware performance monitors, visualizer (HPC Toolkit, Paraver, Kojak)
- Restrictions (lead to significant scalability benefits)
 - Strictly space sharing one parallel job (user) per partition of machine, one process per processor of compute node
 - Virtual memory constrained to physical memory size

Math Libraries: ESSL

- Started with small subset (of ~500 routines)
 - Mainly dense matrix kernels DGEMM, DGEMV, DDOT, DAXPY etc.
 - Exploiting second CPU for computation-intensive kernels
- Using ESSL source code to drive compiler testing and exploration of complete ESSL support
 - Status: Nearly complete functionality available using –O3 –qarch=440
 - Currently investigating SIMD FPU issues, performance enhancements
 - Expected general availability Nov 2005

FFT

 Technical University of Vienna developing FFT library optimized for BlueGene/L – effective use of the SIMD FPU

Applications

Some Applications on Blue Gene

- Blue Matter (IBM) *
- •Flash (ANL) *
- CTH (Sandia)
- •MM5
- Amber7, Amber8
- •GAMESS
- QMC (Caltech)
- •LJ (Caltech)
- PolyCrystal (Caltech)
- •PMEMD (LBL)
- •Miranda (LLNL) *
- LSMS (ORNL)
- NIWS (NISSEI)
- •HOMME (NCAR) *
- QBox (LLNL)
- •ddcMD (LLNL)

```
SAGE (LANL)
```

SPPM (LLNL)

UMT2K (LLNL)

Sweep3d (LANL)

MDCASK (LLNL)

GP (LLNL)

CPMD (IBM) *

TLBE (LBL)

HPCMW (RIST)

Paradis (LLNL)

SPHOT (LLNL)

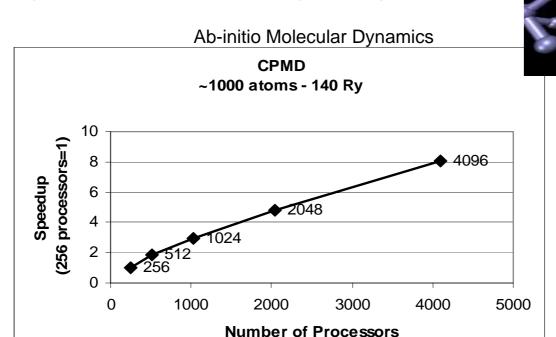
QCD (IBM)*, QCD (BU) *

NAMD

PAM-CRASH (ESI)

Raptor (LLNL) *

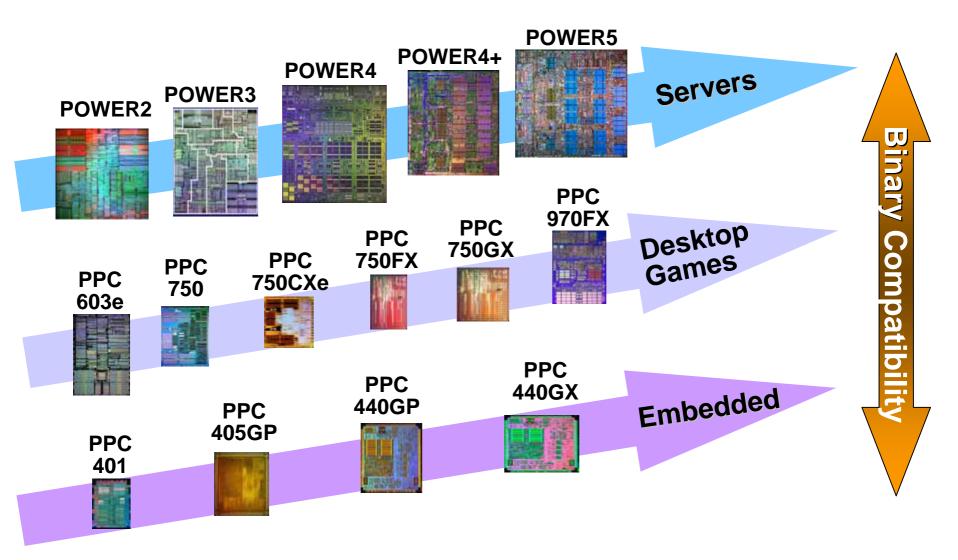
Enzo (San Diego)


Lawrence Livermore National Lab Apps SC04_BGL_Apps_LLNL.pdf

- MIRANDA: Hydrodynamics, Fluid Instability, Mixing, supernovae, Inertial Confinement Fusion
- RAPTOR: Eulerian AMR, Instabilities, Fusion Confinement, Astrophysics
- Qbox: MD, Plane Wave Pseudopotentials, DFT, nanotechnology/biochemistry
- ddcMD: Classical MD, classical metals, actinides under extreme conditions
- MDCASK: Atomic dynamics with Newtonian Mechanics and Electrostatics
- ParaDiS: Parallel Dislocation Simulator, strength of materials, AMR

CPMD - Alessandro Curioni, Salomon Billeter, Wanda Andreoni

Developed at IBM Zurich and other Universities from Car Parinello method for Molecular Dynamics Uses Plane Wave Basis functions, FFT, MPI_Collectives Demo – Si/SiO2 Interface % peak ~ 60 % VNM Ongoing project : IBM/LLNL PdH Hydrogen Storage


10 sec/step on 2048 BG/L 25 sec/step on 1400 Xeon Cluster at LLNL.

Top 500 List as of Nov 8, 2004 (top 10)

1.	IBM/DOE, USA	IBM BG/L DD2	32768 procs	70.7	TF/s
2.	NASA/Ames, USA	SGI Altix 1.5 GHz	10160 procs	51.8	TF/s
3.	Earth Simltr.,Japan	NEC	5120 procs	35.8	TF/s
4.	Barcelona SCC, Spain	IBM eServer JS20	3564 procs	20.5	TF/s
5.	LLNL , USA	INTEL Itanium 2	4096 procs	19.9	TF/s
6.	LANL, USA	Convex, ASCI Q	8192 procs	13.8	TF/s
7.	Virginia Tech, USA	Apple, X Server	2200 procs	12.2	TF/s
8.	IBM, USA	IBM BG/L DD1	8192 procs	11.6	TF/s
9.	NAVOCEANO, USA	IBM P655	2944 procs	10.3	TF/s
10.	NCSA, USA	DELL Xeon	2500 procs	9.8	TF/s

POWER: The Scaleable Architecture

