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Outline of These Slides

• Overview 
• Design a processor: step-by-step
• Requirements of the instruction set
• Components and clocking
• Assembling an adequate Data path
• Controlling the data path
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The Big Picture: Where Are We Now?
• The five classic components of a computer

• Today’s topic: design a single cycle processor

Control

Datapath

Memory

Processor
Input

Output

inst. set design technology 

machine
design Arithmetic 
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The CPU
°Processor (CPU): the active part of the computer, 
which does all the work (data manipulation and 
decision-making)

°Datapath: portion of the processor which contains 
hardware necessary to perform operations required by 
the processor (the brawn)

°Control: portion of the processor (also in hardware) 
which tells the datapath what needs to be done (the 
brain)
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Big Picture: The Performance Perspective
• Performance of a machine is determined by:

– Instruction count
– Clock cycle time
– Clock cycles per instruction

• Processor design (datapath and control) will determine:
– Clock cycle time
– Clock cycles per instruction

• What we will do Today:
– Single cycle processor:

• Advantage: One clock cycle per instruction
• Disadvantage: long cycle time

CPI

Inst. Count Cycle Time
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How to Design a Processor: Step-by-step
• 1. Analyze instruction set → datapath requirements

– the meaning of each instruction is given by the register transfers
– datapath must include storage element for ISA registers

• possibly more
– datapath must support each register transfer

• 2. Select set of datapath components and establish clocking 
methodology

• 3. Assemble datapath meeting the requirements

• 4. Analyze implementation of each instruction to determine setting of 
control points that effects the register transfer.

• 5. Assemble the control logic
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The MIPS Instruction Formats

• All MIPS instructions are 32 bits long.  The three  instruction 
formats:

– R-type

– I-type

– J-type

• The different fields are:
– op: operation of the instruction
– rs, rt, rd: the source and destination register specifiers
– shamt: shift amount
– funct: selects the variant of the operation in the “op” field
– address / immediate: address offset or immediate value
– target address: target address of the jump instruction 

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits



Step 1a: The MIPS-lite Subset for Today
• ADD and SUB

– addU rd, rs, rt
– subU rd, rs, rt

• OR Immediate:
– ori rt, rs, imm16

• LOAD / STORE Word

– lw rt, rs, imm16
– sw rt, rs, imm16

• BRANCH:

– beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Logical Register Transfers
• Register Transfer Logic gives the meaning of the instructions

• All start by fetching the instruction

op | rs | rt | rd | shamt | funct = MEM[ PC ]

op | rs | rt |   Imm16                = MEM[ PC ]

inst Register Transfers

ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4

SUBU R[rd] ← R[rs] – R[rt]; PC ← PC + 4

ORi R[rt] ← R[rs] | zero_ext(Imm16); PC ← PC + 4

LOAD R[rt] ← MEM[ R[rs] + sign_ext(Imm16)]; PC ← PC + 4

STORE MEM[ R[rs] + sign_ext(Imm16) ] ← R[rt]; PC ← PC + 4

BEQ if ( R[rs] == R[rt] ) then PC ← PC + 4 + sign_ext(Imm16)] || 00

else PC ← PC + 4
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Step 1: Requirements of the Instruction Set
• Memory

– instruction & data

• Registers (32 x 32)
– read RS
– read RT
– Write RT or RD

• PC

• Extender

• Add and Sub register or extended immediate

• Add 4 or extended immediate to PC
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Step 2: Components of the Datapath
• Combinational Elements

• Storage Elements
– Clocking methodology



Chapter 5.1 - Processor Design 1
12

Combinational Logic Elements (Basic Building Blocks)

32

32

A

B
32

CarryIn

A
dder

Sum

Carry
• Adder

• MUX

• ALU

32A

B 32
32

Select

M
U
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32

32
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B
32

OP

Result
A

L
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Storage Element: Register File

• Register File consists of 32 registers:
– Two 32-bit output busses:

busA and busB
– One 32-bit input bus: busW

• Register is selected by:
– RA (number) selects the register to put on busA (data)
– RB (number) selects the register to put on busB (data)
– RW (number) selects the register to be  written

via busW (data) when Write Enable is 1

• Clock input (CLK) 
– The CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic 

block:
• RA or RB valid → busA or busB valid after “access 

time.”

