
C t P fComputer Performance

° Purchasing perspective
Performance

Purchasing perspective
• given a collection of machines, which has the

- best performance ?
- least cost ?
- best performance / cost ?

° Design perspectiveDesign perspective
• faced with design options, which has the

- best performance improvement ?
- least cost ?
- best performance / cost ?

° Both requireBoth require
• basis for comparison
• metric for evaluation

° Our goal is to understand cost & performance implications of
architectural choices

Two notions of “performance”

Plane SpeedDC to Paris Passengers Throughput
(pmph)

Boeing 747

BAD/S d

610 mph6.5 hours 470 286,700

BAD/Sud
Concodre 1350 mph3 hours 132 178,200

° Time to do the task (Execution Time)

Which has higher performance?

– execution time, response time, latency
° Tasks per day, hour, week, sec, ns. .. (Performance)

– throughput, bandwidthg p ,
Response time and throughput often are in opposition

Definitions

° Performance is in units of things-per-second
• bigger is better

° If we are primarily concerned with response timeIf we are primarily concerned with response time
• performance(x) = 1

execution_time(x)

" X is n times faster than Y" means
Performance(X)

n = ----------------------
Performance(Y)

l / l /1 Hz = 1 cycle/sec 1 KHz = 103 cycles/sec
1 MHz = 106 cycles/sec 1 GHz = 109 cycles/sec
2 GHz clock has a cycle time = 1/(2×109) = 0.5 nanosecond (ns)

Execution time x Clock Rate = Instruction time x CPIExecution.time x Clock.Rate = Instruction.time x CPI
MIPS x CPI = Clock.Rate

Example
A program runs in 10 seconds on computer X with 2 GHz clockA program runs in 10 seconds on computer X with 2 GHz clock
What is the number of CPU cycles on computer X ?
We want to design computer Y to run same program in 6 seconds
But computer Y requires 10% more cycles to execute program
What is the clock rate for computer Y ?

Solution:
CPU cycles on computer X = 10 sec × 2 × 10^9 cycles/s = 20 × 109
CPU cycles on computer Y = 1.1 × 20 × 10^9 = 22 × 10^9 cyclesy p y
Clock rate for computer Y = 22 × 10^9 cycles / 6 sec = 3.67 GHz

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

instr. count CPI clock rate
PProgram

Compiler

Instr. Set Arch.

Organization

TechnologyTechnology

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

instr count CPI clock rate
Program X

Compiler X XCompiler X X

Instr. Set X X

Organization X X

Technology X

CPI

CPI = (CPU Time * Clock Rate) / Instruction Count

“Average cycles per instruction”

CPU time ClockCycleTime * SUM CPI * I

n

CPI (CPU Time Clock Rate) / Instruction Count
= Clock Cycles / Instruction Count

CPU time = ClockCycleTime * SUM CPI * I
i = 1

i i

n

CPI = SUM CPI * F where F = I
i = 1

i i i i

Instruction Count

"instruction frequency"

I t R h ti i S t!Invest Resources where time is Spent!

Problem 1
Machine A has a clock cycle time of 250 ps and a CPI of 2.0
Machine B has a clock cycle time of 500 ps and a CPI of 1 2Machine B has a clock cycle time of 500 ps and a CPI of 1.2
Which machine is faster for this program, and by how much?

Solution:
Both computer execute same count of instructions = IBoth computer execute same count of instructions = I
CPU execution time (A) = I × 2.0 × 250 ps = 500 × I ps
CPU execution time (B) = I × 1.2 × 500 ps = 600 × I ps
Computer A is faster than B by a factor = 1.2

Problem 2
A compiler designer is trying to decide between two code sequences for a
particular machine. Based on the hardware implementation, there are three
different classes of instructions: class A, class B, and class C, and they
require one, two, and three cycles per instruction, respectively.
The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C
Compute the CPU cycles for each sequence. Which sequence is faster?
What is the CPI for each sequence?

Solution
CPU cycles (1st sequence) = (2×1) + (1×2) + (2×3) = 2+2+6 = 10 cycles
CPU cycles (2nd sequence) = (4×1) + (1×2) + (1×3) = 4+2+3 = 9 cycles
Second sequence is faster, even though it executes one extra instruction
CPI (1st sequence) = 10/5 = 2 CPI (2nd sequence) = 9/6 = 1.5

Example (RISC processor)

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Timep q y ()
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 3 14%

Typical Mix

Store 10% 3 .3 14%
Branch 20% 2 .4 18%

2.2
Typical Mix

How much faster would the machine be is a better data cache
reduced the average load time to 2 cycles?

How does this compare with using branch prediction to shave a
cycle off the branch time?

What if two ALU instructions could be executed at once?

