EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 33: Multi-Level Caches

Multilevel Caches

= One effective method of reducing miss penalty is to use a multilevel cache.

— For a two-level cache, if the second-level cache contains the desired data, the miss
penalty will be the access time of the second-level cache.

= This access time is typically much less than the access time of main memory.

« ><
L2 access time | L2 Miss rate
‘ L2 Miss penalty
L2 <
Processor [———» Ll < = Cache
Cache
< > < >
L1 access time | L1 Miss rate
L1 Miss penalty

Avg. Mem Access Time = L1 Access Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = L2 Access Time + L2 Miss Rate * L2 Miss Penalty

Prof. M. Mansour EECE 321: Computer Organization 2

Miss Rates

= L1 miss rate: Fraction of memory accesses from processor that miss in L1

— These may hit in L2, or may miss in L2 as well

= L2 miss rate: (looking from the L1 side) Fraction of L1 misses that also miss in L2.

— Ratio of all misses in L2 cache over the number of accesses to L2.

= Global miss rate: (looking from the processor side) Fraction of all memory accesses
from processor that miss in all cache levels.

= Example: Assume L1 miss rate of 5%, L2 miss rate of 20%
— Out of 1000 memory accesses issued by processor to L1, 50 instructions miss in L1
— These 50 instructions will be the number of memory accesses that L2 sees
— Out of these 50, 50x20%=10 instructions miss in L2 and go to Memory

— Therefore, out of the total 1000 memory accesses, only 10 go to memory (i.e. miss in L1
and L2), resulting in a global miss rate of 10/1000 = 1%.

— Or directly, global miss rate = L1 miss rate x L2 miss rate

Prof. M. Mansour EECE 321: Computer Organization 3

Multilevel Caches: Typical Scale

= A 2-level cache structure allows L1 cache to focus on minimizing hit time to yield a
shorter clock cycle, while allowing L2 cache to focus on (global) miss rate to reduce the
penalty of long memory access times.

= Typical Scales:
= L1 Cache:
— size: tens of KB
— hit time: must complete in one clock cycle
— miss rates: 1-5%
= L2 Cache:
— size: hundreds of KB
— hit time: few clock cycles
— miss rates: 10-20%
= Why is L2 miss rate so high?
— L1 already filters accesses with good temporal and spatial locality
= Benefit: L2 lowers the global miss rate:
— Ex: L1 miss rate = 4%, L2 miss rate = 30%, Global miss rate = 1.2%

— Hence L2 lowered the miss rate from 4% to 1.2%, a reduction of 70% in miss rate

Prof. M. Mansour

Multilevel Caches Example

Example:
— Processor with ideal CPI=1, a clock rate of 500 MHz

— Main memory access time of 200ns (including all the miss handling).

— L1-only cache system: 5% miss rate per instruction

— L1-L2 cache system: L2 has a 20-ns access time for either a hit or a miss
* Global miss rate to main memory is reduced to 2%.

— How much faster will the L1-L2 system compared to the L1 system?

Miss penalty to main memory is 200ns/2ns = 100 clock cycles

CPl, e =1+5%Xx 100 =6
Miss penalty to secondary cache is 20ns/2ns = 10 clock cycles
— CPl, e = 1 + Primary cache stalls + Secondary cache stalls

— Primary cache stalls = % instructions that miss in L1 & hit in L2 X L2___.ctime

— Sec. cache stalls = % instructions that miss in L1 & miss in L2 X L2, . time™
% instructions that miss in L1 & missin L2 x MM
CPlyjevel = 1 +(5%-2%) x 10 + 2% x (10+100) = 3.5

Speedup:6/3.5=1.7

access-time

Prof. M. Mansour

Multilevel Caches Example

o Alternatively,
CPl, eve = 1 + % instructions that miss in L1 & hit in L2 X L2, ess-time
+ % instructions that miss in L1 & miss in L2 x L2

access-time

+ % instructions that miss in L1 & miss in L2 X MM cess-time

=1 + % instructions that miss in L1 x L2

access-time

+ 9% instructions that miss in L1 & miss in L2 x MM

access-time-

o Typically, primary cache is smaller than secondary cache (~10 times) to keep hit
time small.

