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The Memory Hierarchy & CacheThe Memory Hierarchy & Cache
• The impact of real memory on CPU Performance.
• Main memory basic properties:

– Memory Types:  DRAM vs.  SRAM
• The Motivation for The Memory Hierarchy:  

– CPU/Memory Performance Gap
– The Principle Of Locality

• Memory Hierarchy Structure & Operation• Memory Hierarchy Structure & Operation
• Cache Concepts: 

– Block placement strategy & Cache Organization:
• Fully Associative, Set Associative, Direct Mapped.

– Cache block identification: Tag Matching
– Block replacement policy
– Cache storage requirements 

U ifi d S t C h

Cache exploits memory access locality to:
• Lower AMAT by hiding long

main memory access latency.
– Unified vs.  Separate  Cache

• CPU Performance Evaluation with Cache:
– Average Memory Access Time (AMAT) 
– Memory Stall cycles

Thus cache is considered a memory
latency-hiding technique.

• Lower demands on main memory
bandwidth.

– Memory Access Tree



Removing The Ideal Memory Assumption
• So far we have assumed that ideal memory is used for both 

instruction and data memory in all CPU designs considered:           
– Single Cycle, Multi-cycle, and Pipelined CPUs.Single Cycle, Multi cycle, and Pipelined CPUs.

• Ideal memory is characterized by a short delay or memory access
time (one cycle) comparable to other components in the datapath.
– i.e  2ns which is similar to ALU delays.

• Real memory utilizing Dynamic Random Access Memory 
(DRAM) has a much higher access time than other datapath 
components (80ns or more).

R i th id l ti i CPU d i l d t

Memory Access Time >> 1 CPU Cycle

• Removing the ideal memory assumption in CPU designs leads to 
a large increase in clock cycle time and/or CPI greatly reducing 
CPU performance.

As seen next
Ideal Memory Access Time  1 CPU Cycle
Real Memory Access Time >> 1 CPU cycle

As seen next



• For example if we use real (non ideal) memory with 80 ns access time (instead of

Removing The Ideal Memory Assumption
• For example if we use real (non-ideal) memory with 80 ns access time (instead of 

2ns) in our CPU designs then:
• Single Cycle CPU: 

– Loads will require  80ns + 1ns + 2ns + 80ns + 1ns = 164ns  = C
– The CPU clock cycle time C increases from 8ns to 164ns (125MHz to 6 MHz)
– CPU is 20.5 times slower

• Multi Cycle CPU:  
To maintain a CPU cycle of 2ns (500MHz) instruction fetch and data memory now– To maintain a CPU cycle of 2ns (500MHz)  instruction fetch and data memory now 
take 80/2 = 40 cycles each resulting in the following CPIs

• Arithmetic Instructions CPI =    40 + 3 = 43 cycles
• Jump/Branch Instructions CPI = 40 + 2 = 42 cycles
• Store Instructions CPI = 80 + 2 = 82 cyclesStore Instructions CPI  80 + 2  82 cycles
• Load Instructions CPI =  80 + 3 = 83 cycles
• Depending on instruction mix, CPU is 11-20 times slower

• Pipelined CPU: 
– To maintain a CPU cycle of 2ns a pipeline with 83 stages is neededTo maintain a CPU cycle of 2ns, a pipeline with 83 stages is needed.
– Data/Structural hazards over instruction/data memory access may lead to  40 or 80 

stall cycles per instruction.
– Depending on instruction mix CPI increases from 1 to  41-81 and the CPU is 41-81 

times slower!times slower!

Ideal Memory Access Time  1 CPU Cycle
Real Memory Access Time >> 1 CPU cycle

T = I x CPI x C



Main MemoryMain Memoryyy
• Realistic main memory generally utilizes Dynamic RAM              

(DRAM), which use a single transistor to store a bit, but require         
a periodic data refresh by reading every row (~every 8 msec).   

• DRAM is not ideal memory requiring possibly 80ns or more to access. 
• Static RAM (SRAM) may be used as ideal main memory if the added 

expense, low density, high power consumption,  and complexity is p , y, g p p , p y
feasible  (e.g.  Cray Vector Supercomputers).

• Main memory performance is affected by:
M l t Aff h i l M d b

Will be explained later on

– Memory latency: Affects cache miss penalty.  Measured by:
• Access time: The time it takes between a memory access request is 

issued to main memory and the time the requested information is 
available to cache/CPUavailable to cache/CPU.

• Cycle time: The minimum time between requests to memory
(greater than access time in DRAM to allow address lines to be stable)

– Peak Memory bandwidth: The maximum sustained data transfer rate 
between main memory and cache/CPU.

RAM = Random Access Memory



Typical DRAM access time = 80 ns or more (non ideal)

Logical Dynamic RAM (DRAM) Chip Organization   Logical Dynamic RAM (DRAM) Chip Organization   
(16 Mbit)(16 Mbit)
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Control Signals:
1 - Row Access Strobe (RAS):  Low  to latch row address
2- Column Address Strobe (CAS):  Low to latch column address

(Single transistor per bit)

A periodic data refresh is required 

Basic Steps:

3- Write Enable  (WE)  or 
Output Enable (OE)

4- Wait for data to be ready

by reading  every bit

1 - Supply Row Address    2- Supply Column Address   3- Get Data



Key DRAM Speed Parameters
• Row Access Strobe (RAS)Time:Row Access Strobe (RAS)Time:

– Minimum time from RAS (Row Access Strobe) line falling to the first 
valid data output.

– A major component of memory latency and access time.j p y y
– Only improves 5% every year.

• Column Access Strobe (CAS) Time/data transfer time:
Th i i ti i d t d dditi l d t b h i l– The minimum time required to read additional data by changing column 
address while keeping the same row address.

– Along with memory bus width, determines peak memory bandwidth.

Example:  for a memory with 8 bytes wide bus with RAS =  40 ns and CAS = 10 ns  
and the following simplified memory timing

40 ns        50 ns       60 ns      70 ns       80 ns

RAS CAS CAS

1st 
8 bytes

CAS CAS

2nd 
8 bytes

3rd
8 bytes

4th
8 bytes

Memory Latency =  RAS + CAS = 50 ns
(to get first 8 bytes of data)

Peak Memory Bandwidth =  Bus width / CAS  =  8 x 100 x 106 = 800 Mbytes/s

Memory Latency

y y

Minimum Miss penalty to fill a cache line  with 32 byte block size =  80 ns (miss penalty)

DRAM = Dynamic Random Access Memory
Will be explained later on



DRAM Generations

Year Size RAS (ns)        CAS (ns)   Cycle Time       Memory Type

A
sy

A
sy

DRAM
( ) ( ) y y yp

1980 64 Kb 150-180 75 250 ns Page Mode
1983 256 Kb 120-150 50 220 ns              Page Mode
1986 1 Mb 100-120 25 190 ns

ynchronous D
ynchronous D

1989 4 Mb 80-100 20 165 ns           Fast Page Mode
1992 16 Mb 60-80 15 120 ns                    EDO 
1996 64 Mb 50-70 12 110 ns             PC66 SDRAM
1998 128 Mb 50-70 10 100 ns PC100 SDRAM

