Integer Multiplication Integer Division Floating Point Numbers

Overview

Multiplying Hardware \& Software
Dividing Hardware \& Software
Introduction to Floating Point
Doing Floating Point Arithmetic
MIPS Floating Point Instructions
The Dangers of Floating Point

MULTIPLY

- Paper and pencil example (unsigned):

$\begin{gathered} 1000 \\ 1001 \end{gathered}$	$\begin{aligned} & \text { Multiplicand } U_{M} \\ & \text { _Multiplier } \end{aligned}$
1000	
0000	
0000	
+ 1000	
01001000	Product

- Binary multiplication is easy:
$-P_{i}==0 \Rightarrow$ place all 0's $\quad(0 \times$ multiplicand $)$
$-P_{i}==1 \Rightarrow$ place a copy of $U \quad(1 \times$ multiplicand $)$
- Shift the multiplicand left before adding to product
- Could we multiply via add, sll?

Multiply by Power of 2 via Shift Left

- Number representation: $B=b_{31} b_{30} \bullet \bullet b_{2} b_{1} b_{0}$

$$
B=b_{31} \times 2^{31}+b_{30} \times 2^{30}+\ldots+b_{2} \times 2^{2}+b_{1} \times 2^{1}+b_{0} \times 2^{0}
$$

- What if multiply B by 2?

$$
\begin{aligned}
B \times 2 & =b_{31} \times 2^{31+1}+b_{30} \times 2^{30+1}+\cdots+b_{2} \times 2^{2+1}+b_{1} \times 2^{1+1}+b_{0} \times 2 \\
& =b_{31} \times 2^{32}+b_{30} \times 2^{31}+\cdots+b_{2} \times 2^{3}+b_{1} \times 2^{2}+b_{0} \times 2^{1}
\end{aligned}
$$

- What if shift B left by 1 ?

- Multiply by 2^{i} often replaced by shift left i

Multiply in MIPS

- Can multiply variable by any constant using MIPS sll and add instructions:

$$
\begin{aligned}
& \text { i' }=\text { i * 10; } / * \text { assume i: \$s0 */ } \\
& \text { sll \$t0, \$s0, } 3 \\
& \text { add \$t1, \$zero, \$t0 } \\
& \text { sll \$t0, \$s0, 1 } \\
& \text { add \$s0, \$t1, \$t0 }
\end{aligned}
$$

- MIPS multiply instructions: mult, multu
-mult \$t0, \$t1
- puts 64-bit product in pair of new registers hi, lo; copy to \$n by mfhi, mflo
- 32-bit integer result in register lo

Is Shift Right Arith. D Divide by 2?

- Shifting right by n bits would seem to be the same as dividing by 2^{n}
- Problem is signed integers
- Zero fill (Srl) is wrong for negative numbers
- Shift Right Arithmetic (sra); sign extends (replicates sign bit); but does it work?
- Divide -5 by 4 via sra 2; result should be -1

$$
\begin{aligned}
& 11111111111111111111111111111011 \\
& 11111111111111111111111111111110
\end{aligned}
$$

- = -2, not -1 ; Off by 1 , so doesn't work
-Is it always off by 1??

Multiply Algorithm Version 1

MULTIPLY HARDWARE Version 2

- 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, 32-bit Multiplier reg

Chapter 4.2 - Mult, Div, Float

Multiply Algorithm Version 3 Start

1a. Add multiplicand to the left half of product \& place the result in the left half of Product register

2. Shift the Product register right 1 bit.

MULTIPLY HARDWARE Version 3

- 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, (0-bit Multiplier reg)

Observations on Multiply Version 3

- 2 steps per bit because Multiplier \& Product combined
- MIPS registers Hi and Lo are left and right half of Product
- Gives us MIPS instruction MultU
- How can you make it faster?
- What about signed multiplication?
- easiest solution is to make both positive \& remember whether to complement product when done (leave out the sign bit, run for 31 steps)
- apply definition of 2's complement
- need to sign-extend partial products and subtract at the end
- Booth's Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles
- can handle multiple bits at a time

Motivation for Booth's Algorithm

- Example $2 \times 6=0010 \times 0110$:

	0010
\mathbf{x}	0110
$\mathbf{+}$	0000
$\mathbf{+}$	0010
$\mathbf{+}$	0100
$\mathbf{+}$	0000
	00001100

shift (0 in multiplier) add (1 in multiplier)
add (1 in multiplier)
shift (0 in multiplier)

- ALU with add or subtract gets same result in more than one way:

$$
\begin{array}{ll}
6 & =-2+8 \\
0110 & =-00010+01000=11110+01000
\end{array}
$$

- For example
-

	0010	
x	0110	
	0000	shift (0 in multiplier)
-	0010	sub (first 1 in multpl.)
$+\quad 0000$	shift (mid string of 1s)	
+	0010	add (prior step had last

