EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 34: Virtual Memory

Virtual Memory

= VM is an imaginary memory area supported by some operating systems (for example,
Windows but not DOS) in conjunction with the hardware.
— Use main memory as a “cache” for secondary (disk) storage
— Managed jointly by CPU hardware and the operating system (OS)

= You can think of virtual memory as an alternate set of memory addresses. Programs use
these virtual addresses rather than real addresses to store instructions and data.

= When the program is actually executed, the virtual addresses are converted into real memory

addresses. One purpose of virtual memory is to enlarge the address space, the set of
addresses a program can utilize.

= For example, virtual memory might contain twice as many addresses as main memory. A
program using all of virtual memory, therefore, would not be able to fit in main memory all at
once. Nevertheless, the computer could execute such a program by copying into main
memory those portions of the program needed at any given point during execution.

= To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fixed number of addresses.

— Each page is stored on a disk until it is needed. When the page is needed, the operating system
copies it from disk to main memory, translating the virtual addresses into real addresses.

= Today with cheap memory, VM is more important for protection vs. just another level of
memory hierarchy.

Prof. M. Mansour

Virtual Memory

= Virtual memory manages the two levels of the memory hierarchy represented by
main memory (sometimes called physical memory) and secondary storage.

= Historically, VM predates caches

— In older days, main memory was very scarce.

= Employs same concept as caches, but has different terminology due to historical
reasons:
— A VM block is called a page.
— A VM miss is called a page fault.
= With VM, CPU produces a virtual address (VA) which is translated in hardware into
a physical address (PA)
— That physical address is used to access main memory

= The process of translating virtual addresses into real addresses is called mapping.
The copying of virtual pages from disk to main memory is known as paging or

swapping.
P_rogr_am operates in | Hardware Physical
s V'rt::;(?: dress virtual mapping physical ?i’:;‘.fz:";/ches)
address address
(inst. fetch (inst. fetch
load, store) load, store)

Prof. M. Mansour

Virtual Memory

P.rogr.am operates in J Hardware Physical
its virtual address virtual mapping physical rrler:wry -
space address address (incl. caches)
(inst. fetch (inst. fetch
load, store) load, store)

= Each program operates in its own virtual address space
— Only portions of those programs that are running

= Each program is protected from other programs
= OS can decide where each program goes in memory
= Hardware (HW) provides virtual = physical mapping

= Historical note:
— Early computers employed absolute addresses: virtual address = physical address
— Only one program ran at a time, with unrestricted access to entire machine

— Addresses in a program depended upon where the program was to be loaded in
memory

— Programmers wanted to write location-independent subroutines, and
— Multiple programs should not affect each other inadvertently.

Prof. M. Mansour

Virtual Memory

Virtual addresses Physical addresses
e Address translation
%%4
@ —

o— |

.\

.\

0——-7b<

o

®&— —p—

Disk addresses

Prof. M. Mansour EECE 321: Computer Organization

Example: Mapping Virtual Memory to Physical Memory

Virtual

Divide virtual and physical memory into equal sized chunks oo
Memory

called pages (ex: 4 KB - 64 KB)

Any page of Virtual Memory assigned to any pages of
Physical Memory (“page”)

A VM page can either be in physical memory or on disk.

Physical Memory

64 MB

Prof. M. Mansour

Paging Organization (assume 1 KB pages)

Physical Page is unit Virtual
Address of mapping Address
0 'page O 1K \ / 0 age 0O 1K
1
— 1K 1024 lpage 1K
1024 Address
Trans. 2048 lpage 21 1K
MAP
Physical
Page also unit of transfer from Virtual
disk to physical memory Memory

Prof. M. Mansour

Virtual to Physical Address Mapping

3130292827 ----------

Virtual address

15141312111098 ----------- 3210

Virtual page number

Page offset

y

/

(Translation)