D
R

A
M

    Sync
D

R
A

M
    Sync1998  128 Mb 50-70 10              100 ns             PC100 SDRAM

2000  256 Mb 45-65 7          90 ns              PC133 SDRAM
2002  512 Mb 40-60 5 80 ns       PC2700 DDR SDRAM

8000:1 15:1               3:1

chronous D
R

A
chronous D

R
A

(Capacity)                   (~bandwidth)     (Latency)

A
M

A
M

PC3200 DDR (2003)

DDR2 SDRAM (2004)

DDR3 SDRAM (2007-8)A major factor in cache miss penalty M

Will be explained later on



Memory Hierarchy:  MotivationMemory Hierarchy:  Motivation
ProcessorProcessor--Memory (DRAM) Performance GapMemory (DRAM) Performance GapProcessorProcessor Memory (DRAM) Performance GapMemory (DRAM) Performance Gap

i.e.  Gap between memory access time (latency) and CPU cycle time
Memory Access Latency: The time between a memory access request is issued by the 
processor and the time the requested information (instructions or data) is available to the 
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Ideal Memory Access Time (latency) = 1 CPU Cycle
Real Memory Access Time (latency) >> 1 CPU cycle



ProcessorProcessor--DRAM  Performance Gap:DRAM  Performance Gap:
Impact of Real Memory on CPIImpact of Real Memory on CPIp yp y

• To illustrate the performance impact of using non-ideal memory, 
we assume a single-issue pipelined  RISC CPU with ideal CPI = 1.  

• Ignoring other factors the minimum cost of a full memory access• Ignoring other factors, the minimum cost of a full memory access 
in terms of number of wasted CPU cycles (added to CPI):

CPU         CPU         Memory               Minimum CPU memory stall cycles
Year            speed       cycle          Access                      or instructions wasted

MHZ             ns                     ns

1986:         8        125          190                 190/125 - 1    =    0.5
1989: 33 30 165 165/30 1 = 4 5

i.e wait cycles added to CPI

1989:       33         30           165                 165/30 -1        =   4.5
1992:      60        16.6         120                 120/16.6  -1  =     6.2
1996:      200        5            110                 110/5 -1         =     21
1998: 300 3 33 100 100/3 33 -1 = 291998:      300       3.33        100                 100/3.33 1         29
2000:    1000         1            90                  90/1 - 1          =    89
2002:    2000        .5            80                  80/.5 - 1      =      159
2004:    3000       .333         60                  60.333 - 1   =      179              

Ideal Memory Access Time  1 CPU Cycle
Real Memory Access Time >> 1 CPU cycle



Memory Hierarchy: MotivationMemory Hierarchy: Motivation
Th b t CPU f d i h b id i• The gap between CPU performance and main memory has been widening 
with higher performance CPUs creating performance bottlenecks for 
memory access instructions.

Th hi h i i d i t l l l f ith th

For Ideal Memory: Memory Access Time  1 CPU cycle

• The memory hierarchy is organized into several levels of memory with the 
smaller,  faster memory levels closer to the CPU:  registers, then primary 
Cache Level (L1), then additional  secondary cache levels (L2, L3…), then 
main memory then mass storage (virtual memory)main memory, then mass storage (virtual memory).

• Each level of the hierarchy is usually a subset of the level below: data 
found in a level is also found in the level below (farther from CPU) but at 
lower speed (longer access time)lower speed (longer access time).

• Each level maps addresses from a larger physical memory to a smaller 
level of physical memory closer to the CPU.

• This concept is greatly aided by the principal of locality both temporal 
and spatial which  indicates that programs tend to reuse data and 
instructions that they have used recently or those stored in their vicinity 

i i fleading to working set of a program.



Memory Hierarchy:  MotivationMemory Hierarchy:  Motivation
The Principle Of LocalityThe Principle Of Localityp yp y

• Programs usually access a relatively small portion of their address 
space (instructions/data) at any instant of time (program working 
set).)

• Two Types of access locality:
Temporal Locality: If an item (instruction or data) is

Thus: Memory Access Locality     Program Working Set

1 – Temporal Locality: If an item (instruction or data)  is 
referenced, it will tend to be referenced again soon.

• e.g. instructions in the body of inner loops

S ti l l lit If it i f d it h

1

2 – Spatial locality: If an item is referenced, items whose 
addresses are close will tend to be referenced soon.

• e.g. sequential instruction execution, sequential access to elements of 
array

2

Xarray
• The presence of locality in program behavior (memory access patterns), 

makes it possible to satisfy a large percentage of program memory access 
needs (both instructions and data) using faster memory levels (cache) with 

imuch less capacity than program address space.

Cache utilizes faster memory (SRAM)



Access Locality & Program Working Set
• Programs usually access a relatively small portion of their address space 

(instructions/data) at any instant of time (program working set).  

• The presence of locality in program behavior and memory access patterns, makes it 
possible to satisfy a large percentage of program memory access needs using fasterpossible to satisfy a large percentage of program memory access needs using faster
memory levels with much less capacity than program address space.

Program Instruction Address Space Program Data Address Space

Using Static RAM (SRAM)(i.e Cache)

Program instruction
working set at time T0

Program data
working set at time T0

Program instruction
working set at time T0 + 

working set at time T0

Program data
working set at time T0 + 

Locality in program memory access              Program Working Set



Static RAM (SRAM) Organization ExampleStatic RAM (SRAM) Organization Example
4 words X 3 bits each4 words X 3 bits each

Static RAM
D Flip-Flip

(SRAM)
Each bit can represented 
by a D flip-flop

Advantages over DRAM:

Much Faster than DRAM

No refresh needed
(can function as on-chip             
ideal memory or cache)ideal memory or cache)

Disadvantages:
(reasons not used as main
memory)

Much lower density per 
SRAM chip than DRAM

•DRAM one transistor 
per bit

• SRAM 6-8 transistors
per bit

Higher cost than DRAM

High power consumption

Thus SRAM is not suitable for main system memory 
but suitable for the faster/smaller cache levels



Levels of The Memory HierarchyLevels of The Memory Hierarchy

Part of The On-chip   
CPU  Datapath

CPU Faster Access Faster Access 
TimeTime Closer to CPU Corep

ISA 16-128  Registers

One or more levels (Static RAM):
Level 1: On-chip 16-64K 

Registers

C h

Farther away from 
the CPU:
Lower Cost/Bit

Level 2: On-chip 256K-2M
Level 3: On or Off-chip  1M-32M

Cache
Level(s)

Main Memory

Higher Capacity
Increased Access
Time/Latency
L Th h t/

Dynamic RAM (DRAM)
256M 16G Main Memory

Magnetic Disc

Lower Throughput/
Bandwidth

256M-16G

Interface:
SCSI, RAID,
IDE, 1394
80G 300G

(Virtual Memory)

Optical Disk or Magnetic Tape
80G-300G



A Typical Memory HierarchyA Typical Memory Hierarchy
((With Two Levels of Cache)With Two Levels of Cache)((With Two Levels of Cache)With Two Levels of Cache)
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Memory Hierarchy OperationMemory Hierarchy Operation
If i t ti d i i d b th CPU th l l• If an instruction or operand is required by the CPU, the levels 
of the memory hierarchy are searched for the item starting 
with the level closest to the CPU (Level 1 cache): L1 Cache

– If the item is found, it’s delivered to the CPU resulting in a cache 
hit without searching lower levels.

