EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 35: Virtual Memory

More Details about Page Table

= Page Table located in physical memory at address indicated by the Page Table Base
Register

Virtual Address:
| |-gage no. " offse1'|

Page Table

Page Table -
Base Register v .
V ¢ A.R. . P.P. A.

index Valid : Access : Physical

into : Rights : Page 1

page I : (protection) : Address

table : : Physical
Memory
Address

Prof. M. Mansour

Page Table Entry (PTE) Format

= Contains either Physical Page Number (PPN) or indication not in Main Memory
= OS maps to disk if Not Valid (V =0)

Page Table

Vi AR i PPN

Validé Access Physical
Rights : Page

Number P.T.E.

Vi AR : PPN

NI/

o If valid, also check if have permission to use page:
Access Rights (A.R.) may be Read Only, Read/Write, Executable

Prof. M. Mansour

Paging/Virtual Memory Multiple Processes

0. 0]

User A:
Virtual Memory

Static

64 MB

Physical
Memory

o0

Page
Table

User B:
Virtual Memory

Stack

Static

M. Mansour

Page Table: Another View

Virtual page
number

Page table

Physical page or Physical memory

Valid disk address

Disk storage

i

/
O

= O==O (||| |—=|—

Prof. M. Mansour EECE 321: Computer Organization

Comparing the 2 Levels of Hierarchy: VM vs. Cache

Cache Version
Block or Line

Miss

Block Size: 32-64B

Placement:
Direct Mapped,
N-way Set Associative

Replacement:
LRU or Random

Write Thru or Back

Virtual Memory version
Page

Page Fault

Page Size: 4K-64KB
Fully Associative

Least Recently Used
(LRU)

Write Back

Prof. M. Mansour

Page Size

= On Unix, use the system function sysconf() to get page size: (or simply type
pagesize command)

#include <stdio.h>
#include <unistd.h> // sysconf (3)

int main() {
printf ("The page size for this system is %1d bytes.\n",

sysconf (_SC_PAGESIZE)); // _SC PAGE SIZE is OK too.

return 0O;

= On Windows, use the system function the system function GetSystemInfo
() from kernel32.dll

#include <stdio.h>
#include <windows.h>
int main() {
SYSTEM INFO si;
GetSystemInfo (&si) ;
printf ("The page size for this system is %u bytes.\n", si.dwPageSize) ;

return O;

Prof. M. Mansour EECE 321: Computer Organization

Problems with Virtual Memory (Thus Far)

(1) Slow: Every memory access requires:

— 1 access to PT to get VPN->PPN translation

— 1 access to MEM to get data at PA
= QObservation: since locality in pages of data, there must be locality in virtual
address translations of those pages.

= Since small is fast, why not use a small cache of virtual to physical address
translations to make translation fast? (i.e., save the translations in a cache)

= For historical reasons, cache is called a Translation Lookaside Buffer, or TLB
— On TLB miss, get page table entry from main memory

VA hItPA
Processor_’ TLB _’Cachem Main
. [LOOkup <« Memory
ymissT | hit data
Trans-
lation

Prof. M. Mansour

Problems with Virtual Memory (Thus Far)

= (2) Page Table too big!

— 4GB Virtual Memory + 1 KB page
=> ~ 4 million Page Table Entries
=> 16 MB just for Page Table for 1 process,
8 processes = 256 MB for Page Tables!

= Spatial Locality to the rescue
— Ex: if each page is 4 KB, lots of nearby references
— No matter how big program is, at any time only accessing a few pages
“Working Set”: recently used pages

Prof. M. Mansour

Translation Look-aside Buffer (TLB)

= To avoid accessing memory twice to obtain a physical address, a special cache that
keeps track of recent translations is used.

— This cache is called a translation look-aside buffer (TLB).
— TLB just a cache on the page table mappings

= TLB access time comparable to cache (much less than main memory access time)

= The TLB cache entries include:
— A tag entry that holds a portion of the virtual page number

— A data entry that holds the physical page number.
— Other bookkeeping bits: Ex:

* Dirty bit if page is written, upon replacement need to know whether to write back or

not.

« Reference bit if page was accessed recently (to implement an LRU policy).

