EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 27: Pipelining
Control Hazards

Announcements

= Examll
— Wednesday May 5 at 6:15pm
— Rooms 543 & 545

= Final Exam
— Monday May 31 from 9:00-12:00 noon
— WingD

Prof. M. Mansour EECE 321: Computer Organization

Reducing the Delay of Branches

Assumption: Branches are resolved in ID. Hence need to flush IF stage in case we fetch from wrong target

IF.Flush

[\T |-hiEM/WB

Control > M WB

0> PR

IF/ID EX
+

4 Shift Y
left 2

> —

B unit /
ID/EX
WB
M
u
X

LhiEMNVB
WB—

rar

Y

Registers
ALU - Data |

—l Instruction
Pe memory ||

memory

—4
A A

i

y

xec=

e) (xe2)

@ =
W

Y

]
(xe=)

- Fowarding > — _-|
= k -
| unit

P -

Prof. M. Mansour EECE 321: Computer Organization

Data Hazards for Branches

= Notice now the branch instruction requires its operands in the ID stage!

— So how to deal with data hazards related to branch operands?

" Example: add $1, $2, $3
add $4, $5, $6
sub $6, $7, $8

beq $1, $4, target

add $1, $2, $3 IF

add $4, $5, $6

beq $1, $4, target

ID EX MEI\I\ WB
\
IF IID EX I\M WB
T e e
\
IF I ID\ EX I ME!\I!I WB

» |f a comparison register is a destination of 2" or 3™ preceding ALU instruction

— Can resolve using forwarding

Prof. M. Mansour

EECE 321: Computer Organization

Data Hazards for Branches

= |f a comparison register is a destination of preceding ALU instruction or 2"

preceding load instruction
— Need 1 stall cycle

= Example:
lw $1, addr IF IID I EX nﬁq WB
add $4, $5, $6 IF I ID EX I\\\{\/\Er\i\l WB
beq stalled IF ID I

beq $1, $4, target

oo

ID\

WB

I EX I MEI\I\I

Prof. M. Mansour

EECE 321: Computer Organization

Data Hazards for Branches

= |f a comparison register is a destination of immediately preceding load instruction
— Need 2 stall cycles

beq $1, $0, target EX

= Example:
Tw $1, addr IF I ID I EX I MEV\I\ WB
beg stalled IF I ID IQI IQ
beq stalled I ID I IQ

B0

MEI\I\I WB

Prof. M. Mansour EECE 321: Computer Organization

Branch Delay Slots

= So far we have considered only dynamic techniques (done by hardware) to resolve
hazards

= What can the compiler do?

Called “static” techniques

= One technique is called Branch Delay Slot

= |tis used by compiler (statically) to schedule instructions that always execute
irrespective of the direction taken by the branch immediately after the branch

Compiler needs to know how many slots it has to fill
In our case, only one slot

In more realistic “deeper” pipelines, that is not the case. Compiler can’t always find such
instructions to fill all slots.

Can be more creative: Schedule instructions that are “OK” to execute even if the branch
goes the unintended way

* Example: An instruction that updates a temporary register that is not used afterwards in
case the branch goes the other direction!

Prof. M. Mansour EECE 321: Computer Organization 7

Scheduling Techniques to Fill the Branch Delay Slots

= |n(a), the delay slot is scheduled with an independent instruction from before the

branch. This is the best choice.

= Strategies (b) and (c) are used when (a) is not possible.
— Can’t use the add instruction to fill the slot due to Ss1

— To make this optimization legal for (b) or (c), it must be OK to execute the sub instruction

when the branch goes in the unexpected direction.

a. From before

b. From target

c. From fall-through

add $s1, $s2, $s3

sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then —— if $s1 = 0 then
Delay slot add $s1, $s2, $s3 Delay slot
if $s1 = 0 then
U— Delay slot sub $t4, $t5, $t6
Becomes Becomes Becomes
add $s1, $s2, $s3
if $s2 = 0 then —— if $s1 = 0 then ——

add $s1, $s2, $s3

add $s1, $s2, $s3

if $s1 = 0 then —

| sub $t4, $t5, $t6 |

sub $t4, $t5, $t6

Prof. M. Mansour

EECE 321: Computer Organization

Dynamic Branch Prediction (Done in Hardware)

= In deeper and superscalar pipelines, branch penalty is more significant
— Can’t just rely on compiler to fill the delay slots

= Need to use hardware techniques:
— Dynamic prediction

= Assuming branch is not taken is one elementary form of branch prediction.
— Example: Always “predict” branch is not taken.