– If the item is missing from an upper level, resulting in a cache 
Hit rate for level one cache  =  H1

Hit rate for level 
one cache  =  H1

Cache Miss

miss, the level just below is searched. 
– For systems with several levels of cache, the search continues 

with cache level 2, 3 etc.

Miss rate for level one cache  = 1 – Hit rate =  1 - H1

– If all levels of cache report a miss then main memory is accessed 
for the item.
• CPU cache  memory:  Managed by hardware.y g y

– If the item is not found in main memory resulting in a page fault, 
then disk (virtual memory), is accessed for the item.
• Memory disk: Managed by the operating system withMemory disk:   Managed by the operating system with 

hardware support



Memory Hierarchy: TerminologyMemory Hierarchy: Terminology
• A Block: The smallest unit of information transferred between two levels• A Block: The smallest unit of information transferred between two levels.
• Hit: Item is found in some block in the upper level (example: Block X) 

– Hit Rate: The fraction of memory access found in the upper level.e. g. H1

– Hit Time: Time to access the upper level which consists of
RAM access time   +   Time to determine hit/miss

• Miss: Item needs to be retrieved from a block in the lower level (Block Y)

Hit rate for level 
one cache  =  H1

Ideally = 1 Cycle
(S)

– Miss Rate = 1 - (Hit Rate)
– Miss Penalty:  Time to replace a block in the upper level  + 

Time to deliver the missed block to the processor

Miss rate for level one cache  = 1 – Hit rate =  1 - H1e. g. 1- H1

M Time to deliver the missed block to the processor
• Hit Time << Miss Penalty Lower Level

MemoryUpper Level
Memory

To Processor

M

(F h/L d)
Ideally = 1 Cycle

Memory

From Processor
Blk X

Blk Y

e.g main memory(Fetch/Load)

(Store)

M Stall
cycles
on a miss

A block
e.g cacheTypical Cache Block (or line) Size: 16-64 bytes

Hit if block is found in cache



Basic Cache ConceptsBasic Cache Conceptspp
• Cache is the first level of the memory hierarchy once the address 

leaves the CPU and is searched first for the requested data.

If th d t t d b th CPU i t i th h it i t i d• If the data requested by the CPU is present in the cache, it is retrieved 
from cache  and the data access is a cache hit otherwise  a cache miss
and data must be read from main memory.

O h i bl k f d t t b b ht i f i• On a cache miss a block of data must be brought in from main 
memory to cache to possibly replace an existing cache block.

• The allowed block addresses where blocks can be mapped (placed) 
into cache from main memory is determined by h l tinto cache from main memory is determined by cache placement 
strategy.

• Locating a block of data in cache is handled by cache block 
identification mechanism (tag checking)identification mechanism (tag checking). 

• On a cache miss choosing the cache block being removed (replaced) is 
handled by the block replacement strategy in place.



Cache Design & Operation IssuesCache Design & Operation Issues
Q1:  Where can a block be placed cache?                      

(Block placement strategy & Cache organization)

Block placement/mapping

( p gy g )
• Fully Associative, Set Associative, Direct Mapped.

Q2 H i bl k f d if it i i h ?

Simple but suffers from conflict missesMost commonVery complex

L ti bl kQ2:  How is a block found if it is in cache?                
(Block identification)
• Tag/Block.

Cache Hit/Miss?

Tag Matching

Locating a block

g

Q3:  Which block should be replaced on a miss? 
(Bl k l t li )

g g

(Block replacement policy)
• Random, Least Recently Used (LRU), FIFO.

Block replacement



Cache Block Frame
Cache is comprised of a number of cache block frames

Data Storage: Number of bytes is the size of          
a cache block or cache line size (Cached 
instructions or data go here)

Other status/access bits:
(e,g. modified, read/write access bits)

C c e s co p sed o u be o c c e b oc es

DataTagV

( ,g , )
Typical Cache Block (or line) Size: 16-64 bytes

(Size = Cache Block)

Tag: Used to identify 
if the address supplied matches 
the address of the data stored

Valid Bit: Indicates whether the 
cache block frame contains valid data the address of the data stored 

The tag and valid bit are used to determine whether we have a cache hit or miss

Stated nominal cache capacity or size only accounts for space used to store instructions/data Nominal
C h

Nominal Cache Capacity = Number of Cache Block Frames x Cache Block Size

p y y p
and ignores the storage needed for tags and status bits:

Cache
Size

Cache utilizes  faster memory (SRAM)

e.g For a cache with block size = 16 bytes and 1024 = 210 = 1k cache block frames
Nominal cache capacity =  16 x 1k  =  16 Kbytes 



Locating A Data Block in CacheLocating A Data Block in Cache
• Each block frame in cache has an address tag• Each block frame in cache has an address tag.
• The tags of every cache block that might contain the required data 

are checked or searched in parallel. Tag Matching

• A valid bit is added to the tag to indicate whether this entry contains 
a valid address.

• The byte address from the CPU to cache is divided into:
– A block address, further divided into:

• An index field to choose/map a block set in cache.
(no index field when fully associative)

1

(no index field when fully associative).
• A tag field to search and match addresses in the selected set.

– A byte block offset to select the data from the block.
Ph i l B Add F CPU

2

3

Block Address Block
OffsetTag Index

Physical Byte Address From CPU

12

3
(byte)

OffsetTag Index12

Index = Mapping



Cache Organization & Placement StrategiesCache Organization & Placement Strategies
Placement strategies or mapping of a main memory data block ontoPlacement strategies or mapping of a main memory data block onto 
cache block frame addresses divide cache into three organizations:
1 Direct mapped cache: A block can be placed in only one location pp p y

(cache block frame), given by the mapping function:
index=  (Block address)  MOD  (Number of blocks in cache)

2
Mapping 
Function

Least complex to implement
suffers from conflict misses

2 Fully associative cache: A block can be placed anywhere in 
cache. (no mapping function).

3 Set associative cache: A block can be placed in a restricted set of
Most complex cache organization to implement

= Frame #

3 Set associative cache: A block can be placed in a restricted set of 
places, or cache block frames.   A set is a group of block frames in 
the cache.   A block is first mapped onto the set and then it can be 
placed anywhere within the set. The set in this case is chosen by:placed anywhere within the set.   The set in this case is chosen by:

index =  (Block address)  MOD  (Number of sets in cache)

If there are  n blocks in a set the cache placement is called  n-way 

Mapping 
Function

= Set #

p y
set-associative. Most common cache organization



Address Field Sizes/MappingAddress Field Sizes/Mapping
Ph i l B t Add G t d b CPU