Chapter 4.2 - Mult, Div, Float

Booth's Algorithm

 middle of runend of run beginning of run $\left.\begin{array}{ll|ll|l}0 & (1 & 1 & 1 & 1\end{array}\right) 0$

		Explanation	Example	Op
1	0	Begins run of 1s	0001111000	sub
1	1	Middle of run of 1s	0001111000	none
0	1	End of run of 1s	0001111000	add
0	0	Middle of run of 0s	0001111000	none

Originally for Speed (when shift was faster than add)

- Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one

Booths Example (2×7)

Operation	Multiplicand	Product	next?
0. initial value	0010	000001110	10 -> sub
1a. P = P - m	1110	+1110	
		111001110	shift P (sign ext)
1b.	0010	111100111	$11->$ nop, shift
2.	0010	111110011	$11->$ nop, shift
3.	0010	111111001	$01->$ add
4a.	0010	+0010	
		000111001	shift
4b.	0010	000011100	done

Booths Example (2 x-3)

Operation	Multiplicand	Product	next?
0 . initial value	0010	000011010	10 -> sub
1a. P = P - m	1110	$\begin{aligned} & +1110 \\ & 111011010 \end{aligned}$	shift P (sign ext)
1 b.	0010	$\begin{aligned} & 111101101 \\ + & 0010 \end{aligned}$	01 -> add
2a.		000101101	shift P
2 b .	0010	$\begin{aligned} & 000010110 \\ + & 1110 \end{aligned}$	10 -> sub
3 a.	0010	111010110	shift
3b.	0010	111101011	11 -> nop
4a		111101011	shift
4b.	0010	111110101	done

MIPS logical instructions

- Instruction Example Meaning Comment
- and
- or
- xor
- nor
and \$1,\$2,\$3 \$1 = \$2 \& \$3
or $\$ 1, \$ 2, \$ 3 \quad \$ 1=\$ 2 \mid \$ 3$
xor \$1,\$2,\$3 \$1 = \$2 \oplus \$3
nor $\$ 1, \$ 2, \$ 3 \quad \$ 1=\sim(\$ 2 \mid \$ 3)$
- and immediate andi \$1,\$2,10 \$1 = \$2 \& 10
- or immediate ori \$1,\$2,10 \$1 = \$2 | 10
- xor immediate xori \$1, \$2,10 \$1 = ~\$2 \& 10
- shift left logical sll \$1,\$2,10 \$1 = \$2 << $10 \quad$ Shift left by constant
- shift left logical sll \$1,\$2,10 \$1 = \$2 << $10 \quad$ Shift left by constant
$\begin{array}{llll}\text { - } \text { shift right logical srl } \$ 1, \$ 2,10 & \$ 1=\$ 2>10 & \text { Shift right by constant } \\ \text { - shift right arithm. sra } \$ 1, \$ 2,10 & \$ 1=\$ 2>10 & \text { Shift right (sign extend) }\end{array}$
$\begin{array}{llll}\text { - } \text { shift right logical srl } \$ 1, \$ 2,10 & \$ 1=\$ 2 \gg 10 & \text { Shift right by constant } \\ \text { - shift right arithm. sra } \$ 1, \$ 2,10 & \$ 1=\$ 2 \gg 10 & \text { Shift right (sign extend) }\end{array}$
- shift left logical sllv \$1,\$2,\$3 \$1 = \$2 << \$3 Shift left by variable
- shift right logical srlv \$1,\$2, \$3
- shift right arithm. srav \$1,\$2, \$3 variable

Combinational Shifter from MUXes

8-bit right shifter

- What comes in the MSBs?
- How many levels for 32-bit shifter?
- What if we use 4-1 Muxes?

If added Right-to-left connections could support Rotate (not in MIPS but found in ISAs)

Funnel Shifter

Instead Extract 32 bits of 64.

- Shift A by i bits (sa= shift right amount)
- Logical: $\quad Y=0, X=A$, sa=i

- Arithmetic? $Y==_{-}, X=$, sa ${ }_{-}^{-}$
- Rotate? $Y==_{-}, X=$, sa=_ \quad shift Right
- Left shifts? $Y=$ _, $X=$, sa=

Barrel Shifter

Technology-dependent solutions: transistor per switch

Divide: Paper \& Pencil

See how big a number can be subtracted, creating quotient bit on each step
Binary => 1 * divisor or 0 * divisor
Dividend = Quotient x Divisor + Remainder => | Dividend | = | Quotient | + | Divisor |
3 versions of divide, successive refinement

