
Chapter 3 - ISA3 1

ISA Part III
Logical and Shift Operations
Instruction Representation

Chapter 3 - ISA3 2

MIPS Instructions (Quick Summary)
Name Example Comments

$s0-$s7, $t0-$t9, $zero,Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Chapter 3 - ISA3 3

Overview
• Logical Instructions

• Shifts

• Instruction Formats

Chapter 3 - ISA3 4

Bitwise Operations
• Up until now, we’ve done arithmetic (add, sub,addi), memory

access (lw and sw), and branches and jumps.

• All of these instructions view contents of register as a single
quantity (such as a signed or unsigned integer)

° New Perspective: View contents of register as 32 bits rather than
as a single 32-bit number

• Since registers are composed of 32 bits, we may want to access
individual bits (or groups of bits) rather than the whole.

• Introduce two new classes of instructions:

– Logical Operators

– Shift Instructions

Chapter 3 - ISA3 5

Logical Operators
• Two basic logical operators:

– AND: outputs 1 only if both inputs are 1

– OR: outputs 1 if at least one input is 1

Chapter 3 - ISA3 6

Logical Operators
• Two basic logical operators:

– AND: outputs 1 only if both inputs are 1

– OR: outputs 1 if at least one input is 1

• Truth Table: standard table listing all possible
combinations of inputs and resultant output for each

• Truth Table for AND and OR

A B AND OR

0 0

0 1

1 0

1 1

0
0
0
1

0
1
1
1

Chapter 3 - ISA3 7

Logical Operators
• Instruction Names:

– and, or: Both of these expect the third argument to be a
register

– andi, ori: Both of these expect the third argument to be an
immediate

• MIPS Logical Operators are all bitwise, meaning that bit 0 of
the output is produced by the respective bit 0’s of the inputs,
bit 1 by the bit 1’s, etc.

Chapter 3 - ISA3 8

Uses for Logical Operators
• Note that anding a bit with 0 produces a 0 at the

output while anding a bit with 1 produces the
original bit.

• This can be used to create a mask.

– Example:

1011 0110 1010 0100 0011 1101 1001 1010

0000 0000 0000 0000 0000 1111 1111 1111

– The result of anding these two is:

0000 0000 0000 0000 0000 1101 1001 1010

• The second bit string in the example is called a mask. It
is used to isolate the rightmost 12 bits of the first bit
string by masking out the rest of the string (e.g. setting
it to all 0s).

Chapter 3 - ISA3 9

Uses for Logical Operators
• Thus, the and operator can be used to set certain portions of a bit

string to 0s, while leaving the rest alone.

– In particular, if the first bit string in the above example were in $t0,
then the following instruction would mask it:

andi $t0,$t0,0xFFF

• Similarly, note that oring a bit with 1 produces a 1 at the output
while oring a bit with 0 produces the original bit.

• This can be used to force certain bits of a string to 1s.

– For example, if $t0 contains 0x12345678, then after this instruction:

ori $t0, $t0, 0xFFFF

– $t0 contains 0x1234FFFF (e.g. the high-order 16 bits are
untouched, while the low-order 16 bits are forced to 1s).

Chapter 3 - ISA3 10

Shift Instructions (1/3)
• Move (shift) all the bits in a word to the left or right by a

number of bits.

– Example: shift right by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

Example: shift left by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

Chapter 3 - ISA3 11

Shift Instructions (2/3)

• Shift instruction syntax:

1 2,3,4

– Where

1) operation name

2) register that will receive value

3) first operand (register)

4) shift amount (constant <= 32)

MIPS shift instructions:

1. sll (shift left logical): shifts left
and fills emptied bits with 0s

2. srl (shift right logical): shifts right
and fills emptied bits with 0s

3. sra (shift right arithmetic): shifts
right and fills emptied bits by sign
extending

Chapter 3 - ISA3 12

Shift Instructions (3/3)
• Example: shift right arithmetic by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

Example: shift right arithmetic by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

• Example: shift right logical by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

0000 0000 1001 0010 0011 0100 0101 0110

Chapter 3 - ISA3 13

Uses for Shift Instructions (1/4)

• Suppose we want to isolate byte 0 (rightmost 8 bits) of a
word in $t0. Simply use:

andi $t0,$t0,0xff.

