EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 39: |0 Basics




/O Commands

= |/O devices are managed by I/O controller hardware
— Transfers data to/from device
— Synchronizes operations with software
=  Command registers
— Cause device to do something
= Status registers
— Indicate what the device is doing and occurrence of errors
= Data registers
— Write: transfer data to a device
— Read: transfer data from a device

Prof. M. Mansour



1/O Register Mapping

=  Memory mapped I/O
— Registers are addressed in same space as memory
— Address decoder distinguishes between them
— OS uses address translation mechanism to make them only accessible to kernel

= |/Oinstructions
— Separate instructions to access 1/0O registers
— Can only be executed in kernel mode
— Example: x86

Prof. M. Mansour



Polling

= Periodically check I/O status register
— If device ready, do operation
— If error, take action

=  Common in small or low-performance real-time embedded systems
— Predictable timing

— Low hardware cost

= |n other systems, wastes CPU time

Prof. M. Mansour



Interrupts

= When a device is ready or error occurs

— Controller interrupts CPU

= Interruptis like an exception
— But not synchronized to instruction execution
— Can invoke handler between instructions
— Cause information often identifies the interrupting device

= Priority interrupts
— Devices needing more urgent attention get higher priority
— Can interrupt handler for a lower priority interrupt

Prof. M. Mansour



/O Data Transfer

= Polling and interrupt-driven 1/0
— CPU transfers data between memory and I/O data registers
— Time consuming for high-speed devices

= Direct memory access (DMA)
— OS provides starting address in memory
— 1/O controller transfers to/from memory autonomously
— Controller interrupts on completion or error

Prof. M. Mansour



DMA/Cache Interaction

= |f DMA writes to a memory block that is cached

— Cached copy becomes stale

= |f write-back cache has dirty block, and DMA reads memory block
— Reads stale data

= Need to ensure cache coherence
— Flush blocks from cache if they will be used for DMA
— Or use non-cacheable memory locations for I/O

Prof. M. Mansour



DMA/VM Interaction

= OS uses virtual addresses for memory

— DMA blocks may not be contiguous in physical memory

= Should DMA use virtual addresses?
— Would require controller to do translation

= |f DMA uses physical addresses
— May need to break transfers into page-sized chunks
— Or chain multiple transfers
— Or allocate contiguous physical pages for DMA

Prof. M. Mansour



Instruction Set Architecture for 1/O

=  What must the processor do for 1I/0?

— Input: reads a sequence of bytes
— Output: writes a sequence of bytes

= Some processors have special input and output instructions

= Alternative model (used by MIPS):
— Use loads for input, stores for output
— Called “Memory Mapped Input/Output”

— A portion of the address space is dedicated to communication paths to Input or Output

devices (no memory there)

= Certain addresses are not regular memory

= |nstead, they correspond to registers in 1/O devices

cntrl req.

data reg.

-
-
-
-

-
-
-
-
-
-
-

address
OxFFFFFFFF

OxFFFFO000

Prof. M. Mansour

©



Processor-1/0 Speed Mismatch

= 1GHz microprocessor can execute 1 billion load or store instructions per second,
or 4,000,000 KB/s data rate
— 1/0O devices data rates range from 0.01 KB/s to 1,000,000 KB/s

= |nput: device may not be ready to send data as fast as the processor loads it

— Also, might be waiting for human to act

= Qutput: device may not be ready to accept data as fast as processor stores it

= What to do?

Prof. M. Mansour



Processor Checks Status before Acting: Polling

= Path to device generally has 2 registers:

— Control Register, says it’s OK to read/write
(1/0 ready) [think of a flagman on a road]

— Data Register, contains data

= Processor reads from Control Register in loop, waiting for device to set Ready bit in
Control reg (0 = 1) to say its OK

= This process is called polling.

= Processor then loads from (input) or writes to (output) data register
Load from or Store into Data Register resets Ready bit (1 = 0) of Control Register

Prof. M. Mansour



SPIM 1/0 Simulation

= SPIM simulates 1 1/0 device: memory-mapped terminal (keyboard + display)
— Read from keyboard (receiver); 2 device registers

— Writes to terminal (transmitter); 2 device registers

Receiver Control
Ox£f£££0000

Receiver Data
Oxf£f££0004

Transmitter Control

Oxf£££0008
Transmitter Data

Oxf££f£f000c

~|2
Unused (00...00) I'JE.