Amdahl's Law
Speedup due to enhancement E:Speedup due to enhancement E:

ExTime w/o E Performance w/ E
Speedup(E) = -------------------- = ---------------------

E Ti / E P f / EExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the
task

b f t S d th i d f th t k i ff t dby a factor S and the remainder of the task is unaffected
then,

ExTime(with E) = ((1 F) + F/S) X ExTime(without E)ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = 1_____
(1-F) + F/S(1 F) F/S

Pictorial Depiction of Amdahl’s LawPictorial Depiction of Amdahl’s Law

E h t E l t f ti F f ti ti b f t f S

Before:
Execution Time without enhancement E:

Enhancement E accelerates fraction F of execution time by a factor of S

Unaffected, fraction: (1- F) Affected fraction: F

Unchanged

After:
Execution Time with enhancement E:

Unaffected, fraction: (1- F) F/S

Execution Time without enhancement E 1
Speedup(E) = -- = ------------------

Execution Time with enhancement E (1 - F) + F/SExecution Time with enhancement E (1 F) F/S

(From 550)

Performance Enhancement ExamplePerformance Enhancement Example

° For the RISC machine with the following instruction mix given earlier:For the RISC machine with the following instruction mix given earlier:
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1 0 45%

CPI = 2.2
Load 20% 5 1.0 45%
Store 10% 3 .3 14%

Branch 20% 2 .4 18%

° If a CPU design enhancement improves the CPI of load instructions from 5 to 2,
h t i th lti f i t f thi h twhat is the resulting performance improvement from this enhancement:

Fraction enhanced = F = 45% or .45
Unaffected fraction = 100% - 45% = 55% or .55
F t f h t 5/2 2 5Factor of enhancement = 5/2 = 2.5

Average CPI = 0.5+1.0+0.3+0.4 = 2.2 clocks/instructions

Using Amdahl’s Law:
1 1

Speedup(E) = ------------------ = --------------------- = 1.37
(1 - F) + F/S .55 + .45/2.5

Basis of Evaluation

Pros Cons

• representative
• very specific
• non-portable

Actual Target Workload
p

• difficult to run, or
measure
• hard to identify cause

• portable

Full Application Benchmarks

p
• widely used
• improvements
useful in reality

•less representative

Small “Kernel”
Benchmarks

• easy to run, early in
design cycle

• easy to “fool”

Microbenchmarks

g y

• identify peak
capability and

• “peak” may be a long
way from application Microbenchmarkscapab ty a d

potential bottlenecks performance

SPEC95

° Eighteen application benchmarks (with inputs) reflecting a
technical computing workload

° Eight integerEight integer
• go, m88ksim, gcc, compress, li, ijpeg, perl, vortex

° Ten floating-point intensive
• tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d,

apsi, fppp, wave5
° Must run with standard compiler flagsp g

• eliminate special undocumented incantations that may
not even generate working code for real programs

Metrics of performance

P i

Application
Answers per month

Useful Operations per second

Compiler

Programming
Language

(millions) of Instructions per second – MIPS

Datapath
Control

ISA
(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Megabytes per secondControl

Transistors Wires Pins
Function Units

Cycles per second (clock rate)

g y p

Each metric has a place and a purpose, and each can be misused

Summary: Salient features of MIPS I

•32-bit fixed format inst (3 formats)
•32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

•partitioned by software convention
•3-address, reg-reg arithmetic instr.
•Single address mode for load/store: base+displacementSingle address mode for load/store: base+displacement

–no indirection, scaled
–16-bit immediate plus LUI
•Simple branch conditions•Simple branch conditions

• compare against zero or two registers for =,°
• no integer condition codes

•Delayed branch
•execute instruction after the branch (or jump) even if
the branch is taken (Compiler can fill a delayed branch with (p y
useful work about 50% of the time)

Summary: Instruction set design (MIPS)
° Use general purpose registers with a load-store architecture: YES
° Provide at least 16 general purpose registers plus separate floating-

point registers: 31 GPR & 32 FPR
° Support basic addressing modes: displacement (with an addressSupport basic addressing modes: displacement (with an address

offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register
deferred; : YES: 16 bits for immediate, displacement (disp=0 =>
register deferred)

° All addressing modes apply to all data transfer instructions : YES
° Use fixed instruction encoding if interested in performance and use

variable instruction encoding if interested in code size : Fixed
° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and

32-bit and 64-bit IEEE 754 floating point numbers: YES
° Support these simple instructions since they will dominate theSupport these simple instructions, since they will dominate the

number of instructions executed: load, store, add, subtract, move
register-register, and, shift, compare equal, compare not equal,
branch (with a PC-relative address at least 8-bits long), jump, call,
and return: YES 16band return: YES, 16b

° Aim for a minimalist instruction set: YES

Summary: Evaluating Instruction Sets?
Design time metrics:Design-time metrics:

° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?

Static Metrics:
° How many bytes does the program occupy in memory?

Dynamic Metrics:
° How many instructions are executed?
° How many bytes does the processor fetch to execute theHow many bytes does the processor fetch to execute the
program?
° How many clocks are required per instruction?
° How "lean" a clock is practical?

CPI

° How "lean" a clock is practical?
Best Metric: Time to execute the program!

Inst. Count Cycle Time
NOTE: this depends on instructions set, processor organization, and

compilation techniques.

Inst. Count Cycle Time

