EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 22: Pipelining

2. Control Hazards

= Solution 3 — Delayed branches:
— This solution is actually used in MIPS.

— Place an instruction that is not affected by the branch (e.g. an instruction appearing before the
branch) immediately after it.

— Delay taking the branch 1clock cycle (i.e., delay loading of PC one more clock cycle)

= Example: add $4,55,56 doesn’t affect the branch, so it can be moved into the delayed branch

slot. Program
execution 2 4 6 8 10 12 14 16
order Time : : | : | | ‘ : .
{n mstructions)
Instructi Data
add $4, $5, $6 " fetchm Reg ALY access Reg
Instruction Data
beq $1, $2, 40 4? fetch Reg| ALU access | R€9
Instruction Data
| w $3, 300(3$0) q—p4 - fetch Reg| ALU access | €9
—
Program Zns
e:tdecutlon o 2 4 6 8 10 12 14
order ime | | : | | | | .
(in instructions)
Instruction Data
beqg $1, $2, 40 ey Reg| ALU : Reg
add $4, $5,56 Instruction Reg| Aw | Do |Reg
(Delayed branch slot) 2ns fetch access
Instruction Data
| w $3, 300(30) d——bz - fetct Reg|{ ALU access Reg
>
2ns

Prof. M. Mansour EECE 321: Computer Organization 2

Summary of Control Hazard Solutions

= Stall the pipeline
= Do branch prediction
= Use delayed branches

Prof. M. Mansour EECE 321: Computer Organization

3. Data Hazards

add $s0,%$t0,$tl

sub $t2,$s0,$t3

This occurs when the next instruction depends on the result generated by the
current instruction:

#producer of $s0
#consumer of $s0

two bubbles to the pipeline (2 NOPs in MIPS).

The add instruction doesn’t write the result until the 5th stage, so we need to add

Instruction
Fetch

Reg

Data
Access

R

By le
()

ALU
bubble)/ bubble bubble
O O O O

eg
wky

bubble bubble bubble bubble bu bble
& @ ® @)

Instruction
Fetch

Data

AL
U Access

Reg Reg

= Solution: Observe that we don’t have to wait for the first add instruction to
complete to resolve the data hazard.

forwarding or bypassing.

As soon as the first add finishes its third stage, the sum is ready and can be forwarded to

Getting the missing item early from the internal resources is called register

Prof. M. Mansour

EECE 321: Computer Organization

3. Data Hazards — Examplel

= For the two instructions below, show what pipeline stages can be connected by
forwarding. Use the figure below to represent the datapath during the 5 stages.

add $s0,%$t0,$t1
sub $t2,%$s0,$t3

) 2 4 6 8 10
Time]]]]] >
add $s0, $i0, $t1 IF |—4 ID SEX MEM WB
= Solution:
Program
execution 2 4 6 8 10
order Time I I I I I >
(in instructions)
add $s0, $t0, $t1 | IF O ID SEX MEM,— WB
| sub $t2, $s0, $13 IF D ID MEM WB

Prof. M. Mansour EECE 321: Computer Organization

3. Data Hazards — Example2

= Repeat for the following pair of instructions. Does forwarding remove all stalls?
Iw $s0,20(%$tl)
sub $t2,%$s0,%t3

= Solution:
] 2 4 6 8 10 12 14
Program Time T] T]]] | >
execution
order
(in instructions)
w $s0, 20($t1) IF O ID >E MEM WB
.
v sub $12, $s0, $13 IF O ID WB

= Here since result of load is available only after the 4th stage in MDR, and sub
needs it in 3rd stage, still need to insert a pipeline bubble.

Prof. M. Mansour EECE 321: Computer Organization

3. Data Hazards — Reordering Code to Avoid Pipeline Stalls

= Can the assembler or compiler rearrange the code to eliminate stalls?
Iw $t0, 0(%$td)

Iw [@ 4($t1)
SW 0($t1)

sw $t0, 4($td)

= Solution:

Iw $t0, 0(%$td)
Iw $t2, 4($td)
sw $t0, 4($td)
sw $t2, 0($td)

Prof. M. Mansour EECE 321: Computer Organization

Reordering Code to Support Structural & Data Hazards

(1)

Program

Execution

Order

(2)

Iw $1,
v $2,
Iw $3,

Iw $4,

Iw $1,
Iw $2,
Iw $3,

Iw $4,

100($0)

104($1)
108($2)

112($3)

Time -
Instruction Data
100($0) e Reg| AU | “0 |Reg 4 NOPs
Instruction Data
l 04 ($0) fetch Reg ALU access Reg \
Instruction R ALU Data R
108 ($O) fetch €9 access €9
Instruction Data
112 ($O) fetch Reg ALU access Reg
Time Same #
> of NOPs
Instruction Data
fetch Reg ALL access Reg
Instruction Reg| AU Reg Instructions from before
N fetch
T - Instruction
A fetch Reg| ALU Reg /
S SS -)) () (O
\\‘\ \\\\ Instruction Data
.. N\ otoh Reg| AU scooce | RE9 4 NOPs
R - Instruction
.. fotch Reg| ALU Reg
T N Instruction
.. fotch Reg| ALU Reg

Iovakokyle: Fabokol e
()

Prof. M. Mansour

EECE 321: Computer Organization

fetch

bata

Fallll)

ﬂ:ﬁeSS

Reg

Reorganized Single-Cycle Datapath

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Wite back
register file read address calculation
1]
M
u
X
1
)
Read
PC Address register 1 Read
Read data 1
Instructi regiqe;a%gisters >ALU aere -
nstructon . Read ALU
Write dataa2 0 result Address %e?d 1
Instruction register Pﬂ Data ata M
morony |t T ey :
Wikite 0
data
16 miﬂ
5 Sign 1y
A @ A
Prof. M. Mansour EECE 321: Computer Organization 9