Unused (00...00)

Received
Byte

~ |2
Unused (00...00) QE

Unused

Transmitted
Byte

Prof. M. Mansour



SPIM I/O

Control register rightmost bit (0): Ready

— Receiver: (keyboard) Ready==1 means character

in Data Register not yet been read;
1 = 0 when data is read from Data Reg

— Transmitter: (terminal) Ready==1 means
transmitter is ready to accept a new character;
0 = Transmitter still busy writing last char

* |E. bit discussed later
= Data register rightmost byte has data
— Receiver: last char from keyboard; rest =0

— Transmitter: when write rightmost byte, writes
char to display

cntrl re

data reg.

-
-

-
-
-
-
-
-
-

address
OxFFFFFFFF

OxFFFFO000

©

Prof. M. Mansour



1/O Polling Example

" |nput: Read from keyboard into $v0

lui $t0, Oxffff #££££0000
Waitloop: lw $tl, 0($t0) #control
andi  $tl1,S$tl,0x1
beq $tl,$zero, Waitloop
1w $v0, 4($t0) #data, then extract byte
= Qutput: Write to display from $a0
lui $t0, Oxffff #££££0000
Waitloop: 1w $tl, 8($t0) #control
andi $tl,$tl1,0x1
beq $tl,S$zero, Waitloop address
SW $a0, 12($t0) #data OXFEEEEFEE
= Processor waiting for 1/O called “Polling”
cntrl reg. OXFFFF0000
datareg. | _..----7

Prof. M. Mansour



Cost of Polling: A mouse, floppy disk, and a hard disk

= Assume for a processor with a 1GHz clock, it takes 400 clock cycles for a polling
operation (call polling routine, accessing the device, and returning). Determine % of
processor time for polling, assuming that you poll often enough not to miss data
and that the devices are always busy: (Here assume 1K=1000)

= Mouse: Given that mouse has to be polled 30 times/sec so as not to miss user
movement

Mouse Polling, Clocks/sec

=30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

% Processor for polling:
12*103 [clocks/s] / 1*10° [clocks/s] = 0.0012%
=> Polling mouse little impact on processor

Prof. M. Mansour



Cost of Polling a Floppy Disk

= Assume for a processor with a 1GHz clock, it takes 400 clock cycles for a polling
operation (call polling routine, accessing the device, and returning). Determine % of
processor time for polling, assuming that you poll often enough not to miss data
and that the devices are always busy: (Here assume 1K=1000)

» Floppy disk: Transfers data in 2-Byte units and has a data rate of 50 KB/second.
No data transfer can be missed.

Frequency of Polling Floppy (must poll faster than the disk can generate data)
=50 [KB/s] / 2 [B/poll] = 25K [polls/s]
Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]
% Processor for polling:
10*10° [clocks/s] / 1*10° [clocks/s] = 1%
= OK if not too many I/O devices

Prof. M. Mansour



Cost of Polling a Hard Disk

= Hard disk: transfers data in 16-Byte chunks and can transfer at 16 MB/second. Again,
no transfer can be missed.

Frequency of Polling Disk
=16 [MB/s] / 16 [B] = 1M [polls/s]

Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

% Processor for polling:
400*10° [clocks/s] / 1*10° [clocks/s] = 40%

= Unacceptable!

Prof. M. Mansour



Alternative to Polling

= What is the alternative to polling?

=  Wasteful to have processor spend most of its time “spin-waiting” for I/O to be
ready.

=  Would like an unplanned procedure call that would be invoked only when 1/0
device is ready.

=  Solution:

— Use exception mechanism to help I/O.

= Interrupt program when I/0O is ready, return when done with data transfer.

Prof. M. Mansour



1/0 Interrupt

= An /O interrupt is like overflow exceptions, except that:

= An /O interrupt is “asynchronous” (can happen any time even within a clock cycle)
— More information needs to be conveyed

= An /O interrupt is asynchronous with respect to instruction execution stream:

= |/Ointerrupt is not associated with any instruction, but it can happen in the middle

of any given instruction.

= |/Ointerrupt does not prevent any instruction from completion.

— For example, every keystroke generates an interrupt signal.

= |nterrupts can also be generated by other devices, such as a printer, to indicate
that some event has occurred.

— These are called hardware interrupts.

= Interrupt signals initiated by programs are called software interrupts.
— A software interrupt is also called a trap (synchronous) or an exception (asynchronous).

