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ISA   Part III
Logical and Shift Operations 
Instruction Representation
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MIPS Instructions (Quick Summary)
Name Example Comments

$s0-$s7, $t0-$t9, $zero,Fast locations for data. In MIPS, data must be in registers to perform 
32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is 

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw  $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq  $s1, $s2, 25 if ($s1 == $s2 ) go to             
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if ($s1 != $s2 ) go to             
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if ($s2 < $s3 )  $s1  = 1;          
else $s1 = 0

Compare less than; for beq, bne

set less than 
immediate

slti  $s1, $s2, 100 if ($s2 < 100 )  $s1  = 1;          
else $s1 = 0

Compare less than constant

jump j    2500 go to 10000 Jump to target address
Uncondi- jump register jr   $ra go to $ra For switch, procedure return
tional jump jump and link jal  2500 $ra  = PC + 4; go to 10000 For procedure call
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Overview
• Logical Instructions

• Shifts

• Instruction Formats
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Bitwise Operations
• Up until now, we’ve done arithmetic (add, sub,addi ), memory 

access (lw and sw), and branches and jumps.

• All of these instructions view contents of register as a single 
quantity (such as a signed or unsigned integer)

° New Perspective: View contents of register as 32 bits rather than 
as a single 32-bit number

• Since registers are composed of 32 bits, we may want to access 
individual bits (or groups of bits) rather than the whole.

• Introduce two new classes of instructions:

– Logical Operators

– Shift Instructions
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Logical Operators
• Two basic logical operators:

– AND: outputs 1 only if both inputs are 1

– OR: outputs 1 if at least one input is 1
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Logical Operators
• Two basic logical operators:

– AND: outputs 1 only if both inputs are 1

– OR: outputs 1 if at least one input is 1

• Truth Table: standard table listing all possible 
combinations of inputs and resultant output for each

• Truth Table for AND and OR

A    B    AND   OR

0 0

0 1

1 0

1 1

0
0
0
1

0
1
1
1
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Logical Operators
• Instruction Names:

– and, or: Both of these expect the third argument to be a 
register

– andi, ori: Both of these expect the third argument to be an 
immediate

• MIPS Logical Operators are all bitwise, meaning that bit 0 of 
the output is produced by the respective bit 0’s of the inputs, 
bit 1 by the bit 1’s, etc.
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Uses for Logical Operators
• Note that anding a bit with 0 produces a 0 at the 

output while anding a bit with 1 produces the 
original bit.

• This can be used to create a mask.

– Example:

1011 0110 1010 0100 0011 1101 1001 1010

0000 0000 0000 0000 0000 1111 1111 1111

– The result of anding these two is:

0000 0000 0000 0000 0000 1101 1001 1010

• The second bit string in the example is called a mask.  It 
is used to isolate the rightmost 12 bits of the first bit 
string by masking out the rest of the string (e.g. setting 
it to all 0s).
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Uses for Logical Operators
• Thus, the and operator can be used to set certain portions of a bit 

string to 0s, while leaving the rest alone.

– In particular, if the first bit string in the above example were in $t0, 
then the following instruction would mask it:

andi $t0,$t0,0xFFF

• Similarly, note that oring a bit with 1 produces a 1 at the output 
while oring a bit with 0 produces the original bit.

• This can be used to force certain bits of a string to 1s.

– For example, if $t0 contains 0x12345678, then after this instruction:

ori $t0, $t0, 0xFFFF

– $t0 contains 0x1234FFFF (e.g. the high-order 16 bits are 
untouched, while the low-order 16 bits are forced to 1s).
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Shift Instructions (1/3)
• Move (shift) all the bits in a word to the left or right by a 

number of bits.

– Example: shift right by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

Example: shift left by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000
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Shift Instructions (2/3)

• Shift instruction syntax:

1   2,3,4

– Where

1) operation name

2) register that will receive value

3) first operand (register)

4) shift amount (constant <= 32)

MIPS shift instructions:

1. sll (shift left logical): shifts left 
and fills emptied bits with 0s

2. srl (shift right logical): shifts right 
and fills emptied bits with 0s

3. sra (shift right arithmetic): shifts 
right and fills emptied bits by sign 
extending
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Shift Instructions (3/3)
• Example: shift right arithmetic by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

Example: shift right arithmetic by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

• Example: shift right logical by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

0000 0000 1001 0010 0011 0100 0101 0110
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Uses for Shift Instructions (1/4)

• Suppose we want to isolate byte 0 (rightmost 8 bits) of a 
word in $t0.  Simply use:

andi $t0,$t0,0xff.

• Suppose we want to isolate byte 1   (bit 15 to bit 8) of a 
word in $t0.  We can use:

andi $t0,$t0,0xff00.