Tag page #

Physical

Dirty

Ref

Valid

Access

Rights

Prof. M. Mansour

Translation Look-aside Buffer (TLB)

= TLBs are usually small, typically up to 4K entries
— Block size =1 or 2 page table entries
— Miss penalty = 10-30 clock cycles; Miss rate = 0.01%- 1%

= Like any other cache, the TLB can be
— direct mapped,
— set associative, or
— fully associative

Prof. M. Mansour

Address Mapping Using TLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
| |
1101 e
1111 . Physical memory
1011 ° -
~1/0]1 y
0[0]0
1101 o

Page table

Physical page

Valid Dirty Ref or disk address

~1]0][1 ://

1]0]0 : r
1]0]0 o~ M
1101 e e
0[0]0 — N

1101 -/// | |
101 o~ / - |
0[0]0 o~

1[1]1 « ~/ u |
1111 o / e
0[0]o0 o~

1[1]1 ¢

Prof. M. Mansour

Translation Look-aside Buffer (TLB)

= On every memory reference, the virtual page number is looked up in the TLB.

1. If there is hit, the physical page number is used to form the physical address, and the
reference bit is set. That address is then sent to cache.

e If the processor is performing a write, the dirty bit is also turned on.

2. If there is a TLB miss, we must determine if there is a page fault or a TLB miss (just the
translation is missing, but the actual page is in memory).

e (Case 1: If the page is in memory and only translation is missing, the CPU can handle it
by loading the translation from memory into TLB and then trying the reference again.

* Case 2: If the page is not present in memory, then the TLB miss is a real page fault. In
this case the CPU invokes the OS using an exception. The exception handling routine
will bring the missing page into memory and update both the page table and the TLB.

= Because TLB size is small, TLB misses will be much more frequent than true page
faults.

Prof. M. Mansour

MIPS R2000 TLB

Memory system:

4K pages
32-bit address
64-entry TLB
VA =PA

Virtual address
14 13 12 11 10 9--------- 3210

Virtual page number

Page offset

420 +12
Valid Dirty Tag Physical page number
TLB [Sham
@4—:
TLB hit <—-e ®

@+
e-—
(R

420

Physical page number | Page offset
Physical address Biock
Physical address tag | Cache index
offset
J18 Js J4 ,l\z
\\8
12 Data
Valid Tag
Cache
— e L]
f:
Cache hit
L
432
Data

Byte
offset

Prof. M. Mansour

Example: Intrinsity FastMATH TLB

TLB miss
exception

Virtual address

TLB access

TLB hit?

Yes

Cache miss stall
while read block

No

Try to read data
from cache

Write

Yes exception

Deliver data
to the CPU

Physical address

Write access
bit on?

protection

Cache miss stall
while read block

Try to write data
to cache

Yes
Cache hit?

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer

Prof. M. Mansour

15

Possible Combinations of Events in TLB, VM System, & Cache

Page
table Possible? If so, under what circumstance?

Hit Hit Miss | Possible, although the page table is never really checked if TLB hits.
Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit | Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

Prof. M. Mansour 16

Typical Key Design Parameters

Typical values Typical values Typical values for Typical values
for L1 caches for L2 caches paged memory for a TLB

Total size in blocks 250-2000 15,000-50,000 16,000-250,000 40-1024
Total size in kilobytes 16-64 500-4000 1,000,000-1,000,000,000 0.25-16
Block size in bytes 16-64 64-128 4000-64,000 4-32
Miss penalty in clocks 10-25 100-1000 10,000,000-100,000,000 10-1000
Miss rates (global for L2) 2%-5% 0.1%-2% 0.00001%—-0.0001% 0.01%-2%

Prof. M. Mansour 17

Recap

What if we miss in TLB?

— Option 1: Hardware checks page table and loads new Page Table Entry into TLB
— Option 2: Hardware traps to OS, up to OS to decide what to do
* MIPS follows Option 2: Hardware knows nothing about page table
What if the data is on disk? (i.e., true page fault)

— We load the page off the disk into a free block of memory, using a DMA (Direct
Memory Access — very fast!) transfer

* In the meantime, OS switches to some other process waiting to be run

— When the DMA is complete, we get an interrupt and update the process's page table
* So when we switch back to the task, the desired data will be in memory

What if we don’t have enough memory?

— We choose some other page belonging to a program and transfer it onto the disk if it
is dirty
* If clean (disk copy is up-to-date), just overwrite that data in memory
* We choose the page to evict based on replacement policy (e.g., LRU)

— And update that program's page table to reflect the fact that its memory moved
somewhere else

— |If pages are continuously swapped between disk and memory, then this process is
called Thrashing.

