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Virtual Memory

= VM is an imaginary memory area supported by some operating systems (for example,
Windows but not DOS) in conjunction with the hardware.
— Use main memory as a “cache” for secondary (disk) storage
— Managed jointly by CPU hardware and the operating system (OS)

=  You can think of virtual memory as an alternate set of memory addresses. Programs use
these virtual addresses rather than real addresses to store instructions and data.

=  When the program is actually executed, the virtual addresses are converted into real memory

addresses. One purpose of virtual memory is to enlarge the address space, the set of
addresses a program can utilize.

=  For example, virtual memory might contain twice as many addresses as main memory. A
program using all of virtual memory, therefore, would not be able to fit in main memory all at
once. Nevertheless, the computer could execute such a program by copying into main
memory those portions of the program needed at any given point during execution.

= To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fixed number of addresses.

— Each page is stored on a disk until it is needed. When the page is needed, the operating system
copies it from disk to main memory, translating the virtual addresses into real addresses.

= Today with cheap memory, VM is more important for protection vs. just another level of
memory hierarchy.
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Virtual Memory

= Virtual memory manages the two levels of the memory hierarchy represented by
main memory (sometimes called physical memory) and secondary storage.

= Historically, VM predates caches

— In older days, main memory was very scarce.

=  Employs same concept as caches, but has different terminology due to historical
reasons:
— A VM block is called a page.
— A VM miss is called a page fault.
=  With VM, CPU produces a virtual address (VA) which is translated in hardware into
a physical address (PA)
— That physical address is used to access main memory

= The process of translating virtual addresses into real addresses is called mapping.
The copying of virtual pages from disk to main memory is known as paging or

swapping.
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Virtual Memory

P.rogr.am operates in J Hardware Physical
its virtual address virtual mapping physical rrler:wry -
space address address (incl. caches)
(inst. fetch (inst. fetch
load, store) load, store)

= Each program operates in its own virtual address space
— Only portions of those programs that are running

= Each program is protected from other programs
= OS can decide where each program goes in memory
= Hardware (HW) provides virtual = physical mapping

= Historical note:
— Early computers employed absolute addresses: virtual address = physical address
— Only one program ran at a time, with unrestricted access to entire machine

— Addresses in a program depended upon where the program was to be loaded in
memory

— Programmers wanted to write location-independent subroutines, and
— Multiple programs should not affect each other inadvertently.

Prof. M. Mansour



Virtual Memory

Virtual addresses Physical addresses
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Example: Mapping Virtual Memory to Physical Memory

Virtual

Divide virtual and physical memory into equal sized chunks oo
Memory

called pages (ex: 4 KB - 64 KB)

Any page of Virtual Memory assigned to any pages of
Physical Memory (“page”)

A VM page can either be in physical memory or on disk.

Physical Memory

64 MB
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Paging Organization (assume 1 KB pages)

Physical Page is unit Virtual
Address of mapping Address
0 'page O 1K \ / 0 age 0O 1K
1
— 1K 1024 lpage 1K
1024 Address
Trans. 2048 lpage 21 1K
MAP
Physical
Page also unit of transfer from Virtual
disk to physical memory Memory
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Virtual to Physical Address Mapping

3130292827 ----------

Virtual address

15141312111098 ----------- 3210

Virtual page number

Page offset

y

/

(Translation)

------------

DG OB D7 v iy

191413 1211109 8 sxsabasiass 3210

Physical page number Page offset

Physical address
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Virtual Memory Mapping Function

Cannot have simple formula to predict arbitrary mapping: page can be anywhere
Use a table to lookup the mappings

Decompose virtual address into a page number and a page offset field.
Virtual address:

Page Number ‘Offse‘r ‘

0 Use table lookup (“Page Table”) to store the mappings:
o Page number is used to index the page table

0 Virtual Memory Mapping Function
Physical Page Offset = Virtual Page Offset
Physical Page Number = PageTable [Virtual Page Number]

(P.P.N. also called “Page Frame”)

0 A page table is an operating system structure which contains the mapping of virtual

addresses to physical locations
o There are several different ways, all up to the OS, to keep this data around

0 Each process running in the operating system has its own page table
“State” of a process is PC, all registers, plus page table
OS changes page tables by changing contents of Page Table Base Register
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Page Table Example

Page table register

Virtual address

831 30 29 28 27 cceeeeereneecrennnanens 1514 13 12 11 10 9 8 +--++--- 3210

Virtual page number Page offset

\\20 \\12
Valid Physical page number
L )
Page table
418
If 0 then page is not
present in memory
D19 D B D T ivmmsivisivns cmmimeiminie sivsioninie vimininieid ...15 14 13 12 11 10 9 8}----- 3210
Physical page number Page offset

Physical address
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More Details about Page Table

= Page Table located in physical memory at address indicated by the Page Table Base
Register

Virtual Address:
| |-gage no. " offse1'|

Page Table

Page Table -
Base Register v .
V ¢ A.R. . P.P. A.

index Valid : Access : Physical

into : Rights : Page 1

page I : (protection) : Address

table : : Physical
Memory
Address

Prof. M. Mansour



Page Table Entry (PTE) Format

= Contains either Physical Page Number (PPN) or indication not in Main Memory
= OS maps to disk if Not Valid (V =0)

Page Table

Vi AR i PPN

Validé Access Physical
Rights : Page

Number P.T.E.

Vi AR : PPN

NI/

o If valid, also check if have permission to use page:
Access Rights (A.R.) may be Read Only, Read/Write, Executable
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Paging/Virtual Memory Multiple Processes

0. 0]

User A:
Virtual Memory

Static

64 MB

Physical
Memory

o0

Page
Table

User B:
Virtual Memory

Stack

Static
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Page Table: Another View

Virtual page
number
Page table
Physical page or
Valid disk address

i

= O==O (||| |—=|—
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Physical memory

O

Disk storage
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Comparing the 2 Levels of Hierarchy: VM vs. Cache

Cache Version
Block or Line

Miss

Block Size: 32-64B

Placement:
Direct Mapped,
N-way Set Associative

Replacement:
LRU or Random

Write Thru or Back

Virtual Memory version
Page

Page Fault

Page Size: 4K-64KB
Fully Associative

Least Recently Used
(LRU)

Write Back
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Page Size

= On Unix, use the system function sysconf() to get page size: (or simply type
pagesize command)

#include <stdio.h>
#include <unistd.h> // sysconf (3)

int main() {
printf ("The page size for this system is %1d bytes.\n",

sysconf (_SC_PAGESIZE)); // _SC PAGE SIZE is OK too.

return 0O;

= On Windows, use the system function the system function GetSystemInfo
() from kernel32.dll

#include <stdio.h>
#include <windows.h>
int main() {
SYSTEM INFO si;
GetSystemInfo (&si) ;
printf ("The page size for this system is %u bytes.\n", si.dwPageSize) ;

return O;
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