
Computer Architecture

The Language of the Machine

Instruction Sets

° Basic ISA
° Classes, Addressing, Format
° Administrative Matters
° Operations, Branching, Calling conventions
° Break

Organization
° All computers consist of five components

• Processor: (1) datapath and (2) control
• (3) Memory
• (4) Input devices and (5) Output devices

° Not all “memory” are created equally
• Cache: fast (expensive) memory are placed closer to

the processor
• Main memory: less expensive memory--we can have

more
° Input and output (I/O) devices have the messiest

organization
• Wide range of speed: graphics vs. keyboard
• Wide range of requirements: speed, standard, cost ...
• Least amount of research (so far)

Summary: Computer System Components

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

° All have interfaces & organizations

Review: Instruction Set Design

instruction set

software

hardware

Which is easier to change?

Instruction Set Architecture: What Must be Specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

° Instruction Format or Encoding
– how is it decoded?

° Location of operands and result
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

° Data type and Size
° Operations

– what are supported
° Successor instruction

– jumps, conditions, branches
- fetch-decode-execute is implicit!

Basic ISA Classes

Accumulator (1 register):
1 address add A acc ← acc + mem[A]
1+x address addx A acc ← acc + mem[A + x]

Stack:
0 address add tos ← tos + next

General Purpose Register:
2 address add A B EA(A) ← EA(A) + EA(B)
3 address add A B C EA(A) ← EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra ← Rb + Rc

load Ra Rb Ra ← mem[Rb]
store Ra Rb mem[Rb] ← Ra

Comparison:
Bytes per instruction? Number of Instructions? Cycles per instruction?

Comparing Number of Instructions

° Code sequence for C = A + B for four classes of instruction sets:
Stack Accumulator Register Register

(register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R1,B Load R2,B
Add Store C Store C, R1 Add R3,R1,R2
Pop C Store C,R3

General Purpose Registers Dominate

1975-1995 all machines use general purpose registers°

° Advantages of registers
• registers are faster than memory
• registers are easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order
vs. stack

• registers can hold variables
- memory traffic is reduced, so program is sped up

(since registers are faster than memory)
- code density improves (since register named with fewer bits

than memory location)

Summary on Instruction Classes

° Expect new instruction set architecture to use
general purpose register°

Pipelining => Expect it to use load store variant
of GPR ISA

RISC features

° Reduced Instruction Set
° General Purpose Register File (large number: 32 or

more)
° Load/Store Architecture
° Few Addressing modes
° Fixed Instruction Format

MIPS I Registers
0r0

r1
°
°
°
r31
PC
lo
hi

° Programmable storage
• 2^32 x bytes of memory
• 31 x 32-bit GPRs (R0 = 0)
• 32 x 32-bit FP regs (paired DP)
• HI, LO, PC

Memory Addressing

° Since 1980 almost every machine uses addresses to level of 8-bits
(byte)

° 2 questions for design of ISA:
• Since could read a 32-bit word as four loads of bytes from

sequential byte addresses or as one load word from a single byte
address,
how do byte addresses map onto words?

Can a word be placed on any byte boundary?•

Addressing Objects: Endianess and Alignment

° Big Endian: address of most significant byte = word address
(xx00 = Big End of word)

• IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
° Little Endian:address of least significant byte = word address

(xx00 = Little End of word)
• Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte 0

msb lsb
3 2 1 0

0 1 2 3
big endian byte 0

Alignment: require that objects fall on address
that is multiple of their size.

0 1 2 3

Aligned

Not
Aligned

Addressing Modes
Addressing mode Example Meaning

Register Add R4,R3 R4← R4+R3

Immediate Add R4,#3 R4 ← R4+3

Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 R3+Mem[R1+R2]←

Direct or absolute Add R1,(1001) R1 ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]; R2 R2+d←

Auto-decrement Add R1,–(R2) R2 ← R2–d; R1 R1+Mem[R2]←

Scaled Add R1,100(R2)[R3] R1 ← R1+Mem[100+R2+R3*d]
Why Auto-increment/decrement? Scaled?