But then we still need to shift to the right by 8 bits...
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Uses for Shift Instructions (2/4)

• Could use instead:

sll $t0,$t0,16 srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110



Uses for Shift Instructions (3/4)
• In decimal:

Multiplying by 10 is same as shifting left 
by 1:

71410 x 1010 = 714010

5610 x 1010 = 56010

Multiplying by 100 is same as shifting left 
by 2:

71410 x 10010 = 7140010

5610 x 10010 = 560010

Multiplying by 10n is same as shifting left 
by n

• In binary:

Multiplying by 2 is same as shifting 
left by 1:

112 x 102 = 1102

10102 x 102 = 101002

Multiplying by 4 is same as shifting 
left by 2:

112 x 1002 = 11002

10102 x 1002 = 1010002

Multiplying by 2n is same as shifting 
left by n
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Uses for Shift Instructions (4/4)

• Since shifting may be faster than multiplication, a good 
compiler usually notices when C code multiplies by a 
power of 2 and compiles it to a shift instruction:

a *= 8; (in C)

would compile to:

sll $s0,$s0,3 (in MIPS)

• Likewise, shift right to divide by powers of 2

– remember to use   sra (shift arithmetic)
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Big Idea: Stored-program Concept
• Computers built on 2 key principles:

1) instructions are represented as numbers.

2) therefore, entire programs can be stored in memory to 
be read or written just like numbers (data).

• Simplifies SW/HW of computer systems:

1. Memory technology for data also used for programs.

2. Data and Instructions are just 1’s and 0’s.
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Result #1: Everything Addressed
• Since all instructions and data are stored in memory as numbers,

everything has a memory address: instructions, data words

– both branches and jumps use these

• C pointers are just memory addresses: they can point to anything
in memory

– Unconstrained use of addresses can lead to nasty bugs; up to you in 
C; limits in Java

• One register keeps address of instruction being executed: 
‘Program Counter’ (PC)

– Basically a pointer to memory: Intel calls it Instruction Address 
Pointer, which is better
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Result #2: Binary Compatibility
• Programs are distributed in binary form

– Programs bound to specific instruction set

– Different version for Macintosh and IBM PC

• New machines want to run old programs (‘binaries’) as well as 
programs compiled to new instructions

• Leads to instruction set evolving over time

• Selection of Intel 8086 in 1981 for 1st IBM PC is major reason latest 
PCs still  use 80x86 instruction set (Pentium 4); Could still run 
program from 1981 PC today
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Instructions As Numbers 

• Currently all data we work with is in 
words (32-bit blocks):

– Each register is a word.

– lw and sw both access memory 
one word at a time.

• So how do we represent 
instructions?

– Remember: computer only 
understands 1s and 0s, so       
‘add $t0,$0,$0’ is meaningless.

– MIPS wants simplicity: since data 
is in words, make instructions be 
words...

• One word is 32 bits, so divide 
instruction word into “fields”.

• Each field tells computer 
something about instruction.

• We could define different fields for 
each instruction, but MIPS is based 
on simplicity, so define 3 basic 
types of instruction formats:

– R-format

– I-format

– J-format
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Format Instructions
• J-format: used for j and jal

• I-format: used for instructions with immediates, lw and sw
(since the offset counts as an immediate), and the branches 
(beq and bne), 

(But not the shift instructions; Later)

• R-format: used for all other instructions

• It will soon become clear why the instructions have been 
partitioned in this way.
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R-Format Instructions (1/3)
• Define ‘fields’ of the following number of bits each:

6 5 5 5 65

For simplicity, each field has a name:

opcode rs rt rd functshamt

° Important: Each field is viewed as a 5- or 6-bit 
unsigned integer, not as part of a 32-bit integer.

Consequence: 5-bit fields can represent any number 0-
31, while 6-bit fields can represent any number 0-63.
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R-Format Instructions (2/3)
• What do these field integer values tell us?

– opcode: partially specifies what instruction it is (Note: This 
number is equal to 0 for all R-Format instructions.)

– funct: combined with opcode, this number exactly specifies the 
instruction

• More fields:

– rs (Source Register): generally used to specify register 
containing first operand

– rt (Target Register): generally used to specify register 
containing second operand (note that name is misleading)

– rd (Destination Register): generally used to specify register 
which will receive result of computation
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R-Format Instructions (3/3)
• Notes about register fields:

– Each register field is exactly 5 bits, which means that it can specify any 
unsigned integer in the range 0-31.  Each of these fields specifies one of the 
32 registers by number.

– The word ‘generally’ was used because there are exceptions, such as:

• mult and div have nothing important in the rd field since the dest
registers are hi and lo

• mfhi and mflo have nothing important in the rs and rt fields since the 
source is determined by the instruction

• Final field:

– shamt: This field contains the amount a shift instruction will shift by.  Shifting a 32-
bit word by more than 31 is useless, so this field is only 5 bits (so it can represent 
the numbers 0-31).

– This field is set to 0 in all but the shift instructions.

• For a detailed description of field usage for each instruction, see back cover of 
textbook.
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R-Format Example (1/2)
• MIPS Instruction:

add   $8,$9,$10

opcode = 0 (look up in table)

funct = 32 (look up in table)

rs = 9 (first operand)

rt = 10 (second operand)

rd = 8 (destination)

shamt = 0 (not a shift)

See page A-55
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R-Format Example (2/2)
• MIPS Instruction:

add   $8,$9,$10

decimal representation:

0 9 10 8 320

binary representation:

000000 01001 01010 01000 10000000000

Called a Machine Language Instruction



Reading The 
Table

• MIPS Instruction:

add   $8,$9,$10
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0 9 10 8 320
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I-format Instructions
• What about instructions with immediates?