Divide Algorithm

1. Subtract the Divisor register from the Remainder register, and place the result in the Remainder register.

Integer Division

- ALU, Divisor, and Remainder registers: 64bit;
- Quotient register: 32 bits;
-32 bit divisor starts in left $1 / 2$ of Divisor reg. and it is shifted right 1 on each step
- Remainder register initialized with dividend

Divide Algorithm Example

Remainder Quotient Divisor

	0000	0111	00000	0010	0000	Answer:
1:	1110	0111	00000	0010	0000	Quotient = 3
$2:$	0000	0111	00000	0010	0000	
3:	0000	0111	00000	0001	0000	
$1:$	1111	0111	00000	0001	0000	
2 :	0000	0111	00000	0001	0000	
3:	0000	0111	00000	0000	1000	
1:	1111	1111	00000	0000	1000	
2:	0000	0111	00000	0000	1000	
$3:$	0000	0111	00000	0000	0100	
1:	0000	0011	00000	0000	0100	
$2:$	0000	0011	00001	0000	0100	
$3:$	0000	0011	00001	0000	0010	
1:	0000	0001	00001	0000	0010	
$2:$	0000	0001	00011	0000	0010	
3:	0000	0001	00011	0000	0010	

Divide Algorithm

Let \$s0 = Dividend,
\$s1 = Divisor,
\$s2 = Remainder,
\$s3 = Quotient,
\$s4 = Repetitions
Start:
move \$s2, \$s0
Loop:

sub	$\$ s 2, \$ s 2, \$ s 1$	\# Step 1	
bltz	$\$ s 2$, Label2b		
sll	$\$ s 3, \$ s 3,1$	\# Step 2a	
ori	$\$ s 3, \$ s 3,1$		
j	Label3		

Label2b:
add \$s2, \$s2, \$s1 \# Step 2b
Quotient = 0; 32 bit divisor starts in left $1 / 2$ of Divisor reg. and it is shifted right 1 on each step; Remainder = dividend;
If Remainder < 0, we need to add Divisor back to dividend; else 1 is generated for Quotient;
Shift Divisor right 1 bit;
Repeat 33 times
 Remainder register, and place the result

What is in a number?

- What can be represented in \mathbf{N} bits?
- Unsigned 0 to $2^{N}-1$
- 2s Complement - $2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$
- 1 s Complement $-2^{\mathrm{N}-1}+1$ to $2^{\mathrm{N}-1}-1$
- Excess M 2^{-M} to 2^{N-M-1}
- $\quad(E=e+M)$
- BCD 0 to $10^{\text {N/4 }}-1$
- But, what about?
- very large numbers?

9,349,398,989,787,762,244,859,087,678

- very small number? 0.0000000000000000000000045691
- rationals

2/3

- irrationals
$\sqrt{2}$
- transcendentals
e,

Recall Scientific Notation

(sign, magnitude)
 Mantissa
 (sign, magnitude)
 \checkmark
 6.02×10^{23}
 $\uparrow \quad \gamma$
 decimal point

 radix (base)

 radix (base)}- Normal form:
no leading $0 s$ (digit 1 to left of decimal point)
- Alternatives to representing 1/1,000,000,000

Normalized: $\quad 1.0 \times 10^{-9}$
Not normalized: $\quad 0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation for Binary Numbers

(sign, magnitude)
Mantissa
1.0×2^{-1}

binary point

radix (base)

- Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers
- Declare such a variable in C as float (double, long double)
- Normalized form: 1.xxxxxxxxxx ${ }_{2} \times 2$ yyyy $_{2}$

Simplifies data exchange, increases accuracy

$$
4_{10}==1.0 \times 2^{2}, \quad 8_{10}==1.0 \times 2^{3}
$$

Single Precision FP Representation

- Start with a single word (32-bits)

${ }^{\circ}$ Meaning: (-1) ${ }^{\text {S }} \times$ Mantissa $\times 2^{\mathrm{E}}$
${ }^{\circ}$ Can now represent numbers as small as 2.0×10^{-38} to as large as 2.0×10^{38}
${ }^{\circ}$ Relationship between Mantissa and Significand bits? Between E and Exponent?
${ }^{\circ}$ In C type float

Floating Point Number Representation

- What if result too large? (> 2.0x10 ${ }^{38}$)

Overflow!
Overflow \Leftrightarrow Exponent larger than can be represented in 8-bit Exponent field
-What if result too small? (>0, < 2.0×10^{-38})
Underflow!
Underflow \Leftrightarrow Negative Exponent too small

- How to reduce chances of overflow or underflow?