Block Address Block

Physical Byte Address Generated by CPU
(The size of this address depends on amount of cacheable physical main memory)

Block
OffsetTag Index

Mapping

(byte)

Block Byte offset size = log2(block size)

pp g

Index size = log2(Total number of blocks/associativity)

Tag size = address size Tag size = address size -- index size index size -- offset sizeoffset size
Number of Sets

Mapping function: (From memory block to cache)
Cache set or block frame number =   Index  =  

= (Block Address) MOD (Number of Sets)

Number of Sets
in cache

  (Block Address) MOD (Number of Sets)

Fully associative cache has no index field or mapping function



Cache Organization: Cache Organization: 
Direct Mapped CacheDirect Mapped Cache

DataTagV
Cache Block Framepppp

A block in memory can be placed in one location (cache block frame) only,
given by:     (Block address)  MOD  (Number of blocks in cache)

In this case, mapping function: (Block address) MOD (8) = Index

0
0

0

C a c h e

0
01

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0

1
1

1

In this case, mapping function:     (Block address)  MOD  (8)

8 cache block 

(i.e low three bits of block address)
Index bits

Index

Block offsetBlock Address  = 5 bits

 Index

frames

Example: 
29 MOD 8  =  5

Here four blocks in memory 
map to the same cache block frame

Block offset 
Tag  =  2 bits Index  = 3 bits

32 memory 
blocks

h bl

(11101) MOD (1000)  = 101

index

p

Index size = Log2 8 
= 3 bits

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

cacheable

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

M e m o ry
Limitation of Direct Mapped Cache: Conflicts between
memory  blocks that map to the same cache block frame
may result in conflict cache misses



4KB Direct Mapped 4KB Direct Mapped 
Cache  ExampleCache  Example

A d d re s s (s h o w in g b it p o s i t io n s )

3 1 3 0 1 3 1 2 1 1 2 1 0

Index field
(10 bits)

Tag field

Address from CPU
Byte

pp
2 0 1 0

B y te
o f fs e t

T a g

In d e x

H i t D a t a

1K = 210 = 1024 Blocks
Each block = one word

Tag field
(20 bits)

Block offset
(2 bits)

4 Kbytes = Nominal Cache Capacity

V a l id T a g D a taIn d e x

0

1

2

Each block  one word

Can cache up to
232 bytes =  4 GB

f

(2 bits)
(4 bytes)

2of memory

Mapping function:
SRAM

1 0 2 1

1 0 2 2

1 0 2 3

2 0 3 2

Cache Block frame number =
(Block address) MOD (1024)

i.e . Index field or 10 low bits of 
block address

Block offset 
=  2 bits

Block Address  = 30 bits 
Tag  =  20 bits Index  = 10 bits

Hit or Miss Logic
(Hit or Miss?)
Di t d h i th l t l h i ti

Tag Matching

Tag                     Index                     Offset

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay
Mapping

Direct mapped cache is the least complex  cache organization
in terms of tag matching and Hit/Miss Logic complexity



Direct Mapped Cache Operation ExampleDirect Mapped Cache Operation Example
• Given a series of 16 memory address references given as word addresses: 

1 4 8 5 20 17 19 56 9 11 4 43 5 6 9 17
Here:
Block Address = Word Address1,  4,  8, 5,  20,  17,  19,  56,  9,  11,  4,  43,  5,  6,  9,  17.

• Assume a direct mapped cache with 16 one-word blocks that is initially empty, label each reference as   
a hit or miss and show the final content of cache

• Here:   Block Address = Word Address        Mapping Function = (Block Address) MOD 16 = Index

C h 1 4 8 5 20 17 19 56 9 11 4 43 5 6 9 17Cache 1   4   8   5   20   17   19   56   9   11   4   43   5   6   9   17
Block
Frame#       Miss    Miss   Miss   Miss      Miss       Miss      Miss     Miss     Miss      Miss      Miss    Miss     Hit       Miss   Hit      Hit

0
1 1 1 1 1 1 17 17 17 17 17 17 17 17 17 17 17

Hit/Miss

1             1   1   1   1   1    17   17  17   17   17  17   17  17  17   17  17
2
3                                       19  19   19   19  19   19  19  19   19  19
4                 4   4   4   20   20   20  20   20   20   4    4   4   4    4   4
5                         5    5    5    5   5    5    5   5    5   5   5    5   5
6                                                                       6    6   6
7
8                     8   8    8    8    8  56   56   56  56   56  56  56   56  56
9                                                 9    9   9    9   9   9    9   9
10
11                                                    11  11   43  43  43   43  43
1212
13
14
15

Initial
Cache

FinalCache Content After Each Reference
Cache 
Content
(empty)

Cache 
ContentHit Rate = # of hits / # memory references  = 3/16 = 18.75%

Mapping Function = Index =  (Block Address) MOD 16 
i.e 4 low bits of block address 



64KB Direct Mapped Cache Example64KB Direct Mapped Cache Example
A d d re s s (s ho w in g b it p o s ition s)

3 1 16 1 5 4 3 2 1 04K=  212 = 4096 blocks Index field (12 bits)
Tag field (16 bits)

Nominal 
Capacity

Byte

1 6 1 2 B yte
o ffs e t

H it D a ta

1 6 b its 12 8 b its

2

B lo c k o f fs e tInd ex

T ag

4K   2  4096 blocks
Each block =  four words =  16 bytes

Can cache up to
232 bytes =  4 GB
of memory

Word select
Block Offset (4 bits)

V T ag D a ta
of memory

4 K
e n tr ie s

SRAM

Typical cache
1 6 3 2

M u x

3 2 3 2 3 2

Tag 
Matching

Typical cache 
Block or line size:
32-64 bytes

3 2

Block Address  =  28 bits 

Tag  =  16 bits Index  = 12 bits
Block offset 
=  4 bits

Larger cache blocks take better advantage of spatial locality
and thus may result in a lower miss rate

Hit or miss?

X

Mapping Function: Cache Block frame number  =  (Block address) MOD (4096)
i.e. index field or 12 low bit of block address

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay



• Given the same series of 16 memory address references given as word addresses: 

Direct Mapped Cache Operation ExampleDirect Mapped Cache Operation Example With Larger Cache 
Block Frames

1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17.
• Assume a direct mapped cache with four word blocks and a total of 16 words that is initially empty, 

label each reference as a hit or miss and show the final content of cache
• Cache has 16/4 = 4 cache block frames  (each has four words)
• Here: Block Address = Integer (Word Address/4)• Here:    Block Address = Integer (Word Address/4)        

Mapping Function = (Block Address) MOD 4

2 bits

Word Address

Block Address

Or

Block

i.e We need to find block addresses for mapping

(index) i.e 2 low bits of block address

Cache 1   4   8   5   20   17   19   56   9   11   4   43   5   6   9   17
Block
Frame# Miss Miss Miss Hit Miss Miss Hit Miss Miss Hit Miss Miss Hit Hit Miss Hit Hit/Mi

0   1   2   1    5    4    4   14   2    2   1   10   1   1   2   4
Word
addresses