MIPS Addressing Formats (Summary)

° How memory can be addressed in MIPS

B y te H a lfw o r d W o rd

R e g is te rs

M e m o r y

M e m o r y

W o rd

M e m o r y

W o rd

R e g is te r

R e g is te r

1 . Im m e d ia te a d d re s s in g

2 . R e g is te r a d d r e s s in g

3 . B a s e a d d r e s s in g

4 . P C -re la t iv e a d d re s s in g

5 . P s e u d o d ir e c t a d d r e s s in g

o p rs r t

o p rs r t

o p rs r t

o p

o p

rs r t

A d d r e s s

A d d r e s s

A d d re s s

rd . . . fu n c t

Im m e d ia te

P C

P C

+

+

Addressing Mode Usage? (ignore register mode)
3 programs measured on machine with all address modes (VAX)

--- Displacement: 42% avg, 32% to 55% 75%

--- Immediate: 33% avg, 17% to 43% 85%

--- Register deferred (indirect): 13% avg, 3% to 24%

--- Scaled: 7% avg, 0% to 16%

--- Memory indirect: 3% avg, 1% to 6%

--- Misc: 2% avg, 0% to 3%

75% displacement & immediate
88% displacement, immediate & register indirect

Displacement Address Size?

0%

10%

20%

30%

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15

Int. Avg. FP Avg.

° Avg. of 5 SPECint92 programs v. avg. 5 SPECfp92 programs

° X-axis is in powers of 2: 4 => addresses > 23 (8) and Š 24 (16)

Address Bits

° 1% of addresses > 16-bits
° 12 - 16 bits of displacement needed

Immediate Size?

• 50% to 60% fit within 8 bits

• 75% to 80% fit within 16 bits

Addressing Summary

•Data Addressing modes that are important:
Displacement, Immediate, Register Indirect

•Displacement size should be 12 to 16 bits

•Immediate size should be 8 to 16 bits

Generic Examples of Instruction Format Widths

…
…Variable:

Fixed:

Hybrid:

Summary of Instruction Formats

• If code size is most important,
use variable length instructions

• If performance is over is most important,
use fixed length instructions

• Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb, MIPS16); per procedure decide
performance or density

Instruction Format

• If have many memory operands per instructions and
many addressing modes,

=>Address Specifier per operand

•If have load-store machine with 1 address per instr.
and one or two addressing modes,

=> encode addressing mode in the opcode

MIPS Addressing Modes/Instruction Formats

• All instructions 32 bits wide

opRegister (direct) rs rt rd

register

immedop rs rtImmediate

immedop rs rt

register

Base+index

+

Memory

immedop rs rt

PC

PC-relative

+

Memory

• Register Indirect?

Typical Operations (little change since 1960)
Data Movement Load (from memory)

Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Shift shift left/right, rotate left/right
Logical not, and, or, set, clear

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String
Graphics (MMX)

search, translate
parallel subword ops (4 16bit add)

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency

Operation Summary

• Support these simple instructions, since they
will dominate the number of instructions executed:

load,
store,
add,
subtract,
move register-register,
and,
shift,
compare equal, compare not equal,
branch,
jump,
call,
return;

Compilers and Instruction Set Architectures

• Ease of compilation
° orthogonality: no special registers, few special cases,

all operand modes available with any data type or instruction type
° completeness: support for a wide range of operations

and target applications
° regularity: no overloading for the meanings of instruction fields
° streamlined: resource needs easily determined

• Register Assignment is critical too
° Easier if lots of registers

Summary of Compiler Considerations

•Provide at least 16 general purpose registers
plus separate floating-point registers,

•Be sure all addressing modes apply to all
data transfer instructions,

•Aim for a minimalist instruction set.

MIPS I Operation Overview

° Arithmetic logical
° Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU
° AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
° SLL, SRL, SRA, SLLV, SRLV, SRAV
° Memory Access
° LB, LBU, LH, LHU, LW, LWL,LWR
° SB, SH, SW, SWL, SWR

Multiply / Divide

° Start multiply, divide
• MULT rs, rt
• MULTU rs, rt
• DIV rs, rt
• DIVU rs, rt

° Move result from multiply, divide
• MFHI rd
• MFLO rd

° Move to HI or LO
• MTHI rd
• MTLO rd

° Why not Third field for destination?
(Hint: how many clock cycles for multiply or divide vs. add?)