Double Precision FP Representation

- Next Multiple of Word Size (64 bits)

Double Precision (vs. Single Precision)

1. C variable declared as double
2. Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
3. But primary advantage greater accuracy due to larger significand
4. There is also long double version (16 bytes)

MIPS follows IEEE 754 F.P. Standard

- To pack more bits, make leading 1 of mantissa implicit for normalized numbers
$1+23$ bits single, $1+52$ bits double
0 has no leading 1, so reserve exponent value 0 just for number 0.0 Meaning: (almost correct)
$(-1)^{S} \times(1+$ Significand $) \times \mathbf{2}^{\text {Exponent }}$,
where $0<$ Significand <1
- If label significand bits left-to-right as $s_{1}, s_{2}, s_{3}, \ldots$ then value is:
$(-1)^{S} \times\left(1+\left(s_{1} \times \mathbf{2}^{-1}\right)+\left(s_{2} \times \mathbf{2}^{-2}\right)+\left(s_{2} \times \mathbf{2}^{-3}\right)+\ldots\right) \times \mathbf{2}^{\text {Exponent }}$

Representing Exponent

- Want to compare FI. Pt. numbers as if they were integers, to help in sorting
Sign first part of number
Exponent next, so bigger exponent \Rightarrow bigger number $1.1 \times 10^{20}>1.9 \times 10^{10}$
- What About Negative Exponents?

Use 2's comp? 1.0×2^{-1} vs. $1.0 \times 2^{+1}(1 / 2 \mathrm{v} .2)$

1/2 0
 1111111100000000000000000000000
 2

This notation using integer compare of
$1 / 2$ vs. 2 makes $1 / 2>2$!
Doesn't work!

Representing Exponent

1/2 0 0111111000000000000000000000000
 2 O 1000000000000000000000000000000

- Instead, pick notation 00000000 as most negative, and 11111111 as most positive
- $1.0 \times \times \mathbf{2}^{-1}$ vs. $1.0 \times \times 2^{+1}(1 / 2 \mathrm{v} .2)$
${ }^{\circ}$ Called Biased Notation, where bias is number subtracted to get real number
IEEE 754 uses bias of 127 for single precision
Representation (Finally, the truth!):
$(-1)^{S} \times\left(1+\right.$ Significand) $\times 2^{(E x p o n e n t-127)}$
1023 is bias for double precision

Example: Converting Decimal to FP

- Show MIPS representation of -0.75 (show exponent in decimal to simplify)
$-0.75=-3 / 4=-3 / 2^{2}$
$-11_{\text {two }} / 2^{2}=-11_{\text {two }} \times 2^{-2}=-0.11_{\text {two }} \times 2^{0}$
Normalized to $-1.1_{\text {two }} \times 2^{-1}$
$(-1)^{S} \times(1+$ Significand $) \times 2^{(\text {Exponent-127 })}$
$(-1)^{1} \times(1+.1000000 \ldots 0000) \times 2^{(126-127)}$

1	01111110	10000000000000000000000

$S=1 ;$ Exponent = 126; Significand = $100 \ldots 0_{2}$

Example: Converting FP to Decimal

- Sign $S=0 \Rightarrow$ positive
- Exponent E:
$01101000_{\text {two }}=104_{\text {ten }}$
Bias adjustment: 104-127=-23
- Mantissa:

$$
\begin{aligned}
& 1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22} \\
& =1+\left(5,587,778 / 2^{23}\right) \\
& =1+(5,587,778 / 8,388,608)=1.0+0.666115
\end{aligned}
$$

- Represents: $1.666115_{\text {ten }} \times 2^{-13} \sim 2.034 \times 10^{-4}$

0	01101000	10101010100001101000010

How To Convert Decimal to Binary

- How convert $10.4_{\text {ten }}$ to binary?
- Deal with fraction \& whole parts separately:

Do It Yourself

- Convert 10.4 ten to single precision floating point
- Recall that:
$10.4_{\text {ten }}$ is $1010.0110_{\text {two }}$

Do It Yourself

(1) Normalize

$$
1010.0110_{\mathrm{two}} \times 2^{0}=1.0100110 \times 2^{3}
$$

(2) Determine Sign Bit
positive, so $\mathrm{S}=0$
(3) Determine Exponent:
2^{3} so $3+$ bias $(=127)=130=10000010_{\text {two }}$
(4) Determine Significand drop leading 1 of mantissa, expand to 23 bits $=01001100110011001100110$

Example: Converting FP to Decimal

1 Sign: $0 \Rightarrow$ positive
2 Exponent:
$01101000_{2}=104_{10}$
Bias adjustment: 104-127 =-23
3 Mantissa:

$$
\begin{aligned}
& 1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22} \\
& =1+\left(5,587,778 / 2^{23}\right) \\
& =1+(5,587,778 / 8,388,608)=1.0+ \\
& 0.666115
\end{aligned}
$$

4 Represents: $\mathbf{1 . 6 6 6 1 1 5}_{\text {ten }}{ }^{*} 2^{-23} \sim 2.034^{*} 10^{-4}$
01101000 10101010100 001101000010

Representation for Not a Number

- What do I get if I calculate
sqrt(-4.0)or
0/0?
- If infinity is not an error, these shouldn't be either.