• Suppose we want to isolate byte 1 (bit 15 to bit 8) of a
word in $t0. We can use:

andi $t0,$t0,0xff00.

But then we still need to shift to the right by 8 bits...

Chapter 3 - ISA3 14

Uses for Shift Instructions (2/4)

• Could use instead:

sll $t0,$t0,16 srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

Uses for Shift Instructions (3/4)
• In decimal:

Multiplying by 10 is same as shifting left
by 1:

71410 x 1010 = 714010

5610 x 1010 = 56010

Multiplying by 100 is same as shifting left
by 2:

71410 x 10010 = 7140010

5610 x 10010 = 560010

Multiplying by 10n is same as shifting left
by n

• In binary:

Multiplying by 2 is same as shifting
left by 1:

112 x 102 = 1102

10102 x 102 = 101002

Multiplying by 4 is same as shifting
left by 2:

112 x 1002 = 11002

10102 x 1002 = 1010002

Multiplying by 2n is same as shifting
left by n

Chapter 3 - ISA3 15

Chapter 3 - ISA3 16

Uses for Shift Instructions (4/4)

• Since shifting may be faster than multiplication, a good
compiler usually notices when C code multiplies by a
power of 2 and compiles it to a shift instruction:

a *= 8; (in C)

would compile to:

sll $s0,$s0,3 (in MIPS)

• Likewise, shift right to divide by powers of 2

– remember to use sra (shift arithmetic)

Chapter 3 - ISA3 17

Big Idea: Stored-program Concept
• Computers built on 2 key principles:

1) instructions are represented as numbers.

2) therefore, entire programs can be stored in memory to
be read or written just like numbers (data).

• Simplifies SW/HW of computer systems:

1. Memory technology for data also used for programs.

2. Data and Instructions are just 1’s and 0’s.

Chapter 3 - ISA3 18

Result #1: Everything Addressed
• Since all instructions and data are stored in memory as numbers,

everything has a memory address: instructions, data words

– both branches and jumps use these

• C pointers are just memory addresses: they can point to anything
in memory

– Unconstrained use of addresses can lead to nasty bugs; up to you in
C; limits in Java

• One register keeps address of instruction being executed:
‘Program Counter’ (PC)

– Basically a pointer to memory: Intel calls it Instruction Address
Pointer, which is better

Chapter 3 - ISA3 19

Result #2: Binary Compatibility
• Programs are distributed in binary form

– Programs bound to specific instruction set

– Different version for Macintosh and IBM PC

• New machines want to run old programs (‘binaries’) as well as
programs compiled to new instructions

• Leads to instruction set evolving over time

• Selection of Intel 8086 in 1981 for 1st IBM PC is major reason latest
PCs still use 80x86 instruction set (Pentium 4); Could still run
program from 1981 PC today

Chapter 3 - ISA3 20

Instructions As Numbers

• Currently all data we work with is in
words (32-bit blocks):

– Each register is a word.

– lw and sw both access memory
one word at a time.

• So how do we represent
instructions?

– Remember: computer only
understands 1s and 0s, so
‘add $t0,$0,$0’ is meaningless.

– MIPS wants simplicity: since data
is in words, make instructions be
words...

• One word is 32 bits, so divide
instruction word into “fields”.

• Each field tells computer
something about instruction.

• We could define different fields for
each instruction, but MIPS is based
on simplicity, so define 3 basic
types of instruction formats:

– R-format

– I-format

– J-format

Chapter 3 - ISA3 21

Format Instructions
• J-format: used for j and jal

• I-format: used for instructions with immediates, lw and sw
(since the offset counts as an immediate), and the branches
(beq and bne),

(But not the shift instructions; Later)

• R-format: used for all other instructions

• It will soon become clear why the instructions have been
partitioned in this way.

Chapter 3 - ISA3 22

R-Format Instructions (1/3)
• Define ‘fields’ of the following number of bits each:

6 5 5 5 65

For simplicity, each field has a name:

opcode rs rt rd functshamt

° Important: Each field is viewed as a 5- or 6-bit
unsigned integer, not as part of a 32-bit integer.

Consequence: 5-bit fields can represent any number 0-
31, while 6-bit fields can represent any number 0-63.

Chapter 3 - ISA3 23

R-Format Instructions (2/3)
• What do these field integer values tell us?

– opcode: partially specifies what instruction it is (Note: This
number is equal to 0 for all R-Format instructions.)