Write Enable

Clk

busW
32

32
busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers
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Storage Element: Idealized Memory

• Memory (idealized)
– One input bus: Data In
– One output bus: Data Out

• Memory word is selected by:
– Address selects the word to put on Data Out
– Write Enable = 1: address selects the memory

word to be written via the Data In bus

• Clock input (CLK) 
– The CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block:

• Address valid → Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address
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Memory Hierarchy (Ch. 7)

• Want a single main memory, both large and fast

• Problem 1: large memories are slow while fast 
memories are small

• Example: MIPS registers (fast, but few)

• Solution: mix of memories provides illusion of single 
large, fast memory

• Cache: a small, fast memory; Holds a copy of part of a larger, 
slower memory

• Imem, Dmem are really separate caches memories



Chapter 5.1 - Processor Design 1
16

Digression: Sequential Logic, Clocking

• Combinational circuits: no memory
• Output depends only on the inputs

• Sequential circuits: have memory
• How to ensure memory element is updated neither too soon, 

nor too late?
• Recall hardware multiplier

• Product/multiplier register is the writable memory element
• Gate propagation delay means ALU result takes time to 

stabilize; Delay varies with inputs
• Must wait until result stable before write to 

product/multiplier register else get garbage
• How to be certain ALU output is stable?
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Adding a Clock to a Circuit
• Clock: free running signal with fixed cycle time (clock 

period)

period falling edge

high (1)

rising edge
low (0)

° Clock determines when to write memory element
• level-triggered - store clock high (low)
• edge-triggered - store only on clock edge

° We will use negative (falling) edge-triggered methodology
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Role of Clock in MIPS Processors
• single-cycle machine: does everything in one 

clock cycle
• instruction execution = up to 5 steps
• must complete 5th step before cycle ends

instruction execution
step 1/step 2/step 3/step 4/step 5

datapath
stable

register(s) 
written

falling clock edge

clock
signal

rising clock edge
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SR-Latches

• SR-latch with NOR Gates
• S = 1 and R = 1 not allowed

° Symbol for SR-Latch with NOR gates
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SR-Latches
• SR-latch with NAND Gates, also known as S´R´ -latch
• S = 0 and R = 0 not allowed

° Symbol for SR-Latch with NAND gates
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SR-Latches with Control Input

• SR-latch with NAND Gates and control input C

° C = 0, no change of state;

° C = 1, change is allowed;
• If S = 1 and R = 1, Q and Q´ are Indetermined
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D-Latches

• D-latch based on SR-Latch with NAND Gates and control input C

° C = 0, no change of state;
• Q (t + δt ) = Q (t )

° C = 1, change is allowed;
• Q (t + δt ) = D (t )
• No Indetermined Output
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Master-Slave Flip-Flop
• Negative-edge triggered D-Flip Flop

° Symbol for D-Flip Flop.

° Arrowhead (>) indicates an edge-triggered sequential circuit.

° Bubble means that triggering is effective during the High→Low C
transition
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Clocking Methodology for the Entire Datapath

.

.

.

.

.

.

.

.

.

.

.

.