DG OB D7 v iy

191413 1211109 8 sxsabasiass 3210

Physical page number Page offset

Physical address

Prof. M. Mansour EECE 321: Computer Organization

Virtual Memory Mapping Function

Cannot have simple formula to predict arbitrary mapping: page can be anywhere
Use a table to lookup the mappings

Decompose virtual address into a page number and a page offset field.
Virtual address:

Page Number ‘Offse‘r ‘

0 Use table lookup (“Page Table”) to store the mappings:
o Page number is used to index the page table

0 Virtual Memory Mapping Function
Physical Page Offset = Virtual Page Offset
Physical Page Number = PageTable [Virtual Page Number]

(P.P.N. also called “Page Frame”)

0 A page table is an operating system structure which contains the mapping of virtual

addresses to physical locations
o There are several different ways, all up to the OS, to keep this data around

0 Each process running in the operating system has its own page table
“State” of a process is PC, all registers, plus page table
OS changes page tables by changing contents of Page Table Base Register

Prof. M. Mansour

Page Table Example

Page table register

Virtual address

831 30 29 28 27 cceeeeereneecrennnanens 1514 13 12 11 10 9 8 +--++--- 3210

Virtual page number Page offset

\\20 \\12
Valid Physical page number
L)
Page table
418
If 0 then page is not
present in memory
D19 D B D T ivmmsivisivns cmmimeiminie sivsioninie vimininieid ...15 14 13 12 11 10 9 8}----- 3210
Physical page number Page offset

Physical address

Prof. M. Mansour EECE 321: Computer Organization 10

More Details about Page Table

= Page Table located in physical memory at address indicated by the Page Table Base
Register

Virtual Address:
| |-gage no. " offse1'|

Page Table

Page Table -
Base Register v .
V ¢ A.R. . P.P. A.

index Valid : Access : Physical

into : Rights : Page 1

page I : (protection) : Address

table : : Physical
Memory
Address

Prof. M. Mansour

Page Table Entry (PTE) Format

= Contains either Physical Page Number (PPN) or indication not in Main Memory
= OS maps to disk if Not Valid (V =0)

Page Table

Vi AR i PPN

Validé Access Physical
Rights : Page

Number P.T.E.

Vi AR : PPN

NI/

o If valid, also check if have permission to use page:
Access Rights (A.R.) may be Read Only, Read/Write, Executable

Prof. M. Mansour

Paging/Virtual Memory Multiple Processes

0. 0]

User A:
Virtual Memory

Static

64 MB

Physical
Memory

o0

Page
Table

User B:
Virtual Memory

Stack

Static

M. Mansour

Page Table: Another View

Virtual page
number
Page table
Physical page or
Valid disk address

i

= O==O (||| |—=|—

//,

Physical memory

O

Disk storage

Prof. M. Mansour EECE 321: Computer Organization

14

Comparing the 2 Levels of Hierarchy: VM vs. Cache

Cache Version
Block or Line

Miss

Block Size: 32-64B

Placement:
Direct Mapped,
N-way Set Associative

Replacement:
LRU or Random

Write Thru or Back

Virtual Memory version
Page

Page Fault

Page Size: 4K-64KB
Fully Associative

Least Recently Used
(LRU)

Write Back

Prof. M. Mansour

Page Size

= On Unix, use the system function sysconf() to get page size: (or simply type
pagesize command)

#include <stdio.h>
#include <unistd.h> // sysconf (3)

int main() {
printf ("The page size for this system is %1d bytes.\n",

sysconf (_SC_PAGESIZE)); // _SC PAGE SIZE is OK too.

return 0O;

= On Windows, use the system function the system function GetSystemInfo
() from kernel32.dll

#include <stdio.h>
#include <windows.h>
int main() {
SYSTEM INFO si;
GetSystemInfo (&si) ;
printf ("The page size for this system is %u bytes.\n", si.dwPageSize) ;

return O;

Prof. M. Mansour EECE 321: Computer Organization 16