– funct: combined with opcode, this number exactly specifies the
instruction

• More fields:

– rs (Source Register): generally used to specify register
containing first operand

– rt (Target Register): generally used to specify register
containing second operand (note that name is misleading)

– rd (Destination Register): generally used to specify register
which will receive result of computation

Chapter 3 - ISA3 24

R-Format Instructions (3/3)
• Notes about register fields:

– Each register field is exactly 5 bits, which means that it can specify any
unsigned integer in the range 0-31. Each of these fields specifies one of the
32 registers by number.

– The word ‘generally’ was used because there are exceptions, such as:

• mult and div have nothing important in the rd field since the dest
registers are hi and lo

• mfhi and mflo have nothing important in the rs and rt fields since the
source is determined by the instruction

• Final field:

– shamt: This field contains the amount a shift instruction will shift by. Shifting a 32-
bit word by more than 31 is useless, so this field is only 5 bits (so it can represent
the numbers 0-31).

– This field is set to 0 in all but the shift instructions.

• For a detailed description of field usage for each instruction, see back cover of
textbook.

Chapter 3 - ISA3 25

R-Format Example (1/2)
• MIPS Instruction:

add $8,$9,$10

opcode = 0 (look up in table)

funct = 32 (look up in table)

rs = 9 (first operand)

rt = 10 (second operand)

rd = 8 (destination)

shamt = 0 (not a shift)

See page A-55

Chapter 3 - ISA3 26

R-Format Example (2/2)
• MIPS Instruction:

add $8,$9,$10

decimal representation:

0 9 10 8 320

binary representation:

000000 01001 01010 01000 10000000000

Called a Machine Language Instruction

Reading The
Table

• MIPS Instruction:

add $8,$9,$10

Chapter 3 - ISA3 27

0 9 10 8 320

Chapter 3 - ISA3 28

I-format Instructions
• What about instructions with immediates?

– 5-bit field only represents numbers up to the value 31:
immediates may be much larger than this.

– Ideally, MIPS would have only one instruction format (for
simplicity): unfortunately, we need to compromise.

• Define new instruction format that is partially consistent with r-
format:

– First notice that, if instruction has immediate, then it uses at most
2 registers.

Chapter 3 - ISA3 29

I-format Instructions
• Define ‘fields’ of the following number of bits each:

6 5 5 16

opcode rs rt immediate

Again, each field has a name:

° Key Concept: Only one field is inconsistent with R-
format. Most importantly, opcode is still in same
location.

Chapter 3 - ISA3 30

I-format Instructions
• The immediate field:

– addi, slti, slitu, the immediate is sign-extended to 32 bits.
Thus, it’s treated as a signed integer.

– 16 bits - can be used to represent immediate up to 216 different
values.

– This is large enough to handle the offset in a typical lw or sw, plus a
vast majority of values that will be used in the slti instruction.

Chapter 3 - ISA3 31

I-format Example
• MIPS Instruction:

addi $21,$22,-50

opcode = 8 (look up in table)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)
decimal representation:

8 22 21 -50
binary representation:

001000 10110 10101 1111111111001110

Chapter 3 - ISA3 32

Branches: PC-relative Addressing
• Use I-Format

opcode rs rt immediate

opcode specifies beq v. bne

Rs and Rt specify registers to compare

What can immediate specify?

o Immediate is only 16 bits

o PC is 32-bit pointer to memory

o So immediate cannot specify entire address to
branch to.

Chapter 3 - ISA3 33

Branches: PC-relative Addressing
• How do we usually use branches?

– Answer: if-else, while, for

– Loops are generally small: typically up to 50 instructions

– Function calls and unconditional jumps are done using jump
instructions (j and jal), not the branches.

• Conclusion: though we may want to branch to anywhere in
memory, a single branch will generally change the PC by a very
small amount.

Chapter 3 - ISA3 34

Branches: PC-relative Addressing
• Solution: pc-relative addressing

• Let the 16-bit immediate field be a signed two’s complement
integer to be added to the PC if we take the branch.

• Now we can branch +/- 215 bytes from the PC, which should
be enough to cover any loop.

• Any ideas to further optimize this?

Chapter 3 - ISA3 35

Branches: PC-relative Addressing
• Note: instructions are words, so they’re word aligned (byte

address is always a multiple of 4, which means it ends with 00
in binary).