Called Not a Number (NaN)
Exponent $=255$, Significand nonzero
${ }^{\circ}$ Why is this useful?
Hope NaNs help with debugging?
They contaminate: $\mathrm{op}(\mathrm{NaN}, X)=\mathrm{NaN}$

What else can I put in?

- What defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
$1-254$	anything	+/- fl. pt. number
255	0	+l- infinity
255	nonzero	???

${ }^{\circ}$ Representing "Not a Number"; e.g., sqrt(-4); called NaN
Exp $==255$, Significand nonzero
They contaminate FP ops: $(\mathbf{N a N} \theta X)=\mathbf{N a N}$
Hope NaNs help with debugging?
Only valid operations are $==$, !=

What else can I put in?

- What defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$	0 ???
$\mathbf{1 - 2 5 4}$	anything	+/- fl. pt. number
255	0	+l- infinity
255	nonzero	NaN

${ }^{\circ}$ Exp. $=0$, Significand nonzero?
Can we get greater precision?
${ }^{\circ}$ Represent very, very small magnitude numbers
${ }^{\circ} 0<x<$ smallest normalized number);
${ }^{\circ}$ Denormalized Numbers (text p. 300, and discussion later).

Example: Decimal F. P. Addition

- Assume 4 digit significand, 2 digit exponent
- Let's add ${9.999_{\text {ten }} \times 10^{1}+1.610_{\text {ten }} \times 10^{-1}, ~}_{\text {(}}$
- Exponents must match, so adjust smaller number to match larger exponent

$$
1.610 \times 10^{-1}=0.1610 \times 10^{0}=0.01610 \times 10^{1}
$$

- Can represent only 4 digits, so must discard last two:
0.016×10^{1}

Example: Decimal F. P. Addition

- Now, add significands:

$$
\begin{array}{r}
9.999 \\
+0.016 \\
\hline 10.015
\end{array}
$$

- Thus, sum is 10.015×10^{1}
- Sum is not normalized, so correct it, checking for underflowloverflow:

$$
10.015 \times 10^{1}=>1.0015 \times 10^{2}
$$

- Cannot store all digits, must round. Final result is: 1.002×10^{2}

Basic Binary FP Addition Algorithm

For addition (or subtraction) of X to $Y(X<Y)$:

1. Compute $D=\operatorname{Exp}_{Y}-\operatorname{Exp}_{X}$ (align binary points)
2. Right shift $\left(1+\mathrm{Sig}_{\mathrm{X}}\right) D$ bits $\Rightarrow\left(1+\mathrm{Sig}_{\mathrm{X}}\right)^{* 2-D}$
3. Compute $\left(1+\text { Sig }_{X}\right)^{*} 2^{-D}+\left(1+\right.$ Sig $\left._{\mathrm{Y}}\right)$; Normalize if necessary; continue until MS bit is 1
4. Too small (e.g., 0.001xx...) left shift result, decrement result exponent; check for underflow

4'. Too big (e.g., 10.1xx...) right shift result, increment result exponent; check for overflow
5. If result significand is 0 , set exponent to 0

FP Subtraction

- Similar to addition
- How do we do it?

De-normalize to match exponents
Subtract significands
Keep the same exponent
Normalize (possibly changing exponent)

- Problems in implementing FP add/sub:

Managing the signs,
determining to add or sub, swapping the operands.

- Question: How do we integrate this into the integer arithmetic unit?

Floating Point Addition

Example: Decimal F. P. Multiply

- Let's multiply:

$$
1.110_{\text {ten }} \times 10^{10} \times 9.200_{\text {ten }} \times 10^{-5}
$$

(Assume 4-digit significand, 2-digit exponent)

- First, add exponents:

$$
\begin{array}{r}
10 \\
+-5 \\
5
\end{array}
$$

- Next, multiply significands:

$$
1.110 \times 9.200=10.212000
$$

Example: Decimal F. P. Multiply

- Product is not normalized, so correct it, checking for underflow / overflow:

$$
10.212000 \times 10^{5} \Rightarrow 1.0212 \times 10^{6}
$$

- Significand exceeds 4 digits, so round:
1.021×10^{6}
- Check signs of original operands same \Rightarrow positive different \Rightarrow negative

Final result is: $+1.021 \times 10^{6}$

Basic Binary FP Multiplication Algorithm

For multiplication of $P=X \times Y$:

1. Compute Exponent: $\operatorname{Exp}_{P}=\left(\operatorname{Exp}_{Y}+\operatorname{Exp}_{X}\right)-$ Bias
2. Compute Product: $\left(1+\right.$ Sig $\left._{X}\right) \times\left(1+\right.$ Sig $\left._{Y}\right)$