Registers

HI LO

Data Types

Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement

Floating Point:
Single Precision
Double Precision
Extended Precision M x RE How many +/- #'s?

Where is decimal pt?
How are +/- exponents

represented?

exponent

base
mantissa

Operand Size Usage

Frequency of reference by size

0% 20% 40% 60% 80%

Byte

Halfword

Word

Doubleword

0%

0%

31%

69%

7%

19%

74%

0%

Int Avg.

FP Avg.

•Support these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

MIPS arithmetic instructions

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Which add for address arithmetic? Which add for integers?

MIPS logical instructions

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
xor xor $1,$2,$3 $1 = $2 ⊕ $3 3 reg. operands; Logical XOR
nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant
shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

MIPS data transfer instructions

Instruction Comment
SW 500(R4), R3 Store word
SH 502(R2), R3 Store half
SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word
LH R1, 40(R3) Load halfword
LHU R1, 40(R3) Load halfword unsigned
LB R1, 40(R3) Load byte
LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

Why need LUI?
0000 … 0000

LUI R5

R5

Methods of Testing Condition
° Condition Codes

Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or test
instructions.
ex: add r1, r2, r3

bz label

° Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label

Condition Codes
Setting CC as side effect can reduce the # of instructions

X: .
.
.

SUB r0, #1, r0
BRP X

X: .
.
.

SUB r0, #1, r0
CMP r0, #0
BRP X

vs.

But also has disadvantages:

--- not all instructions set the condition codes;
which do and which do not often confusing!
e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
that tests it: to overlap their execution, may need to separate them
with an instruction that does not change the CC

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

Conditional Branch Distance

Bits of Branch Dispalcement

0%
10%
20%
30%
40%

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15

Int. Avg. FP Avg.

• Distance from branch in instructions 2i => Š ±2i-1 & > 2i-2

• 25% of integer branches are > 2 to Š 4 or -2 to -4 instructions

Conditional Branch Addressing

• PC-relative since most branches are relatively close
to the current PC address

• At least 8 bits suggested (± 128 instructions)

• Compare Equal/Not Equal most important for integer
programs (86%)

Frequency of comparison
types in branches

0% 50% 100%

EQ/NE

GT/LE

LT/GE

37%

23%

40%

86%

7%

7%

Int Avg.

FP Avg.

MIPS Compare and Branch

° Compare and Branch
• BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch
• BNE rs, rt, offset <>

° Compare to zero and Branch
• BLEZ rs, offset if R[rs] <= 0 then PC-relative branch
• BGTZ rs, offset >
• BLT <
• BGEZ >=
• BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)
• BGEZAL >=

° Remaining set of compare and branch take two instructions
° Almost all comparisons are against zero!

MIPS jump, branch, compare instructions

Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.
set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; natural numbers
set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers
jump j 10000 go to 10000

Jump to target address
jump register jr $31 go to $31

For switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

Signed vs. Unsigned Comparison

R1= 0…00 0000 0000 0000 0001

R2= 0…00 0000 0000 0000 0010

R3= 1…11 1111 1111 1111 1111

° After executing these instructions:
slt r4,r2,r1 ; if (r2 < r1) r4=1; else r4=0
slt r5,r3,r1 ; if (r3 < r1) r5=1; else r5=0
sltu r6,r2,r1 ; if (r2 < r1) r6=1; else r6=0
sltu r7,r3,r1 ; if (r3 < r1) r7=1; else r7=0

° What are values of registers r4 - r7? Why?
r4 = ; r5 = ; r6 = ; r7 = ;

two

two

two

Value?
2’s comp Unsigned?

Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
(e.g., VAX)

Sometimes stacks are implemented via software convention
(e.g., MIPS)

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

a
b
c

0 Littleinf. BigNext
Empty?

Memory
Addresses

0 Little inf. Big
SP

grows
up

grows
down

Last
Full?

How is empty stack represented?

Little --> Big/Last Full

POP: Read from Mem(SP)
Decrement SP

PUSH: Increment SP
Write to Mem(SP)

Little --> Big/Next Empty

POP: Decrement SP
Read from Mem(SP)

PUSH: Write to Mem(SP)
Increment SP

Call-Return Linkage: Stack Frames

High Mem

FP

ARGS

Callee Save
Registers

Local Variables

Reference args and
local variables at
fixed (positive) offset
from FP

(old FP, RA)

Grows and shrinks during
expression evaluation

SP
Low Mem

° Many variations on stacks possible (up/down, last pushed / next)
° Block structured languages contain link to lexically enclosing frame
° Compilers normally keep scalar variables in registers, not memory!

MIPS: Software conventions for Registers

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

MIPS / GCC Calling Conventions

FP
SPfact:

addiu $sp, $sp, -32
sw $ra, 20($sp)
sw $fp, 16($sp)
addiu$fp, $sp, 32

. . .
sw $a0, 0($fp)

...
lw $31, 20($sp)
lw $fp, 16($sp)
addiu$sp, $sp, 32
jr $31

ra low
address

ra
old FP

FP
SP
ra

ra
old FP

FP
SP

First four arguments passed in registers.

Details of the MIPS instruction set
° Register zero always has the value zero (even if you try to write it)
° Branch/jump and link put the return addr. PC+4 into the link register

(R31)
° All instructions change all 32 bits of the destination register

(including lui, lb, lh) and all read all 32 bits of sources (add, sub, and,
or, …)

° Immediate arithmetic and logical instructions are extended as follows:
• logical immediates ops are zero extended to 32 bits
• arithmetic immediates ops are sign extended to 32 bits (including addu)

° The data loaded by the instructions lb and lh are extended as follows:
• lbu, lhu are zero extended
• lb, lh are sign extended

° Overflow can occur in these arithmetic and logical instructions:
• add, sub, addi
• it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult, multu,

div, divu

MIPS Instructions (Quick Summary)

Name Example Comments
$s0-$s7, $t0-$t9, $zero,Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Summary of RISC

° Reduced Instruction Set
° General Purpose Register File (large number: 32 or more)
° Load/Store Architecture
° Few Addressing modes
° Fixed Instruction Format

MIPS Architecture

° 32 Registers
° Load/Store Architecture
° 5 Instruction Groups: Arithmetic, Logical, Data Transfer, Cond. Branch,

Uncond. Jump
° Addressing modes: Register, Displacement, Immediate and PC-relative
° Fixed Instruction Format

Registers

° General Purpose Register Set
° Any register can be used with any instruction
° MIPS programmers have agreed upon a set of guidelines that specify how each

of the registers should be used. Programmers (and compilers) know that as long
as they follow these guidelines, their code will work properly with other MIPS
code.

Registers

Symbolic Name Number Usage

zero 0 Zero

at 1 Reserved for the Assembler

v0 – v1 2 - 3 Result Registers

a0 – a3 4 - 7 Argument Registers 1…4

t0 – t9 8 – 15, 24 - 25 Temporary Registers 0…9

s0 – s7 16 - 23 Saved Registers 0…7

k0 – k1 26 - 27 Kernel Registers 0…1

gp 28 Global Data Pointer

sp 29 Stack Pointer

fp 30 Frame Pointer

ra 31 Return Address

Instruction Format

° Fixed Format
° 3 Format Types

• Register: R-type
• Immediate: I-type
• PC-relative: J-type

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

All MIPS Instructions Format

R-Type

op functrs rt rd shamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

° Used by
• Arithmetic Instructions
• Logic Instructions
• Except when Immediate Addressing mode used

I-Type

op rs rt address/immediate

6 bits 5 bits 5 bits 16 bits

° Used by
• Instructions using Immediate addressing mode
• Instructions using Displacement addressing mode
• Branch instructions