Clk

Don’t Care
Setup HoldSetup Hold

• Design/synthesis based on pulsed-sequential circuits
– All combinational inputs remain at constant levels and only clock 

signal appears as a pulse with a fixed period Tcc
• All storage elements are clocked by the same clock edge
• Cycle time Tcc = CLK-to-q + longest delay path + Setup time + clock 

skew
• (CLK-to-q + shortest delay path - clock skew)  >  hold time
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Step 3: Assemble Data Path Meeting Requirements

• Register Transfer Requirements
⇒ Datapath “Assembly”

• Instruction Fetch

• Read Operands and Execute Operation
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Stages of the Datapath (1/6)
Problem: a single, atomic block which “executes an instruction”
(performs all necessary operations beginning with fetching the 
instruction) would be too bulky and inefficient

Solution: break up the process of “executing an instruction” into 
stages, and then connect the stages to create the whole datapath

Smaller stages are easier to design
Easy to optimize (change) one stage without touching the 
others
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Stages of the Datapath (2/6)

There is a wide variety of MIPS instructions: so what general steps 
do they have in common?

Stage 1: instruction fetch

No matter what the instruction, the 32-bit instruction word must 
first be fetched from memory (the cache-memory hierarchy)
Also, this is where we increment PC 
(that is, PC = PC + 4, to point to the next instruction: byte 
addressing so + 4)
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Stages of the Datapath (3/6)

Stage 2: Instruction Decode
upon fetching the instruction, we next gather data from 
the fields (decode all necessary instruction data)
first, read the Opcode to determine instruction type and 
field lengths
second, read in data from all necessary registers

-for add, read two registers
-for addi, read one register
-for jal, no reads necessary
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Stages of the Datapath (4/6)

°Stage 3: ALU (Arithmetic-Logic Unit)

the real work of most instructions is done here: 
arithmetic (+, -, *, /), shifting, logic (&, |), comparisons 
(slt)
what about loads and stores?

-lw $t0, 40($t1)
-the address we are accessing in memory = the value 
in $t1 + the value 40
-so we do this addition in this stage
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Stages of the Datapath (5/6)

°Stage 4: Memory Access

actually only the load and store instructions do anything during
this stage; the others remain idle
since these instructions have a unique step, we need this extra 
stage to account for them
as a result of the cache system, this stage is expected to be 
just as fast (on average) as the others
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Stages of the Datapath (6/6)
°Stage 5: Register Write

most instructions write the result of some computation into 
a register
examples: arithmetic, logical, shifts, loads, slt
what about stores, branches, jumps?

-don’t write anything into a register at the end
-these remain idle during this fifth stage
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Generic Steps: Datapath
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3. Execute 4. Memory 5. Reg.
Write
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Datapath Walkthroughs (1/3)

add   $r3, $r1, $r2 # r3 = r1+r2
Stage 1: fetch this instruction, incr. PC ;
Stage 2: decode to find it’s an add, then read 
registers $r1 and $r2 ;

Stage 3: add the two values retrieved in Stage 2 ;
Stage 4: idle (nothing to write to memory) ;
Stage 5: write result of Stage 3 into register $r3 ;
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Example: add Instruction
PC
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Datapath Walkthroughs (2/3)

slti $r3, $r1, 17
Stage 1: fetch this instruction, inc. PC
Stage 2: decode to find it’s an slti, then read register $r1
Stage 3: compare value retrieved in Stage 2 with the integer 17
Stage 4: go idle
Stage 5: write the result of Stage 3 in register $r3
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Example: slti Instruction
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Datapath Walkthroughs (3/3)

sw $r3, 17($r1)
Stage 1: fetch this instruction, inc. PC
Stage 2: decode to find it’s a sw, then read registers 
$r1 and $r3
Stage 3: add 17 to value in register $41 (retrieved in 
Stage 2)
Stage 4: write value in register $r3 (retrieved in 
Stage 2) into memory address computed in Stage 3
Stage 5: go idle (nothing to write into a register)
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Example: sw Instruction
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Why Five Stages? (1/2)

Could we have a different number of stages?
Yes, and other architectures do

So why does MIPS have five if instructions tend to go 
idle for at least one stage?