Normalize if necessary; continue until most significant bit is 1
4. Too small (e.g., 0.001xx...) \rightarrow left shift result, decrement result exponent

4'. Too big (e.g., 10.1xx...) \rightarrow right shift result, increment result exponent
5. If (result significand is 0) then set exponent to 0
6. if $\left(\operatorname{Sgn}_{X}==\operatorname{Sgn}_{Y}\right)$ then
$\operatorname{Sgn}_{P}=$ positive (0) else

Sgn $_{P}=$ negative (1)

FP Multiplication Algorithm

Floating Point ALU

- FP ADD: Exponents are subtracted by small ALU; the difference controls the 3 MUXes;
- Shift smaller exp. to the right until exponents match;
- Significants are added in Big ALU;
- Normalization step shifts result left or right, adjusts exponents;
- Rounding and possible nornalization

MIPS Floating Point Architecture (1/4)

- Separate floating point instructions:
-Single Precision:
add.s, sub.s, mul.s, div.s
-Double Precision:
add.d, sub.d, mul.d, div.d
- These instructions are far more complicated than their integer counterparts, so they can take much longer to execute.

MIPS Floating Point Architecture (2/4)

- Problems:

It's inefficient to have different instructions take vastly differing amounts of time.

Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.

Some programs do no floating point calculations
It takes lots of hardware relative to integers to do
Floating Point fast

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip

1. contains 32 32-bit registers: $\$ f 0, \$ f 1, \ldots$
2. most of the registers specified in . s and .d instruction refer to this set
3. separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...")
4. Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3, ... , \$f30/\$f31

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:

Processor: handles all the normal stuff
Coprocessor 1: handles FP and only FP;
more coprocessors?... Yes, later
Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW

- Instructions to move data between main processor and coprocessors:

$$
\begin{array}{cc}
\text { mfc1 rt, rd } & \begin{array}{l}
\text { Move floating point register rd to } \\
\text { CPU register rt. }
\end{array} \\
\text { mtc1 rd, rt } & \begin{array}{l}
\text { Move CPU register rt to floating } \\
\text { point register rd. }
\end{array} \\
\text { mfc1.d rdest, frsrc1 } \begin{array}{l}
\text { Move floating point registers } \\
\text { frsrc1 \& frsrc1 + to CPU } \\
\text { registers rdest \& rdest }+1 .
\end{array}
\end{array}
$$

- Appendix pages A-70 to A-74 contain many, many more FP operations.

Summary: MIPS F.P. Architecture

- Single Precision, Double Precision versions of add, subtract, multiply, divide, compare

| Single | add.s, sub.s, mul.s, div.s, c.lt.s |
| :--- | :--- | :--- | :--- |
| Double add.d, sub.d, mul.d, div.d, c.lt.d | |

See pages A-70 - A74

- Registers?
- Normally integer and Floating Point operations on different data, for performance should have separate registers.
- MIPS adds 32 32-bit FP regs: \$f0, \$f1, \$f2 ...,
- Thus need FP data transfers:
I.d fdest, address load the floating point double at address into register fdest.
mov.s fd, fs Move the floating point single from register fs to register fd.
- Double Precision? Even-odd pair of registers: \$f0-\$f1, \$f2-\$3, etc., act as 64-bit register: \$f0, \$f2, \$f4,

Example with F.P.: Matrix Multiply

void mm (double x[][], double y[][], double z[][])\{ int i, j, k;
for (i=0; i! $=32$; i=i+1)
for ($\mathrm{j}=0$; $\mathrm{j}!=32$; $\mathrm{j}=\mathrm{j}+1$)
for ($k=0$; $k!=32$; $k=k+1$)

$$
x[i][j]=x[i][j]+y[i][k] \text { * } z[k][j] ;
$$

\}

- Starting addresses are parameters in \$a0, \$a1, and \$a2. Integer variables are in $\$ \mathrm{t} 3, \$ \mathrm{t} 4, \mathbf{\$ t 5}$. Arrays 32 by 32
- Use pseudoinstructions: li (load immediate), l.d / s.d (load / store 64 bits)

MIPS code 1st piece: initialize x[] []

- Initialize Loop Variables mm:

li	\$t1, 32	$\#$ \$t1 $=32$
li	$\$ t 3,0$	$\#$ i $=0 ; 1$ st loop
li	$\$ t 4,0$	$\#$ j $=0 ;$ reset 2nd
li	$\$ t 5,0$	$\#$ k $=0 ;$ reset 3rd