J-Type

op target address

6 bits 26 bits

° Used by
• Jump Instructions

Instructions

° 5 Groups
• Arithmetic
• Logic
• Data Transfer
• Conditional Branch
• Unconditional Jump

Arithmetic

° add, addu: signed and unsigned addition on registers
° addi, addiu: signed and unsigned addition. One operand is immediate value
° sub, subu: signed and unsigned subtraction on registers
° subi, subiu: signed and unsigned subtraction. One operand is immediate value
° mult, multu: signed and unsigned multiplication on registers
° div, divu: signed and unsigned division on registers
° mfc0: move from coprocessor
° mfhi, mflo: move from Hi and Lo registers

Logical

° and, andi: logical ‘AND’ on registers and registers and an immediate value
° nor, nori: logical ‘NOT OR’ on registers and registers and an immediate value
° or, ori: logical ‘OR’ on registers and registers and an immediate value
° xor, xori: logical ‘Exclusive OR’ on registers and registers and an immediate

value
° sll, sra, srl: shift left/right logical/arithmetic on registers. Size of shift can be

immediate value.
° slt: comparison instruction: rd 1/0 depending on comparison outcome

Data Transfer

° lw, sw: load/store word
° lb, sb: load/store byte
° lbu: load byte unsigned
° lh, sh: load/store halfword
° lui: load upper half word immediate

Branch

° b: branch unconditional
° beq: branch if src1 == src2
° bne: branch if src1 =/= src2
° bgez: branch is src1 >= 0
° bgtz: branch if src1 > 0
° blez: branch if src1 <= 0
° bltz: branch if src1 < 0

Jump

° j: jump
° jr: jump to src1 (address in reg src1)
° jal: jump and link; ra PC+4; jump to label
° jalr: jump and link; ra PC+4; jump to src1 (address in reg src1)

Addressing Modes

° Register: all operands are registers
° Immediate: one operand is an immediate value contained in the immediate field

of I-type format
° Displacement: The address of the operand is src1 + displacement. Also

contained in the immediate field of I-type format
° PC-relative: The +/- displacement is sign extended and added to the PC
° Direct Address: used by jump instructions. The full address is provided.

	Computer Architecture The Language of the Machine
	Instruction Sets
	Organization
	Summary: Computer System Components
	Review: Instruction Set Design
	Instruction Set Architecture: What Must be Specified?
	Basic ISA Classes
	
	General Purpose Registers Dominate
	Summary on Instruction Classes
	RISC features
	MIPS I Registers
	Memory Addressing
	Addressing Objects: Endianess and Alignment
	Addressing Modes
	MIPS Addressing Formats (Summary)
	Addressing Mode Usage? (ignore register mode)
	Displacement Address Size?
	Immediate Size?
	Addressing Summary
	Generic Examples of Instruction Format Widths
	Summary of Instruction Formats
	Instruction Format
	MIPS Addressing Modes/Instruction Formats
	Typical Operations (little change since 1960)
	Top 10 80x86 Instructions
	Operation Summary
	Compilers and Instruction Set Architectures
	Summary of Compiler Considerations
	MIPS I Operation Overview
	Multiply / Divide
	Data Types
	Operand Size Usage
	MIPS arithmetic instructions
	MIPS logical instructions
	MIPS data transfer instructions
	Methods of Testing Condition
	Condition Codes
	Conditional Branch Distance
	Conditional Branch Addressing
	MIPS Compare and Branch
	MIPS jump, branch, compare instructions
	Signed vs. Unsigned Comparison
	Calls: Why Are Stacks So Great?
	Memory Stacks
	Call-Return Linkage: Stack Frames
	MIPS: Software conventions for Registers
	MIPS / GCC Calling Conventions
	Details of the MIPS instruction set
	MIPS Instructions (Quick Summary)
	Summary of RISC
	MIPS Architecture
	Registers
	Registers
	Instruction Format
	R-Type
	I-Type
	J-Type
	Instructions
	Arithmetic
	Logical
	Data Transfer
	Branch
	Jump
	Addressing Modes