= With more hardware, it is possible to improve the accuracy of our prediction
— Monitor previous behavior of a branch and predict future behavior accordingly

— Hardware needed:
* Branch Prediction Buffer (BPB) or Branch History Table (BHT).

= Branch Prediction Buffer: A small memory indexed by the lower portion of the
address of the branch instruction.
— It contains a bit that says whether the branch was recently Taken or Not Taken.

— Very simple; prediction not necessarily true; bit may have been set by another
instruction that has the same low-order address bits.

Prof. M. Mansour EECE 321: Computer Organization

Dynamic Branch Prediction (Done in Hardware)

= To execute a branch
— Check branch prediction buffer, expect the same outcome
— Start fetching from Fall-through or Target
— If wrong, flush pipeline and flip prediction

= Disadvantages of 1-bit prediction:
— We will likely predict incorrectly twice rather than once when a branch is not taken.

= Example: Consider a loop that branches 9 times in a row, then it is not taken once.
What is the prediction accuracy for this branch assuming a 1-bit prediction
scheme.

— Mispredict first and last loop iterations. Prediction accuracy is 80%.

= What about a 2-bit prediction scheme?
— Prediction must be wrong twice before it is changed.

Prof. M. Mansour EECE 321: Computer Organization 10

1-Bit Predictor: Shortcoming

= Inner loop branches mispredicted twice!

A

outer:

A

inner:

beq .., .., outer

= Mispredict as Taken on last iteration of inner loop
= Then mispredict as Not Taken on first iteration of inner loop next time around

Prof. M. Mansour EECE 321: Computer Organization 11

2-Bit Predictor

= Only change prediction on two successive mispredictions

Not taken N
Taken
Not taken\ ‘ Taken
Not taken
(Predict not taken
Taken g

Prof. M. Mansour EECE 321: Computer Organization

Calculating the Branch Target

So far we have done the prediction part of the branch, but still need to target
address in case the branch is taken
— Where do we get this information from?
If we don’t have the target address ready in time, we need to stall
— 1-cycle penalty for a taken branch
Solution: Use a Branch Target Buffer (BTB)
— It stores target addresses

— Indexed by PC when instruction fetched
* |f hit and instruction is branch predicted taken, can fetch target immediately

Prof. M. Mansour EECE 321: Computer Organization

13

Dynamic Branch Prediction

The branch prediction buffer can be implemented as a small special buffer
accessed with the lower-address bits of the instruction address during the IF stage.

If the instruction is predicted as taken, the next instruction should be fetched from
the target.

= How the BTB and BPB work together?

_address
Branch prediction buffer Branch target address buffer
lower-order lower-order
bits - bits
Logic To PC MUX
Why lower-order bits l
are used to access BPB Taken/Not Taken

and BTB?

Prof. M. Mansour EECE 321: Computer Organization 14

Exceptions and Interrupts

Prof. M. Mansour

EECE 321: Computer Organization

15

Exceptions and Interrupts

= An exception is an unexpected event initiated from within the processor.

“Unexpected” event requiring change in flow of control

= Different ISAs use the terms exceptions and interrupts differently

= Exception
— Arises within the CPU
— Ex: undefined opcode/instruction, overflow, syscall, ...

= |nterrupt
— Initiated from an external 1/O controller
— Ex: Printer sends a “paper jam” interrupt, “out of paper” interrupt, etc

= Dealing with exceptions and interrupts without sacrificing performance is hard

Prof. M. Mansour EECE 321: Computer Organization 16

Handling Exceptions

= |n MIPS, exceptions are managed by a System Control Coprocessor (CPO)

= Steps taken to handle an exception:

1. Save PC of offending (or interrupted) instruction
— In MIPS: Exception Program Counter (EPC)

2. Save indication of the problem
— In MIPS: Cause register
— For simplicity, we’ll handle only two types of exceptions: undefined opcode, overflow
— So use only a 1-bit cause register: 0 for undefined opcode, 1 for overflow

3. Jump to a handler routine located at predefined address 0x8000 00180
— lrrespective of exception type, always jump to same address to handle the exception

— Then depending on the cause, the handler decides what to do further and where to
jump

Prof. M. Mansour EECE 321: Computer Organization

17

An Alternate Mechanism

= Vectored Interrupts
— An alternative mechanism to handle exceptions
— Handler address determined by the cause
— So depending on cause, jump directly to the appropriate handler

= Example:
— Undefined opcode: 0xC000 0000
— Overflow: 0xC000 0020
— 0xCO000 0040

» Handler instructions either

— Deal with the interrupt, or
— Jump to real handler

Prof. M. Mansour EECE 321: Computer Organization

18

Handler Actions

= Read cause, and transfer to relevant handler

= Determine action required

= |f exception is “restartable”:
— Take corrective action
— Use EPC to return to program

= QOtherwise
— Terminate program
— Report error using EPC, cause, ...