- To fetch x[i][j], skip i rows (i*32), add j
sll \$t2,\$t3,5 \# \$t2 = i * 2^{5}
addu $\$ t 2, \$ t 2, \$ t 4 \# \$ t 2=\mathbf{i}^{*} \mathbf{2}^{5}+\mathbf{j}$
- Get byte address (8 bytes), load x[i][i]
sll \$t2, \$t2,3 \# i,j byte addr.
addu \$t2, \$a0,\$t2\# @ x[i][j]
l.d
\$f4, 0(\$t2) \# \$f4 = x[i][j]

MIPS code 2nd piece: z[][], y[][]

- Like before, but load z[k][j] into \$f16

L3: sll \$t0, \$t5, 5

addu	\$t0, \$t0, \$t4	\$t0 $=k^{*} 2^{5}+\mathrm{j}$
sll	\$t0, \$t0, 3	\# k,j byte addr.
addu	\$t0, \$a2, \$t0	\# @ z[k][j]
1.d	\$f16, 0(\$t0)	\# \$f16 = z[k][j]

- Like before, but load y[i][k] into \$f18

sll	\$t0, \$t3, 5	\$t0 = i * $\mathbf{2}^{5}$
addu	\$t0, \$t0, \$t5	\# \$t0 $=i^{*} \mathbf{2}^{5}+\mathrm{k}$
sll	\$t0, \$t0, 3	\# i,k byte addr
addu	\$t0, \$a1, \$t0	\# @ y[i][k]
1.d	\$f18, 0 (\$t0)	\# \$f18 = y[i][k]

-Summary: \$f4: x[i][j], \$f16: z[k][j], \$f18: y[i][k]

MIPS code for last piece: add/mul, loops

- Add y * z to x

$$
\begin{array}{ll}
\text { mul.d } \$ f 16, \$ f 18, \$ f 16 & \# y[][]^{*} z[][] \\
\text { add.d } \$ f 4, \$ f 4, \$ f 16 & \# x[][]+y^{*} z
\end{array}
$$

- Increment k; if end of inner loop, store x

```
addiu $t5, $t5,1 # k = k + 1
    bne $t5, $t1,L3 # if(k!=32) goto L3
    s.d $f4, 0($t2) # x[i][j] = $f4
```

- Increment j; middle loop if not end of j

```
addiu $t4, $t4,1
    bne $t4, $t1,L2 # if(j!=32) goto L2
```

- Increment i; if end of outer loop, return

$$
\begin{array}{lc}
\text { addiu \$t3, \$t3, } 1 & \# \text { i }=\mathbf{i}+1 \\
\text { bne } \\
\text { jr } & \$ t 3, \$ t 1, L 2
\end{array}
$$

Floating Point gottchas: Add Associativity?

$\cdot x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}$, and $z=1.0$
$\cdot x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right)$

$$
=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=\underline{0.0}
$$

$\cdot(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0$
$=(0.0)+1.0=1.0$

- Therefore, Floating Point addition not associative!
1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38}+1.0$ is still 1.5×10^{38}
FP result approximation of real result!
- What are the conditions that make smaller arguments "disappear" (rounded down to 0.0)?

Basic Addition Algorithm/Multiply issues

Addition (or subtraction) includes the following steps:
(1) compute $\mathrm{Ye}-\mathrm{Xe}$ (getting ready to align binary point)
(2) right shift $X m$ that many positions to form $X m \times 2^{X e-Y e}$

Good

Summary
(3) compute $\left(X m \times 2^{X e-Y e}\right)+Y m$
if representation demands normalization, then normalization step follows:
(4) left shift result, decrement result exponent (e.g., 0.001xx...) right shift result, increment result exponent (e.g., 101.1xx...)
continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)
(5) for Multiply, doubly biased exponent must be corrected:
$\mathrm{Xe}=7$
Ye=-3
Excess 8 extra subtraction step of the bias amount
(6) if result is 0 mantissa, may need to zero exponent by special step

$$
\begin{array}{lll}
\mathrm{Xe}=1111 & =15 & =7+8 \\
\mathrm{Ye}=\frac{0101}{10100} & =\frac{5}{20} & =\frac{-3+8}{4+8+8}
\end{array}
$$

Rounding and IEEE Rounding Modes

- When we perform math on "real" numbers, we have to worry about rounding to fit the result in the significant field.
- The FP hardware carries two extra bits of precision, and then round to get the proper value
- Rounding also occurs when converting a double to a single precision value, or converting a floating point number to an integer

Round towards $+\infty$

- ALWAYS round "up": $2.001 \rightarrow 3$
- $-2.001 \rightarrow-2$

Round towards $-\infty$

- ALWAYS round "down": $1.999 \rightarrow 1$,
- $-1.999 \rightarrow-2$

Truncate

- Just drop the last bits (round towards 0)

Round to (nearest) even

- Normal rounding, almost

Round to Even

- Round like you learned in grade school
- Except if the value is right on the borderline, in which case we round to the nearest EVEN number

$$
\begin{aligned}
& 2.5->2 \\
& 3.5->4
\end{aligned}
$$

- Insures fairness on calculation

This way, half the time we round up on tie, the other half time we round down

Ask statistics majors

- This is the default rounding mode

Summary: Extra Bits for Rounding

"Floating Point numbers are like piles of sand; every time you move one you lose a little sand, but you pick up a little dirt."