There is one instruction that uses all five stages: the 
load
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Why Five Stages? (2/2)

lw $r3, 17($r1)
Stage 1: fetch this instruction, inc. PC
Stage 2: decode to find it’s a lw, then read register $r1
Stage 3: add 17 to value in register $r1 (retrieved in 
Stage 2)
Stage 4: read value from memory address compute in 
Stage 3
Stage 5: write value found in Stage 4 into register $r3
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Example: lw Instruction
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Datapath Summary
°The datapath based on data transfers required to perform instructions

°A controller causes the right transfers to happen
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Overview of the Instruction Fetch Unit
• The common operations

– Fetch the Instruction: mem[PC]
– Update the program counter:

• Sequential Code: PC  ← PC + 4 
• Branch and Jump:   PC  ← “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic
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Add & Subtract
R[rd]  ← R[rs] op R[rt];  Example: addu rd, rs, rt

– Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields
– ALUctr and RegWr: control logic after decoding the instruction             

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

ALUctrRegWr

32
Result

Clk

busW
32

32

busA

32
busB

5 5 5

Rw Ra Rb

32  32-bit
Registers

Rs RtRd

A
L

U
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Register-Register Timing: One complete cycle

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb

32  32-bit
Registers

Rs RtRd

A
L

U

Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access Time

Old Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here
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Logical Operations With Immediate
• R[rt]  ← R[rs] op ZeroExt[ imm16 ] 

11
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd?

immediate
016 1531

16 bits16 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32

Result

ALUctr

Clk

busW

RegWr

32
32

busA

32

busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs
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xt

M
ux

RtRd
RegDst

Mux

3216
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ALUSrc

A
L

U
Rt?
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Load Operations
• R[rt]  ← Mem[R[rs] + SignExt[imm16]]; Example: lw rt, rs, imm16

11
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

RtRd
RegDst

E
xtender

M
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Mux

32
16

imm16

ALUSrc

ExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
L

U

MemWr M
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W_Src

??

Rt?
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Store Operations
• Mem[ R[rs] + SignExt[imm16]  ← R[rt] ]; Example: sw rt, rs, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrcExtOp
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Data In
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32
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U

32
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ux

W_Src
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The Branch Instruction
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

•beq rs, rt, imm16
– mem[PC] Fetch the instruction from memory

– Equal ← R[rs] == R[rt] Calculate the branch condition

– if (Equal) Calculate the next instruction’s address
• PC  ← PC + 4 + ( SignExt(imm16) × 4 )

– else
• PC  ← PC + 4
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Datapath for Branch Operations

• beq rs, rt, imm16 Datapath generates condition 
(equal)

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32
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Summary: A Single Cycle Datapath
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An Abstract View of the Critical Path
• Register file and ideal memory:

– The CLK input is a factor ONLY during write operation
– During read operation, behave as combinational logic:

• Address valid → Output valid after “access time.”

Critical Path (Load Operation) = 
PC’s Clk-to-Q +
Instruction Memory’s Access Time +
Register File’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Setup Time for Register File Write +
Clock Skew
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An Abstract View of the Implementation
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Steps 4 & 5: Implement the control

In The Next Section
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Summary: MIPS-lite Implementations
• single-cycle: uses single l-o-n-g clock cycle for each 

instruction executed

• Easy to understand, but not practical
• slower than implementation that allows instructions to take different 

numbers of clock cycles
• fast instructions: (beq) fewer clock cycles
• slow instructions (mult?): more cycles

• multicycle, pipelined implementations later

• Next time, finish the single-cycle implementation
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Summary
• 5 steps to design a processor

– 1. Analyze instruction set => datapath requirements
– 2. Select set of datapath components & establish clock methodology
– 3. Assemble datapath meeting the requirements
– 4. Analyze implementation of each instruction to determine setting of 

control points that effects the register transfer.
– 5. Assemble the control logic

• MIPS makes it easier
– Instructions same size
– Source registers always in same place
– Immediates same size, location
– Operations always on registers/immediates

• Single cycle datapath:  CPI = 1, TCC → long

• Next time: implementing control
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