Pipelined Execution

A 4

Time (in clock cycles)

Program CC 1 cC 2 CC3 CC 4 CC5 CC6 cC7
execution
order
(in instructions) \
lw $1, 100($0) IM [Reg >j DM Reg
lw $2, 200($0) IM [Reg % DM Reg
lw $3, 300($0) IM [l Reg % DM Reg
A J |

10

Prof. M. Mansour EECE 321: Computer Organization

Pipelined Datapath: Adding Pipeline Registers

= Forward necessary information used in later execution stages using pipeline

registers

— Give them names: IF/ID, ID/EX, EX/MEM, MEM/WB

\/_/
E “x-= O

ﬁ

IFID ID/EX EX/IMEM MEM/\WWB
}
1 / >Add result
Shift
left 2
g .| Read
»| Address § register 1 Read . . \
g Read 2 e Zero —»
i - "| register -
lnrsntg:_n%lon | ~ Registers Raaq >ALU ALU
v Write data 2 0 result Address Réead 1
register M ata M
Writ X / Data u
rite X
data 1 memory OX
Write
data
16)
A [Sign
v lextend
Prof. M. Mansour EECE 321: Computer Organization 11

Execution of 1w on Pipelined Datapath: IF (1/5)

i |
Instruction fetch !

“xc=°

\ IF1D ID/EX EX/MEM MEN /W8
>Md \
4 — / > Adg Add

result
Shift
left 2

- .| Read
o -
PC Address = register 1 Read \
= data 1
= Read 5 Zero - —*
Instruction = reglstek ; ALU
morthl L . egisters Read 0 ALU Read
Write data 2 result ¥ »| Address d —
register M ata
u Data
Write * / memory
data 1 ¥
Wirite
v data
16)
\ Sign I w
N lextend

S = c

Prof. M. Mansour EECE 321: Computer Organization

Execution of 1w on Pipelined Datapath: ID (2/5)

| hw |
0 .
M | Instruction decode |
u
X
1
. IFID ID/EX EX/MEM BEM/VEB
Add S . \
Add
4 / >Add result "
Shift
left 2
c Read
PC——| Address = register 1 Read \
% | Read e Zero —
Instruction [, £ reglst%gisters Read ALU ALl v
, _ e
memory Write data 2 0 result —| Address Read 1
register M data
u Data M
Write X u
I memory X
data 1 0
Write
data
16 . 74
\ Sign |y .
| @ |
Prof. M. Mansour EECE 321: Computer Organization 13

Execution of 1w on Pipelined Datapath: EX (3/5)

IFID ID/EX EX/MEM MEM /VEIE

Shadd \
Add
/ >Add result
Shift
left 2

c Read
PC Address ? register 1 Read \
o data 1 v v
- B > IrQee?sgeQ Zero o [
Instruction = g Reqist ALU
memory [Write COSETS Read 0 ALU Read
’ Write data 2 result »| Address _—
register M data
u Data
Write X / memory
*| data 1 ’
Write
m v data
16 32
3 Sign Yy -

\@\

=

O ==

Prof. M. Mansour EECE 321: Computer Organization

Execution of 1w on Pipelined Datapath: MEM (4/5)

0 | |
M | mory |
u M
X
1
\ IF/ID ID/EX EX/MEM MEM/ VB
>’a\dd * > .\
Add
! / >Add result
Shift
left 2
= Read
PC Address % register 1 Read
E it e Zero > |
Instruction = register 2 |
memory] _ Registers Read| : ALU aLU fead
’ Write data 2 result Address dea?a -

register pﬂ o

Write X memory

data | 1

Write
data
16 . a2
5 Sign)y
| @ |

Prof. M. Mansour

EECE 321: Computer Organization

15

Execution of 1w on Pipelined Datapath: WB (5/5)

IFAD IDEX EX/MEM

Add

g Read
PC Address B register 1 Read
% Read , data 1 .
i = register -
Instruction |, " Registers Reag
memory Write data 2 Address fead
register Data a
. memory
Wikite E
*| data
Wirite
m 7 data
16 ki 4
N Sign]y
v —

\ @

= Where is the loaded value written? Above datapath has a problem.

Prof. M. Mansour EECE 321: Computer Organization

Corrected Pipelined Datapath to Properly Handle 1w

\/_'/
a “xes=0

IFID ID/EX EX'MEM MEM/WB
Add
1 '/ >Add result
Shift
left 2
c Read
PC Address = register 1 Read \
3 » »
g Reac% , data 1 o .,
; g = register >
'”ﬁ;‘iﬁﬁ,“’” 1 . Registers Read 5 >ALU ALU Read
v I"”itet data 2 " resulf Address e ! 1
register
- u Data M
Write X memory u
data 1 5(
Write
m * data
16 32
\ Sign .y .
| @ |
EECE 321: Computer Organization 17

Prof. M. Mansour

	Slide Number 1
	2. Control Hazards
	Summary of Control Hazard Solutions
	3. Data Hazards
	3. Data Hazards – Example1
	3. Data Hazards – Example2
	3. Data Hazards – Reordering Code to Avoid Pipeline Stalls
	Reordering Code to Support Structural & Data Hazards
	Reorganized Single-Cycle Datapath
	Pipelined Execution
	Pipelined Datapath: Adding Pipeline Registers
	Execution of lw on Pipelined Datapath: IF (1/5)
	Execution of lw on Pipelined Datapath: ID (2/5)
	Execution of lw on Pipelined Datapath: EX (3/5)
	Execution of lw on Pipelined Datapath: MEM (4/5)
	Execution of lw on Pipelined Datapath: WB (5/5)
	Corrected Pipelined Datapath to Properly Handle lw