– 5-bit field only represents numbers up to the value 31: 
immediates may be much larger than this.

– Ideally, MIPS would have only one instruction format (for 
simplicity): unfortunately, we need to compromise.

• Define new instruction format that is partially consistent with r-
format:

– First notice that, if instruction has immediate, then it uses at most 
2 registers.
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I-format Instructions
• Define ‘fields’ of the following number of bits each:

6 5 5 16

opcode rs rt immediate

Again, each field has a name:

° Key Concept: Only one field is inconsistent with R-
format.  Most importantly, opcode is still in same 
location.
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I-format Instructions
• The immediate field:

– addi, slti, slitu, the immediate is sign-extended to 32 bits.  
Thus, it’s treated as a signed integer.

– 16 bits - can be used to represent immediate up to 216 different 
values.

– This is large enough to handle the offset in a typical lw or sw, plus a 
vast majority of values that will be used in the slti instruction.
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I-format Example
• MIPS Instruction:

addi $21,$22,-50

opcode = 8 (look up in table)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate =   -50 (by default, this is decimal)
decimal representation:

8 22 21 -50
binary representation:

001000 10110 10101 1111111111001110
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Branches: PC-relative Addressing
• Use I-Format

opcode rs rt immediate

opcode specifies beq v. bne

Rs and Rt specify registers to compare

What can immediate specify?

o Immediate is only 16 bits

o PC is 32-bit pointer to memory

o So immediate cannot specify entire address to 
branch to.
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Branches: PC-relative Addressing
• How do we usually use branches?

– Answer: if-else, while, for

– Loops are generally small: typically up to 50 instructions

– Function calls and unconditional jumps are done using jump 
instructions (j and jal), not the branches.

• Conclusion: though we may want to branch to anywhere in 
memory, a single branch will generally change the PC by a very 
small amount.
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Branches: PC-relative Addressing
• Solution: pc-relative addressing

• Let the 16-bit immediate field be a signed two’s complement 
integer to be added to the PC if we take the branch.

• Now we can branch +/- 215 bytes from the PC, which should 
be enough to cover any loop.

• Any ideas to further optimize this?
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Branches: PC-relative Addressing
• Note: instructions are words, so they’re word aligned (byte 

address is always a multiple of 4, which means it ends with 00 
in binary).

– So the number of bytes to add to the PC will always be a 
multiple of 4.

– So specify the immediate in words.

• Now, we can branch +/- 215 words from the PC (or +/- 217 bytes), 
so we can handle loops 4 times as large.
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Branches: PC-relative Addressing
• Final calculation:

– If we don’t take the branch:

PC = PC + 4.

– If we do take the branch:

PC = (PC + 4) + (immediate * 4).

– Observations.

• Immediate field specifies the number of words to jump, 
which is simply the number of instructions to jump.

• Immediate field can be positive or negative.

• Due to hardware, add immediate to (PC+4), not to PC; Will 
be clearer why later in course.
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Branch Example (1/3)
• MIPS Code:

Loop: beq $9,$0,End
add   $8,$8,$10
addi $9,$9,-1
j     Loop

End:

• Branch is I-Format:

opcode = 4 (look up in table)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???
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Branch Example (2/3)
• MIPS Code:

Loop: beq $9,$0,End

add   $8,$8,$10

addi $9,$9,-1

j     Loop

End:

• Immediate Field:

– Number of instructions to add to (or subtract from) the PC, 
starting at the instruction following the branch.

– In this case, immediate = 3
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Branch Example (3/3)
• MIPS Code:

Loop: beq $9,$0,End
add   $8,$8,$10
addi $9,$9,-1
j     Loop

End:

4 9 0 3

decimal representation:

binary representation:

000100 01001 00000 0000000000000011
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Things to Remember
• Simplifying MIPS: define instructions to be same size as data 

(one word) so that they can use the same memory (can use lw
and sw).

° Machine language instruction: 32 bits representing a single 
instruction.

opcode rs rt immediate

opcode rs rt rd functshamtR
I

Computer actually stores programs as a series of 
these.
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I-Format Problems (1/3)
• Problem 1: 

– Chances are that addi, lw, sw and slti will use immediates
small enough to fit in the immediate field.

– What if too big?

• We need a way to deal with a 32-bit immediate in any I-
format instruction.
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I-Format Problems (2/3)
• Possible Solutions to Problem 1:

– Handle it in software

– Don’t change the current instructions: instead, add a new 
instruction to help out

• New instruction:

lui register, immediate

– stands for Load Upper Immediate

– takes 16-bit immediate and puts these bits in the upper half (high 
order half) of the specified register

– sets lower half to 0s
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I-Format Problems (3/3)
• Solution to Problem 1 (continued):

– So how does lui help us?

– Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB

ori $at, $at, 0xCDCD

add    $t0,$t0,$at

– Now each I-format instruction has only a 16-bit immediate.
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