Block
addresses

Frame#       Miss    Miss   Miss    Hit       Miss       Miss       Hit       Miss     Miss       Hit       Miss    Miss     Hit       Hit Miss     Hit

0             0   0   0  0     0   16   16  16   16   16  16   16  16  16  16   16
1                 4   4  4    20   20   20  20   20   20   4    4   4   4   4    4
2                     8  8     8    8    8  56    8    8   8   40  40  40   8    8
3

Hit/Miss

Initial
Cache 
Content
(empty)

Final
Cache 
Content

Starting word address of Cache Frames 
Content After Each Reference

Hit Rate = # of hits / # memory references  = 6/16 = 37.5%

Here:  Block Address  Word Address



Block size = 4 words
Mapping

2 bits

Word Address

Block Address
i.e low two bits of block address

Word Addresses vs. Block Addresses
and Frame Content for Previous Example(index)

Given                                                              Cache Block Frame #                               word address  range                   
Word address         Block address              (Block address)mod 4 in frame (4 words)
1 0 0 0-3
4 1 1 4 74 1 1 4-7
8 2 2 8-11
5 1 1 4-7
20 5 1 20-23
17 4 0 16-19
19 4 0 16-19
56 14 2 56-59
9 2 2 8-11
11 2 2 8-11
4 1 1 4-7
43 10 2 40 4343 10 2 40-43
5 1 1 4-7
6 1 1 4-7
9 2 2 8-11
17 4 0 16-19

Block Address = Integer (Word Address/4)



Cache Organization: Cache Organization: 
Set Associative CacheSet Associative Cache

DataTagV
Cache Block Frame

Wh t i ti ?

T a g D a t a

O n e - w a y s e t a s s o c ia t iv e
(d i re c t m a p p e d )

B lo c k

0

Set Associative CacheSet Associative Cache
Set associative cache reduces cache misses by reducing conflicts
between blocks that would have been mapped to the same cache 
block frame in the case of direct mapped cache

1-way set associative:

Why set associative?

0

1

2

3

4

T a g D a ta

T w o - w a y s e t a s s o c ia t iv e

S e t

0

1

T a g D a ta

2-way set associative:
2 blocks frames per set

y
(direct mapped)
1 block frame per set

7

4

5

6

2

3

4 t i ti

T a g D a t a T a g D a ta T a g D a ta T a g D a ta

F o u r - w a y s e t a s s o c ia t iv e

S e t

0

1

4-way set associative:
4 blocks frames per set

8-way set associative:
8 blocks frames per set

T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta

E ig h t - w a y s e t a s s o c ia t iv e ( fu l ly a s s o c ia t iv e )

1 8 blocks frames per set
In this case it becomes fully associative
since total number of block frames = 8

A cache with a total of 8 cache block frames shown



Cache Organization/Mapping ExampleCache Organization/Mapping Example
2-way

(No mapping function) = index = 00= index = 100

8 Block Frames

00
100No Index

Index
Index

32 Block Frames

12 =  1100



Block Offset Field

4K Four4K Four--Way Set Associative Cache:Way Set Associative Cache:
MIPS Implementation ExampleMIPS Implementation ExampleNominal 

Capacity

Index Field

Tag
Field (22 bits)

Block Offset Field
(2 bits)

Ad dress

2 2 8

123891011123031 0

Byte

Index Field
(8 bits)

V TagIndex

0
1
2

D ata V Tag D ata V T ag D ata V T ag D ata

1024 block frames
Each block = one word
4-way set associative
1024 / 4=  28= 256 sets

Set Number

253
254
255

322 2

Can cache up to
232 bytes =  4 GB
of memory

SRAM

Parallel

Set associative cache requires parallel tag 
matching and more complex hit logic which 
may increase hit time

Hit/
Miss

Tag Matching

4 - to - 1 m ultip le xo r
Block Address  =  30 bits 

Tag  =  22 bits Index  = 8 bits
Block offset 
=  2 bits

may increase hit time

Tag                     Index                     Offset

Logic

H it D a ta
g

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay



Cache Replacement PolicyCache Replacement Policy
• When a cache miss occurs the cache controller may have to select a block of 

Which block to replace
on a cache miss?

cache data to be removed from a cache block frame and replaced with the 
requested data, such a block is selected by one of three methods:

(No cache replacement policy in direct mapped cache) No choice on which block to replace

– Random:  
• Any block is randomly selected for replacement providing uniform 

allocation.
• Simple to build in hardware Most widely used cache replacement

1

• Simple to build in hardware.  Most widely used cache replacement 
strategy.

– Least-recently used (LRU):  
• Accesses to blocks are recorded and and the block replaced is the one

2

• Accesses to blocks are recorded and and the block replaced is the one 
that was not used for the longest period of time.

• Full LRU is expensive to implement, as the number of blocks to be 
tracked increases, and is usually approximated by block usage bits that 

l d t l ti i t lare cleared at regular time intervals.
– First In, First Out (FIFO):

• Because LRU can be complicated to implement, this approximates LRU 
by determining the oldest block rather than LRU

3

by determining the oldest block rather than LRU



Miss Rates for Caches with Different Size, Miss Rates for Caches with Different Size, 
Associativity & Replacement AlgorithmAssociativity & Replacement Algorithm

Sample DataSample DataSample DataSample Data
Associativity: 2-way 4-way 8-way
Size LRU Random LRU    Random LRU Random

Nominal 

16 KB 5.18% 5.69% 4.67%    5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54%    1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13%    1.13% 1.12% 1.12%

Program steady state cache miss rates are given

Lower miss rate is better

Program steady state cache miss rates are given
Initially cache is empty and miss rates ~ 100%

FIFO replacement miss rates (not shown here) is better than random but worse than LRU

For SPEC92

FIFO replacement miss rates (not shown here) is better than random but worse than LRU

Miss Rate = 1 – Hit Rate = 1 – H1



• Given the same series of 16 memory address references given as word addresses: 
1 4 8 5 20 17 19 56 9 11 4 43 5 6 9 17 (LRU Replacement)

22--Way Set Associative Cache Operation ExampleWay Set Associative Cache Operation Example
Here: Block Address = Word Address

1,  4,  8,  5,  20,  17,  19,  56,  9,  11,  4,  43,  5,  6,  9,  17.       (LRU Replacement)
• Assume a two-way set associative cache with one word blocks and a total size of 16 words that is 

initially empty, label each reference as a hit or miss and show the final content of cache
• Here:   Block Address = Word Address        Mapping Function = Set #  = (Block Address) MOD 8

C h 1 4 8 5 20 17 19 56 9 11 4 43 5 6 9 17Cache 1   4   8   5   20   17   19   56   9   11   4   43   5   6   9   17
Set #

Miss    Miss   Miss   Miss      Miss       Miss      Miss     Miss     Miss      Miss      Hit      Miss      Hit       Miss Hit      Hit

8   8   8    8    8    8   8    8    8   8   8   8   8    8
56 56 56 56 56 56 56 56 56