– So the number of bytes to add to the PC will always be a
multiple of 4.

– So specify the immediate in words.

• Now, we can branch +/- 215 words from the PC (or +/- 217 bytes),
so we can handle loops 4 times as large.

Chapter 3 - ISA3 36

Branches: PC-relative Addressing
• Final calculation:

– If we don’t take the branch:

PC = PC + 4.

– If we do take the branch:

PC = (PC + 4) + (immediate * 4).

– Observations.

• Immediate field specifies the number of words to jump,
which is simply the number of instructions to jump.

• Immediate field can be positive or negative.

• Due to hardware, add immediate to (PC+4), not to PC; Will
be clearer why later in course.

Chapter 3 - ISA3 37

Branch Example (1/3)
• MIPS Code:

Loop: beq $9,$0,End
add $8,$8,$10
addi $9,$9,-1
j Loop

End:

• Branch is I-Format:

opcode = 4 (look up in table)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???

Chapter 3 - ISA3 38

Branch Example (2/3)
• MIPS Code:

Loop: beq $9,$0,End

add $8,$8,$10

addi $9,$9,-1

j Loop

End:

• Immediate Field:

– Number of instructions to add to (or subtract from) the PC,
starting at the instruction following the branch.

– In this case, immediate = 3

Chapter 3 - ISA3 39

Branch Example (3/3)
• MIPS Code:

Loop: beq $9,$0,End
add $8,$8,$10
addi $9,$9,-1
j Loop

End:

4 9 0 3

decimal representation:

binary representation:

000100 01001 00000 0000000000000011

Chapter 3 - ISA3 40

Things to Remember
• Simplifying MIPS: define instructions to be same size as data

(one word) so that they can use the same memory (can use lw
and sw).

° Machine language instruction: 32 bits representing a single
instruction.

opcode rs rt immediate

opcode rs rt rd functshamtR
I

Computer actually stores programs as a series of
these.

Chapter 3 - ISA3 41

I-Format Problems (1/3)
• Problem 1:

– Chances are that addi, lw, sw and slti will use immediates
small enough to fit in the immediate field.

– What if too big?

• We need a way to deal with a 32-bit immediate in any I-
format instruction.

Chapter 3 - ISA3 42

I-Format Problems (2/3)
• Possible Solutions to Problem 1:

– Handle it in software

– Don’t change the current instructions: instead, add a new
instruction to help out

• New instruction:

lui register, immediate

– stands for Load Upper Immediate

– takes 16-bit immediate and puts these bits in the upper half (high
order half) of the specified register

– sets lower half to 0s

Chapter 3 - ISA3 43

I-Format Problems (3/3)
• Solution to Problem 1 (continued):

– So how does lui help us?

– Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB

ori $at, $at, 0xCDCD

add $t0,$t0,$at

– Now each I-format instruction has only a 16-bit immediate.

	 ISA Part III Logical and Shift Operations Instruction Representation
	MIPS Instructions (Quick Summary)
	Overview
	Bitwise Operations
	Logical Operators
	Logical Operators
	Logical Operators
	Uses for Logical Operators
	Uses for Logical Operators
	Shift Instructions (1/3)
	Shift Instructions (2/3)
	Shift Instructions (3/3)
	Uses for Shift Instructions (1/4)
	Uses for Shift Instructions (2/4)
	Uses for Shift Instructions (3/4)
	Uses for Shift Instructions (4/4)
	Big Idea: Stored-program Concept
	Result #1: Everything Addressed
	Result #2: Binary Compatibility
	Instructions As Numbers
	Format Instructions
	R-Format Instructions (1/3)
	R-Format Instructions (2/3)
	R-Format Instructions (3/3)
	R-Format Example (1/2)
	R-Format Example (2/2)
	Reading The Table
	I-format Instructions
	I-format Instructions
	I-format Instructions
	I-format Example
	Branches: PC-relative Addressing
	Branches: PC-relative Addressing
	Branches: PC-relative Addressing
	Branches: PC-relative Addressing
	Branches: PC-relative Addressing
	Branch Example (1/3)
	Branch Example (2/3)
	Branch Example (3/3)
	Things to Remember
	I-Format Problems (1/3)
	I-Format Problems (2/3)
	I-Format Problems (3/3)