Prof. M. Mansour

Address Translation

Virtual Address

VPN INDEX | Offset
e TLB

V.P.N. P.P.N.
Virtual :Physical

.| Page Page
Number :Number |
V.P.N. iP.P.N. ~
PPN Offset
Jata Cache Tag Data Physical Address
Taa Data TAG | INDEX|Offset
-lag:Ua Q—I l

Prof. M. Mansour

Question 1

= Assume
— 40-bit virtual address, 16 KB page
— 36-bit physical address
= What is the number of bits in the following fields:
— Virtual Page Number
— Virtual Page offset
— Physical Page Number
— Physical Page offset?

= Solution:
1. 22/18 (VPN/PO), 22/14 (PPN/PO)
2. 24/16,20/16
3. 26/14,22/14
4. 26/14, 26/10
5. 28/12,24/12

I Virtual Page Number (7 bits) Page Offset (7 bits) I

I Physical Page Number (7 bits) |Page Offset (7 bits) I

Prof. M. Mansour

Question 2

= Assume
— 2-way set-assoc. TLB, 512 entries, 40b VA, 36b PA, 16KB pages

— TLB Entry: Valid bit, Dirty bit, Access Control (say 2 bits), Virtual Page Number,
Physical Page Number

= What is the number of bits in TLB Tag / Index / Entry?
— 1:12 /14 /38 (TLB Tag / Index / Entry)
— 2:14/12/40
— 3:18/8/44
— 4:18/8/58

Block Offset (? bits
Physical Page Address (36 bits)

E Access (2 bits) | TLB Tag (? bits) | Physical Page No. (? bits)

Prof. M. Mansour

Question 3

= Assume

2-way set-assoc, 64KB data cache, 64B block
Data Cache Entry: Valid bit, Dirty bit, Cache tag + ? bits of Data

= What is the number of bits in Data cache Tag / Index / Offset / Entry?

1:12 /9 / 14 / 87 (Tag/Index/Offset/Entry)
2:20/10/6/ 86

3:20/10/6 /534

4:21/9/6/87

5:21/9/6/535

Cache Tag (? bits)| Cache Index (? bits) | Block Offset (? bits

Physical Page Address (36 bits)

| v|o| cache Tag (7 bits) Cache Data (? bits)

Prof. M. Mansour

Questions for Any Memory Hierarchy

Q1:

Q2:

Where can a block be placed?
One place (direct mapped)

A few places (set associative)
Any place (fully associative)

How is a block found?

Indexing (as in a direct-mapped cache)
Limited search (as in a set-associative cache)
Full search (as in a fully associative cache)
Separate lookup table (as in a page table)

: Which block is replaced on a miss?

Least recently used (LRU)
Random

: How are writes handled?

Write through (Level never inconsistent w/lower)
Write back (Could be “dirty”, must have dirty bit)

Prof. M. Mansour

Three Advantages of Virtual Memory

» Translation:

Program can be given consistent view of memory, even though physical memory is
scrambled

Makes multiple processes reasonable
Only the most important part of program (“Working Set”) must be in physical memory

Contiguous structures (like stacks) use only as much physical memory as necessary yet
still grow later

=" Protection:

Different processes protected from each other

Different pages can be given special behavior
* (Read Only, Invisible to user programs, etc).

Kernel data protected from User programs

Very important for protection from malicious programs = Far more “viruses” under
Microsoft Windows

Special Mode in processor (“Kernel mode”) allows processor to change page table/TLB

= Sharing:

Can map same physical page to multiple users(“Shared memory”)

Prof. M. Mansour

Impact of Associativity on Miss Rate

16% s et ——— s e e e e
12% -
L 9% A
L
(79}
R
= 6% -
3% -
215 . 64KB . 128KB
Il e——— -
0 I I I 1
One-way Two-way Four-way Eight-way
Associativity

Prof. M. Mansour 25

Memory Hierarchy Design Challenges

Possible negative
Design change Effect on miss rate performance effect

Increase cache size Decreases capacity misses May increase access time

Increase associativity | Decreases miss rate due to conflict May increase access time
misses

Increase block size Decreases miss rate for a wide range of Increases miss penalty. Very large
block sizes due to spatial locality block could increase miss rate

Prof. M. Mansour 26