Hit/Miss

0 LRU
56  56   56   56  56  56  56  56   56

1   1   1   1   1    1    1    1   9    9    9   9   9   9   9    9
17   17   17  17   17   17  17  17  17  17   17

19   19   19  19   19  43  43  43  43   43

1
2
3

LRU

11   11  11  11  11  11   11
4   4   4   4    4    4    4    4   4    4    4  4   4   4    4           

20   20   20   20   20  20   20  20  20  20  20   20
5   5    5    5    5    5   5    5    5  5   5   5    5

6 6 6

3
4
5

LRU

LRU

6   6    6

Initial
Cache

FinalCache Content After Each Reference

6
7

Cache 
Content
(empty)

Cache 
ContentHit Rate = # of hits / # memory references  = 4/16 = 25%

Replacement policy: LRU = Least Recently Used



Cache Organization/Addressing ExampleCache Organization/Addressing Example

• Given the following:
– A single-level L1 cache with 128 cache block framesA single level L1 cache with 128 cache block frames

• Each block frame contains four words (16 bytes)
– 16-bit memory addresses to be cached (64K bytes main memory 

4096 bl k ) 16

i.e block size = 16 bytes

or 4096 memory blocks)

• Show the cache organization/mapping and cache 
dd fi ld f

64 K bytes = 216 bytes
Thus byte address size = 16 bits 

address fields for:

• Fully Associative cache.
• Direct mapped cache.
• 2-way set-associative cache.



Cache Example: Fully Associative CaseCache Example: Fully Associative Case

V

V

All 128 tags must
be checked in parallel

V

be checked in parallel
by hardware to locate 
a data block

V

Valid bit

Block offset 
4 bit

Block Address  = 12 bits 
4 = log2 (16)

No Index

=  4 bitsTag  = 12 bits

Mapping Function = none  (no index field)
i.e Any block in memory can be mapped  to any cache block frame

g2 ( )



Cache Example: Direct Mapped CaseCache Example: Direct Mapped Case

V

V

O l i l t t

V

Only a single tag must
be checked in parallel
to locate a data block

V lid bit

V

Valid bit

5 12 i d i

Block offset 
4 bit

Block Address  = 12 bits 

5 = 12 – index size 
= 12 - 7

Index size = log2( #of sets) = log2(128) = 7

=  4 bitsTag  =  5 bits Index  = 7 bits Main Memory
Mapping Function:  Cache Block frame number  = Index =   (Block address) MOD (128)

25 = 32 blocks in memory map onto the same cache block frame

4 = log2 (16)



Cache Example: 2Cache Example: 2--Way SetWay Set--AssociativeAssociative

Two tags in a set must
be checked in parallel
to locate a data block

6 = 12 – index size 
= 12 - 6

Block offset 
4 bit

Block Address  = 12 bits 

Valid bits not shown
Index size= log2( #of sets) = log2(128/2) = log2(64) = 6

=  4 bitsTag  =  6 bits Index  =  6 bits Main Memory
Mapping Function:     Cache Set Number  =  Index =  (Block address) MOD (64)

26 = 64 blocks in memory map onto the same cache set

4 = log2 (16)



Calculating Number of Cache Bits NeededCalculating Number of Cache Bits Needed
DataTagVBlock Address 

I d
Block offset 

• How many total bits are needed for a direct- mapped cache with 64 KBytes 
of data and one word blocks, assuming a 32-bit address?

Cache Block Frame (or just cache block)
Tag Index

Address Fields

i e nominal cache
– 64 Kbytes  = 16 K words =  214 words =  214 blocks
– Block size  = 4 bytes => offset size =  log2(4) = 2 bits, 
– #sets  =  #blocks = 214 => index size =  14 bits

T i dd i i d i ff t i 32 14 2 16 bit

i.e nominal cache
Capacity = 64 KB

Number of cache block frames

– Tag size  =  address size  - index size - offset size  =  32 - 14 - 2  = 16 bits 
– Bits/block =  data bits +  tag bits  +  valid bit  = 32 + 16 + 1 = 49
– Bits in cache =  #blocks  x  bits/block  =  214 x  49 =  98 Kbytes

• How many total bits would be needed for a 4 way set associative cache to

Actual number of 
bits in a cache block 
frame

• How many total bits would be needed for a 4-way set associative cache to 
store the same amount of data?
– Block size and  #blocks does not change.
– #sets  =  #blocks/4 = (214)/4  =  212 =>    index size  = 12 bits( )
– Tag size  =  address size - index size  - offset  = 32 - 12 - 2 =  18 bits
– Bits/block  =  data bits +  tag bits +  valid bit =  32 + 18 + 1 = 51
– Bits in cache  =  #blocks  x  bits/block =  214 x  51  =   102 Kbytes

• Increase associativity  =>  increase bits in cache

More bits in tag 1 k = 1024 = 210Word = 4 bytes



Calculating Cache Bits NeededCalculating Cache Bits Needed
DataTagVBlock Address 

I d
Block offset 

• How many total bits are needed for a direct- mapped cache with 64 
KBytes of data and 8 word (32 byte) blocks, assuming a 32-bit address

Cache Block Frame (or just cache block)
Tag Index

Address Fields
Nominal 
size

KBytes of data and 8 word  (32 byte) blocks, assuming a 32 bit address 
(it can cache 232 bytes in memory)?

– 64 Kbytes  =  214 words  = (214)/8 = 211 blocks Number of cache block frames

– block size  =  32 bytes   
=>   offset size   =  block offset  +  byte offset =  log2(32) = 5 bits, 

#sets = #blocks = 211    => index size = 11 bits– #sets  =   #blocks  = 2 =>   index size  = 11 bits

– tag size = address size - index size  - offset size = 32 - 11 - 5 =  16 bits
–

– bits/block = data bits + tag bits + valid bit = 8 x 32 + 16 + 1 = 273 bitsbits/block  data bits + tag bits + valid bit  8 x 32 + 16 + 1  273 bits

– bits in cache  =  #blocks x bits/block = 211 x 273 = 68.25 Kbytes

• Increase block size => decrease bits in cache. Actual number of 
bits in a cache blockIncrease block size  >  decrease bits in cache.

Fewer cache block frames thus fewer tags/valid bits

Word =  4 bytes         1 k = 1024 = 210

bits in a cache block 
frame



Unified vs.  Separate Level 1 CacheUnified vs.  Separate Level 1 Cache
• Unified Level 1 Cache (Princeton Memory Architecture) AKA Shared Cache• Unified Level 1 Cache  (Princeton Memory Architecture).

A single level 1 (L1 ) cache is used for both instructions and data.

• Separate  instruction/data Level 1 caches (Harvard  Memory Architecture):
Or Split

AKA Shared Cache

The level 1 (L1) cache is split into two caches, one for instructions (instruction 
cache,  L1 I-cache) and the other for data (data cache,  L1  D-cache).  

Processor P

Control

Processor

Control

Processor Most
Common

Datapath

R
egiste

Unified
Level 
One
Cache

Datapath

R
egist

L1
I-cache

Instruction
Level 1
Cache

D t

Accessed
for both
instructions
And data

ers Cache
L1

ers L1
D-cache

Unified Level 1 Cache
(Princeton Memory Architecture)

Separate (Split) Level 1 Caches
(Har ard Memor Architect re)

Data
Level 1
Cache

Why?