Prof. M. Mansour



PC 1/O Interrupts

PCs support:

— 256 types of software interrupts, and

— 15 hardware interrupts.
Each type of software interrupt is associated with an interrupt handler or interrupt
service routine -- a routine that takes control when the interrupt occurs.
For example, when you press a key on your keyboard, this triggers a specific
interrupt handler.
The complete list of interrupts and associated interrupt handlers is stored in a
table called the interrupt vector table, which resides in the first 1K of addressable
memory.

Prof. M. Mansour



Interrupt Request Lines (IRQ)

= JRQs are hardware lines
over which devices can
send interrupt signals to
the uprocessor.

— When a new device
1s added to a PC, its
IRQ number must
be set by a DIP
switch.

This specifies
which interrupt line
the device may use.

IRQ

Number Typical Use Description
IRQO |[System timer 3:1‘;? c1enstrerrupt is reserved for the internal system timer. It is never available to peripherals or other
RQ1 [Keyboard Tms interrupt is rt?served for the keyl?oard controller. Even on devices without a keyboard, this
interrupt is exclusively for keyboard input.
Cascade
IRQ 2 |[interrupt for This interrupt cascades the second interrupt controller to the first.
IRQs 8-15
RQ 3 Second serial  ||The interrupt for the second serial port and often the default interrupt for the fourth serial port
port (COM2 (COM4).
First serial port This interrupt is normally used for the first serial port. On devices that do not use a PS/2 mouse, this
IRQ 4 po interrupt is almost always used by the serial mouse. This is also the default interrupt for the third serial
(COM1)
port (COM3).
IRQ5 |[Soundcard |[This interrupt is the first choice that most sound cards make when looking for an IRQ setting. |
Floppy disk . . .
IRQ 6 sontroliar This interrupt is reserved for the floppy disk controller.
RQ7 First parallel This interrupt is normally reserved for the use of the printer. If a printer is not being used, this interrupt
port can be used for other devices that use parallel ports.
IRQ8 |[Real-time clock :hls u;;crrupt is reserved for the system's real-time clock timer and can not be used for any other

|IRQ 9 ||Open interrupt ||Thls interrupt is typically left open on devices for the use of peripherals. |

|IRQ 10 ||Open interrupt ||Thls interrupt is typically left open on devices for the use of peripherals. |

|IRQ 11 ||0pcn interrupt “ThlS interrupt is typically left open on devices for the use of peripherals. |

IRQ 12 [PS/2 mouse This interrupt is reserved for the PS/2 mouse on machines that use one. If a PS/2 mouse is not used,
the interrupt can be used for other peripherals, such as network card.
Floating point ||This interrupt is reserved for the integrated floating point unit. It is never available to peripherals or
IRQ 13 - . . . - L
unit/coprocessor||other devices as it is used exclusively for internal signaling.
RQ 14 Primary IDE  ||This interrupt is reserved for use by the primary IDE controller. On systems that do not use IDE
channel devices, the IRQ can be used for another purpose.
IRQ 15 31::(1): glary e This interrupt is reserved for use by the secondary IDE controller.

Prof. M. Mansour




Interrupt Driven Data Transfer

Memory

(1) /0
iﬂTerrupt user
program
(2) sa\le PC /
(3) jump to
interrupt
service routing—{ ~
(5) read interrupt
store service
(4) perform routine
transfer Jr /

Prof. M. Mansour



SPIM 1/0O Simulation: Interrupt Driven 1/O

= |.E. stands for Interrupt Enable
= Set Interrupt Enable bit to 1 have interrupt occur whenever Ready bit is set

Receiver Control ﬁE

OxEEEE0000 Unused (00...00) Zl2

Receiver Data Received
OxFEFEFO0004 Unused (0000) B}[te

. ~ |5
Transmitter Control Unused (00...00) m §
Oxf£f££0008 =<
Transmitter Data U q Transmitted
OxfE££000c| ~NUSE Byte

Prof. M. Mansour



Benefit of Interrupt-Driven 1/O

= Does Interrupt-driven 1/O solve the problem with the hard disk in the previous
example?
— (Hard disk: transfers data in 16-Byte chunks and can transfer at 16 MB/second.)

= Find the % of processor consumed if the hard disk is only transferring data 5% of
the time. Assuming 500 clock cycle overhead for each transfer, including interrupt:

— Disk Interrupts/s = 16 MB/s / 16B/interrupt
= 1M interrupts/s

— Disk Interrupts, clocks/s
= 1M interrupts/s * 500 clocks/interrupt
= 500,000,000 clocks/s

— % Processor consumed during transfer:
500*108/ 1*10°=50%

= Disk active 5% = 5% * 50% = 2.5% busy

Prof. M. Mansour