Prof. M. Mansour EECE 321: Computer Organization

19

Exceptions in a Pipeline

= \We treat them as another form of a “control hazard”

= Why?
= Consider overflow on add in EX stage
add $1,%2,5%1

— Prevent S1 from being clobbered. So the exception must be serviced directly after the
instruction leaves the EX stage.

— Must complete all previous instructions
* Soinstructions in MEM and WB stages proceed normally
— Flush add and subsequent instructions
* Need to flush IF/ID, ID/EX, EX/MEM pipeline registers.
— Set Cause and EPC register values
* Save overflow bit from ALU in Cause register
* Need to save PC (+4) in EPC
— Transfer control to handler
* Jump to 0x80000180
= Similar to mispredicted branch
— Use much of the same hardware

= Upon servicing the exception and notifying the user with the offending instruction

and the cause of the exception, the user/OS can elect to resume execution of the
program.

— Execute a “return from exception” (rfe) instruction which simply copies EPC to PC.

Prof. M. Mansour EECE 321: Computer Organization 20

Pipelined Datapath with Exception Handling

IF.Flush

EX.Flush

80000180

xc =

PC

A

A

ID.Flush
Hazard
detection |=
\ unit / ¥y
A
ID/EX
WB
M I
Control > u M
—> X L
0 EX

D

Instruction
memory

\

Shift
left 2

\ i \ "VQ}

Cause
EPC

Registers

~(OH

ny (

EX/MEM
M »|WB
x L
00— M

u

YY Y

\

Yy

19—
ALU >
/ Data | _
memory
>

YYVY Y

Yy

(e=) I_.(<c=)F(<=2)

| MEM/WB
WB

b

Forwarding

unit -
Lo

xc =S

Prof. M. Mansour

EECE 321: Computer Organization

Exception Properties

= Restartable exceptions
— Pipeline can flush the instruction

— Handler executes, then returns to the instruction
* Re-fetched and executed from scratch

= PCsaved in EPC register
— Identifies causing instruction
— Actually PC + 4 is saved
* Handler must adjust

Prof. M. Mansour EECE 321: Computer Organization

22

Example

= Consider the following instruction sequence:

40hex sub
44hex and
48hex sub
4Chex add
50hex slt
54hex 1w

$11, $2, $4
$12, $2, $5
$13, $2, $6

$1, $2, §1

$15, $6, $7
$16, 48($7)

causes overflow exception

= Assume the instructions of the exception service routine to be invoked on an
exception begin like this:

80000180hex
48000184hex

sw $25, 1000($0)
sw $26, 1004 ($0)

Prof. M. Mansour

EECE 321: Computer Organization

23

Example

Iw $16, 50($7)

IF.Flush

slt $15, $6, $7 add $1, $2, $1

EX.Flush

or$13, .

Hazard "\

80000180 =

Clock 6

800

detection

___unit / Y .
ID/EX
0

]
]
1
:
ID.Flush I
]
]
1
1
]

EX/MEM
10

-—B_

6

12

Data
memory

Prof. M. Mansour

EECE 321: Computer Organization

24

Example

sw $25, 1000($0) bubble (nop) | bubble \ bubble , or $13,
: | EX.Flush | |
IF.Flush ! 1 . :
; ID.Flush | : |
! Hazard "\ ! : !
detection : ! I
__unit / ! E E
MEM/WB
80000180 =
500 Data l
memory
13
g
X
Clock 7 | m\, |
X unit)< .

Prof. M. Mansour EECE 321: Computer Organization 25

Multiple Exceptions

= Multiple exceptions can occur simultaneously in the pipeline.

= What if the following happens:
— An add instruction overflows in EX stage
— An undefined instruction is identified in ID stage

= Simple approach: deal with exception from earliest instruction
— Flush subsequent instructions
— Upon returning from exception, the undefined instruction after add is serviced.
— This approach is called “Precise” exceptions

= |n complex pipelines however,
— Multiple instructions issued per cycle
— Out-of-order completion occurs
— So maintaining precise exceptions is difficult!

Prof. M. Mansour EECE 321: Computer Organization

26