AKA shared

(Princeton Memory Architecture) (Harvard  Memory Architecture)

Split Level 1 Cache is more preferred in pipelined CPUs
to avoid instruction fetch/Data access structural hazards

Why?



Memory Hierarchy/CacheHierarchy/Cache Performance:
Average Memory Access Time (AMAT), Memory Stall cycles

• The Average Memory Access Time (AMAT): The number of cycles required 
to complete an average memory access request by the CPU.
M t ll l Th b f t ll l dd d t• Memory stall cycles per memory access: The number of stall cycles added to 
CPU execution cycles for one memory access.

• Memory stall cycles per average memory access =  (AMAT -1)
F id l AMAT 1 l thi lt i t ll• For ideal memory:   AMAT  =  1  cycle,  this results in zero memory stall 
cycles.

• Memory stall cycles per average instruction =
N b f i t tiNumber of memory accesses per instruction

x Memory stall cycles per average memory access
=  (  1  +   fraction of loads/stores)  x  (AMAT -1 )

Instruction 
Fetch

Base CPI =  CPIexecution =   CPI with ideal memory

CPI CPI + Mem Stall cycles per instructionCPI =    CPIexecution +   Mem Stall cycles per instruction

cycles = CPU cycles



Cache Performance:Cache Performance:
Single Level L1 Princeton (Unified) Memory ArchitectureSingle Level L1 Princeton (Unified) Memory Architecture

CPUti I t ti t CPI Cl k l tiCPUtime =   Instruction count x  CPI  x  Clock cycle time
CPIexecution =   CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instructionCPI     CPIexecution    Mem Stall cycles per instruction 

Mem Stall cycles per instruction =  
Memory  accesses per instruction  x Memory stall cycles per access i.e No hit penalty

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)
Cache Hit Rate = H1         Miss Rate = 1- H1
Memory stall cycles per memory access  =  Miss rate x  Miss penalty = (1- H1 ) x M

Miss Penalty = M

AMAT =  1 + Miss rate x  Miss penalty
Memory  accesses per instruction =  (  1  +   fraction of loads/stores)
Miss Penalty = M = the number of stall cycles resulting from missing in cache

= 1 + (1- H1) x M

= Main memory access time - 1
Thus for a unified L1 cache with no stalls on a cache hit:

CPI =    CPIexecution +  (1  + fraction of loads/stores) x (1 - H1) x Mexecution ( ) ( )
AMAT = 1 + (1 - H1) x M

CPI = CPIexecution +  (1 + fraction of loads and stores) x stall cycles per access
= CPIexecution +  (1 + fraction of loads and stores) x (AMAT – 1)



Memory Access Tree:
For Unified Level 1 CacheFor Unified Level 1 Cache

CPU Memory  Access

100%H1 (1-H1)

Probability to be here

L1  Miss:
%  =  (1- Hit rate)  =  (1-H1)
Access time = M  + 1 

L1  Hit:
%  =  Hit Rate = H1
Hit Access Time = 1

100%
or 1

H1 (1 H1)
Unified

L1

Stall cycles per access  =   M 
Stall = M  x (1-H1)

Stall cycles per access = 0
Stall= H1 x 0 = 0

( No Stall)
Hit TimeHit Rate Miss Rate Miss Time

Assuming:
Ideal access on a hit

AMAT   =      H1  x  1   +     (1 -H1  )   x   (M+ 1)     =         1    +   M  x  ( 1 -H1)

Stall Cycles Per Access =  AMAT - 1   =    M  x   (1  -H1)
CPI = CPIexecution +  (1  + fraction of loads/stores) x  M  x   (1  -H1)

M  =  Miss Penalty = stall cycles per access resulting from missing in cache
M + 1 =  Miss Time = Main memory access time
H1  =  Level 1  Hit Rate                  1- H1 = Level 1 Miss Rate

AMAT = 1 + Stalls per average memory access



Cache Performance ExampleCache Performance Example
• Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with    pp p y

a single level of cache.
• CPIexecution =  1.1
• Instruction mix: 50% arith/logic, 30% load/store, 20% control

(i.e base CPI with ideal memory)

Instruction mix:   50% arith/logic,  30% load/store, 20% control
• Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPI =   CPIexecution +   mem stalls per instruction
MMem Stalls per instruction =  

Mem accesses per instruction  x  Miss rate x Miss penalty
Mem accesses per instruction =  1  +   .3   =  1.3

M(1- H1)

p

Mem Stalls per memory access  = (1- H1) x M = .015 x 50  = .75 cycles
AMAT 1 75 1 75 l

Instruction fetch Load/store

AMAT = 1 +.75 = 1.75 cycles
Mem Stalls per instruction  =  1.3 x  .015 x 50  =   0.975

CPI =  1.1  +  .975 =   2.075

The ideal memory CPU with no misses is  2.075/1.1 =  1.88 times faster 

M  =  Miss Penalty = stall cycles per access resulting from missing in cache



Cache Performance ExampleCache Performance Example
• Suppose for the previous example we double the clock rate to 

400 MHz, how much faster is this machine, assuming similar 
miss rate, instruction mix?

• Since memory speed is not changed, the miss penalty takes 
more CPU cycles:

Mi lt M 50 2 100 lMiss penalty = M =  50  x  2  =  100 cycles.
CPI =  1.1 +  1.3 x .015 x 100 =  1.1 + 1.95 =  3.05 

Speedup = (CPI x C )/ (CPI x C )Speedup  =    (CPIold x Cold)/ (CPInew x Cnew)
=   2.075  x 2 /  3.05  =  1.36

The new machine is only 1.36 times faster rather than 2y
times faster due to the increased effect of cache misses.
 CPUs with higher clock rate, have more cycles per cache miss and more   

i CPImemory impact on CPI.



L1
I-cache

Instruction
Level 1
Cache

Data
Level 1
Cache

L1
D-cache

Cache Performance:Cache Performance:

Miss rate = 1 – instruction H1Miss rate = 1 – data H1Usually: Data Miss Rate >> Instruction Miss Rate

For a CPU with separate or split level  one (L1) caches for  

Single Level L1 Harvard  (Split) Memory ArchitectureSingle Level L1 Harvard  (Split) Memory Architecture

instructions and data  (Harvard memory architecture)  and no stalls 
for cache hits:

CPUtime Instr ction co nt CPI Clock c cle timeCPUtime  =   Instruction count x  CPI  x  Clock cycle time

CPI =    CPIexecution +   Mem Stall cycles per instruction 
This is one method to find stalls per instruction

Mem Stall  cycles per instruction =  
Instruction Fetch Miss rate x M  +

Data Memory Accesses Per Instruction x Data Miss Rate x M

p
another method is shown in next slide

1- Instruction H1
y

M  =  Miss Penalty = stall cycles per access to main memory
resulting from missing in cache