How many extra bits?
IEEE: As if computed the result exactly and rounded.
Addition:

$1 . x x x x x$	$1 . x x x x x$	$1 . x x x x x$
$+1 . x x x x x$	$0.001 x x x x x$	$0.01 x x x x x$
$1 x . x x x x y$	$1 . x x x x x y y y$	$1 x . x x x x y y y$

post-normalization pre-normalization pre and post

- Guard Digits: digits to the right of the first p digits of significand to guard against loss of digits - can later be shifted left into first P places during normalization.
- Addition: carry-out shifted in
- Subtraction: borrow digit and guard
- Multiplication: carry and guard, Division requires guard

Summary: Rounding Digits

Normalized result, but some non-zero digits to the right of the significand --> the number should be rounded
E.g., $B=10, p=3$:

02	1.69	$=1.6900$ * 10
0 0	7.85	$=-.0785$ * 10 2-bias
02	1.61	$=1.6115 * 10$ 2-bias

one round digit must be carried to the right of the guard digit so that after a normalizing left shift, the result can be rounded, according to the value of the round digit

IEEE Standard: four rounding modes: round to nearest even (default) round towards plus infinity round towards minus infinity round towards 0
round to nearest:
round digit < $B / 2$ then truncate
$>B / 2$ then round up (add 1 to ULP: unit in last place)
$=B / 2$ then round to nearest even digit
it can be shown that this strategy minimizes the mean error introduced by rounding

Elaboration: Sticky Bit

Additional bit to the right of the round digit to better fine tune rounding

Rounding Summary

Radix 2 minimizes wobble in precision
Normal operations in +,-,,*,I require one carrylborrow bit + one guard digit
One round digit needed for correct rounding
Sticky bit needed when round digit is B/2 for max accuracy
Rounding to nearest has mean error $=0$, if $u n i f o r m$ distribution of digits are assumed

C: Casting floats to ints and vice versa

-(int) floating point exp
Coerces and converts it to the nearest integer (C uses truncation)
i = (int) (3.14159 * f);
-(float) exp
converts integer to nearest floating point f = f + (float) i;

C: float -> int -> float

```
if (f == (float)((int) f)) \{
```

printf("true");
\}

- Will not always print "true"
- Large values of integers don't have exact floating point representations
- What about double?
- Small floating point numbers (<1) don’t have integer representations
- For other numbers, rounding errors

Summary: Scientific Notation

Sign, magnitude

$$
\text { IEEE F.P. } \quad \pm 1 . \mathrm{M} \mathrm{x} 2 \quad \mathrm{e}-127
$$

- Issues:
- Arithmetic (+, -, *, /)
- Representation, Normal form
- Range and Precision
- Rounding
- Exceptions (e.g., divide by zero, overflow, underflow)
- Errors
- Properties (negation, inversion, if $A \neq B$ then $A-B \neq 0$)

Summary : Floating-Point Arithmetic

Representation of floating point numbers in IEEE 754 standard:
single precision
actual exponent is
$\mathrm{e}=\mathrm{E}-127$

exponent:
excess 127 binary integer
mantissa:
sign + magnitude, normalized binary significand w/ hidden integer bit: 1.M

$$
\begin{aligned}
& 0<\mathrm{E}<255 \\
& N=(-1) \quad S_{2} \quad{ }^{E-127}(1 . M) \\
& 0=0000000000 \ldots 0 \quad-1.5=10111111110 \ldots 0
\end{aligned}
$$

Magnitude of numbers that can be represented is in the range:

$$
2^{-126}(1.0) \text { to } 2^{127}\left(2-2^{-23}\right)
$$

which is approximately:

$$
1.8 \times 10^{-38} \text { to } 3.40 \times 10^{38}
$$

(integer comparison valid on IEEE FI.Pt. numbers of same sign!)

Things to Remember

- Floating Point numbers approximate values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
- New MIPS registers(\$f0-\$f31), instruct.ions:

Single Precision (32 bits, $2 \times 10^{-38} \ldots 2 \times 10^{38}$): add.s, sub.s, mul.s, div.s
Double Precision (64 bits , $2 \times 10^{-308} \ldots 2 \times 10^{308}$): add.d, sub.d, mul.d, div.d

- Type is not associated with data, bits have no meaning unless given in context