Block size is small to go with the smaller cache size and reduced miss penalty.

o Secondary cache is often larger since its access time is less critical
It uses larger block sizes.

Prof. M. Mansour

Itanium-2 On-Chip Caches

1.6 mm

’,

v

1 Bratch thit

<

e | Boalds Po

19.5mm

.IF |-i|!“.| Mo Eiralay

318 0F TN

Level 1, 16KB, 4-way s.a., 64B
line, quad-port (2 load+2

store), single cycle latency

Level 2, 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4

store), five cycle latency

Level 3, 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

Prof. M. Mansour

Cache Things to Remember

= Caches are NOT mandatory:
— Processor performs arithmetic
— Memory stores data
— Caches simply make data transfers go faster
= Each level of Memory Hierarchy is subset of next higher level
= Caches speed up due to temporal locality: store data used recently

= Block size > 1 word spatial locality speedup:
Store words next to the ones used recently
= Cache design choices:
— size of cache: speed v. capacity
— N-way set assoc: choice of N (direct-mapped, fully-associative just special cases for
N)
= Cache performance:
— Miss Rate
— Miss Penalty

Prof. M. Mansour

Generalized Caching

We've discussed memory caching in detail. Caching in general shows up over and
over in computer systems:

File system cache

Web page cache

Game Theory databases / table-bases

Software memoization (automatically modifying functions to include caching behavior)
Search engines (~ Google)

BIND DNS daemon caches a mapping of domain names to IP addresses

Main idea: if something is expensive to obtain but is needed repeatedly, do it once
and cache the result.

Memory hierarchy requirements:

If Principle of Locality allows caches to offer (close to) speed of cache memory with size of
DRAM memory, then recursively why not use same idea at next level to give speed of DRAM
memory, size of Disk memory?

Prof. M. Mansour

Virtual Memory

Prof. M. Mansour 10

Virtual Memory

= VM is an imaginary memory area supported by some operating systems (for example,
Windows but not DOS) in conjunction with the hardware.

= You can think of virtual memory as an alternate set of memory addresses. Programs use
these virtual addresses rather than real addresses to store instructions and data.

= When the program is actually executed, the virtual addresses are converted into real memory
addresses. One purpose of virtual memory is to enlarge the address space, the set of
addresses a program can utilize.

= For example, virtual memory might contain twice as many addresses as main memory. A
program using all of virtual memory, therefore, would not be able to fit in main memory all at
once. Nevertheless, the computer could execute such a program by copying into main
memory those portions of the program needed at any given point during execution.

= To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fixed number of addresses.

— Each page is stored on a disk until it is needed. When the page is needed, the operating system
copies it from disk to main memory, translating the virtual addresses into real addresses.

= Today with cheap memory, VM is more important for protection vs. just another level of
memory hierarchy.

Prof. M. Mansour

Virtual Memory

= Virtual memory manages the two levels of the memory hierarchy represented by
main memory (sometimes called physical memory) and secondary storage.
= Historically, VM predates caches
— In older days, main memory was very scarce.
= Employs same concept as caches, but has different terminology due to historical
reasons:
— A VM block is called a page.
— A VM miss is called a page fault.
= With VM, CPU produces a virtual address (VA) which is translated in hardware into
a physical address (PA)
— That physical address is used to access main memory

= The process of translating virtual addresses into real addresses is called mapping.
The copying of virtual pages from disk to main memory is known as paging or

swapping.
Program operates in Hardware Physical
its thga;g:dress virtual mapping physical ?neCToCr;/CheS)
g address address :
(inst. fetch (inst. fetch
load, store) load, store)

Prof. M. Mansour

Virtual Memory

Program operates in Hardware Physical
its wrt:a;f((ejdress virtual mapping physical Einnecrrocr;/CheS)
g address Qddress -
(inst. fetch (inst. fetch
load, store) load, store)

= Each program operates in its own virtual address space;
— Only portions of those programs that are running

= Each program is protected from other programs
= OS can decide where each program goes in memory
= Hardware (HW) provides virtual = physical mapping

= Historical note:
— Early computers employed absolute addresses: virtual address = physical address
— Only one program ran at a time, with unrestricted access to entire machine

— Addresses in a program depended upon where the program was to be loaded in
memory

— Programmers wanted to write location-independent subroutines, and
— Multiple programs should not affect each other inadvertently.