1- Data H1Fraction of Loads and Stores

resulting from missing in cache

CPIexecution =  base CPI with ideal memory



Memory Access Tree
For Separate Level 1 CachesFor Separate Level 1 Caches

CPU Memory  Access

% data% I t ti
1 or 100%Split

L
Instruction Data

% data  x (1 - Data H1 )% data  x Data H1 

% data% Instructions

%instructions  
x (1 - Instruction H1 )

%instructions  x
Instruction H1 )

L1

Data L1  Miss:
Access Time  = M + 1

Stalls per access:  M
St ll % d t (1 D t H1 ) M

Data  L1 Hit:
Hit Access Time: =  1
Stalls = 0

Instruction L1  Hit:
Hit Access Time = 1
Stalls = 0

Instruction  L1  Miss:
Access Time  =  M  +  1
Stalls Per access = M
Stalls =%instructions  x (1 - Instruction H1 ) x M

Stalls = % data  x (1 - Data H1 ) x M

Stall Cycles Per Access =  % Instructions  x ( 1 - Instruction H1 ) x M  +   % data  x  (1 - Data H1 ) x M
AMAT = 1 + Stall Cycles per access

Assuming:
Ideal access on a hit, no stalls Assuming:

Ideal access on a hit, no stalls

AMAT    1 +  Stall Cycles per access
Stall cycles per instruction  =  (1  + fraction of loads/stores) x Stall Cycles per access

CPI = CPIexecution + Stall cycles per instruction 
= CPIexecution +  (1  + fraction of loads/stores) x Stall Cycles per access

i i f i i iM  =  Miss Penalty = stall cycles per access resulting from missing in cache
M + 1 =  Miss Time = Main memory access time
Data H1  =  Level 1  Data Hit Rate                              1- Data H1 = Level 1 Data Miss Rate
Instruction H1  =  Level 1  Instruction Hit Rate        1- Instruction H1 = Level 1 Instruction Miss Rate
% Instructions = Percentage or fraction  of instruction fetches out of all memory accesses
% Data  = Percentage or fraction  of  data accesses out of all memory accesses



Split L1 Cache Performance ExampleSplit L1 Cache Performance Example
• Suppose a CPU uses separate level  one (L1)  caches for  instructions and data  (Harvard memory 

hit t ) ith diff t i t f i t ti d d tarchitecture)  with different miss rates for instruction and data access:

– CPIexecution =  1.1
– Instruction mix:   50% arith/logic,  30% load/store, 20% control
– Assume a cache miss rate of  0.5% for instruction fetch and a cache data miss rate of  6%. 

(i.e base CPI with ideal memory)

– A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and 
writes. 

• Find the resulting stalls per access, AMAT and CPI using this cache?
CPI =   CPIexecution +   mem stalls per instruction

M

Memory Stall  cycles per instruction =     Instruction Fetch Miss rate x Miss Penalty  +
Data Memory Accesses Per Instruction x  Data Miss Rate x  Miss Penalty

Memory Stall  cycles per instruction =    0.5/100  x 200   +   0.3 x  6/100  x   200  =   1   +  3.6  = 4.6 cycles

Stall cycles per average memory access =  4.6/1.3  =  3.54 cycles

AMAT = 1 + Stall cycles per average memory access  = 1 + 3.54 =  4.54 cycles

CPI =   CPIexecution +   mem stalls per instruction  =  1.1  + 4.6  =   5.7 cycles

Wh t i th i t f i l l l ifi d h th t h th f ?• What is the miss rate of a single level unified cache that has the same performance?

4.6  =   1.3 x Miss rate x 200      which gives  a miss rate of  1.8 % for an equivalent unified cache
• How much faster is the CPU with ideal memory?

The CPU with ideal cache (no misses)  is  5.7/1.1 =  5.18  times faster ( )
With no cache at all the CPI would have been  =   1.1  +  1.3 X 200  =  261.1 cycles !!



Memory Access Tree For Separate Level 1 Caches Example
30% of all instructions executed are loads/stores, thus:
Fraction of instruction fetches out of all memory accesses = 1/ (1+0.3) = 1/1.3 = 0.769  or 76.9 % 
Fraction of data accesses out of all memory accesses = 0.3/ (1+0.3) = 0.3/1.3 = 0.231  or 23.1 %

For Last Example

CPU Memory  Access

% data = 0.231  or  23.1 % 
% Instructions =
0.769 or 76.9 %
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Split

L1
Instruction Data

% data  x (1 - Data H1 )
= 0.01385  or  1.385 %

% data  x Data H1
= .2169 or 21.69 % 

%instructions  
x (1 - Instruction H1 )
= 0.003846 or 0.3846 %

%instructions  x
Instruction H1 )
= .765 or 76.5 %

1

0.231 x 0.060.231 x 0.94

0.769 x 0.0050.769 x 0.995

Data L1  Miss:
Access Time  = M + 1 = 201

Stalls per access:  M = 200
Stalls = % data  x (1 - Data H1 ) x M

=   0.01385 x 200  =  2.769 cycles

Data  L1 Hit:
Hit Access Time: =  1
Stalls = 0

Instruction L1  Hit:
Hit Access Time = 1
Stalls = 0

Instruction  L1  Miss:
Access Time  =  M  +  1= 201
Stalls Per access = M = 200
Stalls = %instructions  x (1 - Instruction H1 ) x M

= 0.003846 x 200 =0.7692 cyclesIdeal access on a hit, no stalls
Ideal access on a hit, no stalls

Stall Cycles Per Access =  % Instructions  x ( 1 - Instruction H1 ) x M  +   % data  x  (1 - Data H1 ) x M
= 0.7692  +   2.769  = 3.54 cycles

AMAT = 1 + Stall Cycles per access = 1 + 3.5 = 4.54 cycles

Ideal access on a hit, no stalls

AMAT    1 +  Stall Cycles per access  1 + 3.5  4.54 cycles
Stall cycles per instruction = (1  + fraction of loads/stores) x Stall Cycles per access = 1.3 x 3.54 =  4.6 cycles
CPI = CPIexecution + Stall cycles per instruction   = 1.1  +  4.6  = 5.7 

i i f i i i 200

Given as 1.1

M  =  Miss Penalty = stall cycles per access resulting from missing in cache = 200 cycles
M + 1 =  Miss Time = Main memory access time = 200+1 =201 cycles        L1 access Time  = 1 cycle
Data H1  =  0.94   or  94%                       1- Data H1 = 0.06  or  6%
Instruction H1  =  0.995  or 99.5%        1- Instruction H1 =   0.005  or  0.5 %
% Instructions = Percentage or fraction  of instruction fetches out of all memory accesses = 76.9 % 
% Data  = Percentage or fraction  of  data accesses out of all memory accesses = 23.1 %



Typical Cache Performance DataTypical Cache Performance Data
Using SPEC92Using SPEC92Usually: Data Miss Rate >> Instruction Miss Rate   (for split cache)

1 – Instruction H1 1 – Data H1 1 – H1

Program steady state cache miss rates are given
Initially cache is empty and miss rates ~ 100%