Prof. M. Mansour

Mapping Virtual Memory to Physical Memory

= Divide virtual and physical memory into equal sized Virtual Memory
chunks called pages (ex: 4 KB - 64 KB)

= Any page of Virtual Memory assigned to any pages
of Physical Memory (“page”)

= A VM page can either be in physical memory or on
disk.

Physical Memory 1
64 MB
Static
A

U

Prof. M. Mansour O

Paging Organization (assume 1 KB pages)

Physical Page is unit Virtual
Address of mapping Address

0 1K /0 page 0
1024 |page 1]

age 1 1K
B (e IR i
7168 1K -
:AILyr:\i;?:/ 31744 |Page 31]
Page also unit of transfer from Virtual

disk to physical memory Memory

1K
1K

1K

1K

Prof. M. Mansour

Virtual Memory Mapping Function

= Cannot have simple formula to predict arbitrary mapping: page can be anywhere
= Use a table to lookup the mappings
= Decompose virtual address into a page number and a page offset field.

= Virtual address: Page Number |Offset

0 Use table lookup (“Page Table”) to store the mappings:

o Page number is used to index the page table

0 Virtual Memory Mapping Function
Physical Page Offset = Virtual Page Offset
Physical Page Number = PageTable [Virtual Page Number]
(P.P.N. also called “Page Frame”)

o A page table is an operating system structure which contains the mapping of virtual
addresses to physical locations

o There are several different ways, all up to the OS, to keep this data around

o Each process running in the operating system has its own page table
“State” of a process is PC, all registers, plus page table

OS changes page tables by changing contents of Page Table Base Register

Prof. M. Mansour

Address Mapping: Page Table

*Page lable located | AL V a1 V
Page Table Base Register

Virtual Address:

[page no.J[offset]

I
Page Table
Page Table >
Base Register : .
V : AR :P.P. A.
index Valid : Access : Physical
into : Rights : Page 1
page ., : (protection) Address
table : : Physical
Memory
Address

Prof. M. Mansour

Page Table Entry (PTE) Format

= Contains either Physical Page Number or indication not in Main Memory
= OS maps to disk if Not Valid (V =0)

Page Table

Vi AR PPN L\
Valid§ Access Physical

Rights : Page)
: Number P.T.E.

Vi AR : PPN, |/

o If valid, also check if have permission to use page:
Access Rights (A.R.) may be Read Only, Read/Write, Executable

Prof. M. Mansour

Paging/Virtual Memory Multiple Processes

—tserA gser-B-
Virtual Memory Virtual Memory
o0 Physical o0
64 MB Memory Stack

AN

I
—

Static Static
A B
Page Page
Table Table Code

M. Mansour

Comparing the 2 Levels of Hierarchy: VM vs. Cache

Cache Version
Block or Line

Miss

Block Size: 32-64B

Placement:
Direct Mapped,
N-way Set Associative

Replacement:
LRU or Random

Write Thru or Back

Virtual Memory version
Page

Page Fault

Page Size: 4K-64KB
Fully Associative

Least Recently Used
(LRU)

Write Back

Prof. M. Mansour

	Slide Number 1
	Multilevel Caches
	Miss Rates
	Multilevel Caches: Typical Scale
	Multilevel Caches Example
	Multilevel Caches Example
	Itanium-2 On-Chip Caches
	Cache Things to Remember
	Generalized Caching
	Slide Number 10
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Mapping Virtual Memory to Physical Memory
	Paging Organization (assume 1 KB pages)
	Virtual Memory Mapping Function
	Address Mapping: Page Table
	Page Table Entry (PTE) Format
	Paging/Virtual Memory Multiple Processes
	Comparing the 2 Levels of Hierarchy: VM vs. Cache

