EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 20: MIPS Single-Cycle Processor
Implementation




Example: Execution of lw $t1,o0ffset($t2) on Datapath

= Divide into 5 steps: inst fetch, op fetch, addition, mem read, write-back.

ﬁ

0
M
* u
X
" ALU
>Add result !
>Add
IRzl et
4 — Frsrichi
I exmiead
Instruction [31526] | | Merntolteg
Control ALUOp
Il ezt
PR
ReqWhie
Instruction [25521] Road
Read register 1
"| address ) _ g Read
Instruction [20516] Read data 1
- ] “| reqister 2
l"S"[g?téD{';] 0 Registers Read /6 >ALU ALU Read
M Write data 2 " »| Address ea
Instruction u register ata M result data :ﬂ
memo - = u
i Instruction [15511] 1" Wiite X Dot u
data ata X
*J memory 0
Write
| data
Instruction [1550] ® 1 sign |32 }
\ @ \
Instiuction [550]
Prof. M. Mansour EECE 321: Computer Organization 2




Example: Execution of beq $t1,%$t2,offset on Datapath

o Divide into 4: inst fetch, op fetch, branch target address computation, branch decision.

PC

0
M
u
X
1
>Add
[l et
4 — P
Iilzrmiescd
Instruction [31526] [ zrmifil-deg
ALUOGR
Il
Fl W
IRl
Read Instruction [25521] Read
ea register 1
address ) _ g Read
Instruction [205 16] Read data 1
- | register 2
Instrgﬁtéog Reqgisters Read
[ ] | Write »0 Read
: : data 2 Address 1
Instruction register M data M
- = u
memory Instruction [15511] Write X Dot u
" data ata x
! memory 0
Write
data
- = 16 32
Instruction [1550] \ sign |y
\ '@ \
Instruction [550]
Prof. M. Mansour EECE 321: Computer Organization 3




Implementing Jumps

=  WEe'll extend the datapath to include jump instructions: J Label

— Jump is similar to branch but computes the target PC differently and is unconditional.

— Jump address: 4 MSBs from PC || 26 bits from Label field | | 00
— Need an additional control signal called ‘jump’ and an additional MUX

Instruction [2550] ®\

Junp address [3150]

< )
2ﬁll-:'ﬂZzﬁ

PG+ [31528]

S ==

Add
4
Read
"“ PC i address
Instructjon
[3150]
Instruction
memory

Instnction [31526]

Instruction [25524]

gl ek
Junmgy
[
Tedlezmnliezand]
bl esgy)
ALy
b 2
AL

I

Read

Instruction [205 16

register 1 Read

Read data 1

Instruction [1551 1]

Instruction [1550]

register 2
Registers peaq

Write data 2
register

Write

data

Address

Write
data

Read
data

Data
memory

Instnaciion [550]

Prof. M. Mansour

EECE 321: Computer Organization




Performance of Single-Cycle Machines

= Single-Cycle operations recap:
— On a positive clock edge, the PC is updated with a new address.

— A new instruction can then be loaded from memory. The control unit sets the datapath
signals appropriately so that:

* Registers are read,
e ALU output is generated,
 Data memory is read or written, and
* Branch target addresses are computed.
— Several things happen on the next positive clock edge.
* The register file is updated for arithmetic or lw instructions.
e Data memory is written for a sw instruction.
e The PCis updated to point to the next instruction.

" |n asingle-cycle datapath operations in Step 2 must complete within one clock
cycle, before the next positive clock edge.

— Assume that the operation time for the major functional units are:
— memory (2ns,ultra-optimisitic), ALU and adders (2ns), register file access (1ns)
= |gnore delay of all other units

= |f all instructions must complete within one clock cycle, then the cycle time has to
be large enough to accommodate the slowest instruction.

Prof. M. Mansour EECE 321: Computer Organization



The Slowest Instruction

=  For example, lw $t0,—4(Ssp) needs 8ns:

reading the instruction memory
reading the base register Ssp

computing memory address $sp-4

reading the data memory
storing data back to St0

0 ns

2ns
1ns
2ns
2ns

1ns J

> 8ns

> Zero —> ::da:iess R::t:
el 1> ;ﬁiss
P Wiy~
2 ns

aReadddmﬁslnsml.l;Ef)n]n _-I[25—21] »| Read Read
register 1 data 1
| [20 - 16]
. . »| Read
Iﬁ::::m register 2 Read
y data 2
Write
register
2 ns 115 - 11] - Wi Registers
- Write
¢ > data
O ns 1ns
I[5-0] Sign
extend™
0 ns

0ns

Prof. M. Mansour

EECE 321: Computer Organization




The Slowest Instruction Determines the Clock-Cycle Time

= |f we make the cycle time 8ns then every instruction will take 8ns, even if they
don’t need that much time.

= For example, the instruction add $s4, St1, St2 really needs just 6ns.
reading the instruction memory

reading registers St1 and $t2

computing St1 + $t2
storing the result into $s0O

z:;lésslnsln[l;ﬁ]]n _-I[25—21] »| Read Read
| [20 - 16]
Instruction ¢ Read
memo register 2 Read
y data 2
Write
register
2ns 1115 - 11] - Registers
- Write
¢ » data
0 ns 1ns O ns
I[15-0] Sign
extend™
0 ns

2ns
1ns

6ns

2ns
1ns

PN

et |4y vrte
e =
2 ns

0 ns

Prof. M. Mansour

EECE 321: Computer Organization




Impact on Performance

=  With these same component delays, a sw instruction would need 7ns, and beq
would need just 5ns.

= Let’s consider the ‘gcc’ instruction mix:

Instruction | Frequency

Arithmetic 48%
Loads 22%
Stores 1%

Branches 19%

=  With a single-cycle datapath, each instruction would require 8ns.

= But if we could execute instructions as fast as possible, the average time per
instruction for gcc would be:

— (48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns
= The single-cycle datapath is about 1.26 times slower!

=  We've made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns.
e For comparison, an ALU on the Pentium4 takes ~0.3ns.
= QOur worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.

Tying frequency to worst case path violates first law of performance!!

Prof. M. Mansour EECE 321: Computer Organization



What About Hardware-Efficiency?

= Asingle-cycle datapath also
uses extra hardware—one ALU
is not enough, since we must
do up to three calculations in
one clock cycle for a beg.

= Remember we had to use a
Harvard architecture with two
memories to avoid requiring a
memory that can handle two
accesses in one cycle.

Prof. M. Mansour

Add
4
Re?Wrﬂe
Read Instruction 1[25-21] Read Read MemWrite MemToReg
address [31-0] = N
register 1  data 1
1[20 16]
Instruction Read
memory register2  Read
Wirite ata 2
ister N
ﬁfﬂe Registers :
data
RegDst ALUSrc MemRead
115-0] sign
xten
Add
PC 4
PCSrc
RegWrite
M 1 i MemToR
Read Instruction 1[25 - 21] Read Rean Memlwme emToReg
address [31-0] .
1[20 - 16] register 1 data 1 ALU —pp Read Read
Instruction Rea_:m ) read Zero address data
memory register data 2 > Result —a—pp \Write
Write address
register ) | Wiite Data
1[15-11] wiite  Registers ~ ALU > data MEMOrY
1 data |
RegDst ALUSTC MemRead
I[5-0] Sign
extend™
EECE 321: Computer Organization 9



Introduction to Pipelining

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution.
Today, pipelining is key to making processors fast.

Analogy to laundry: g SPM 7 8 9 10 1 12 1 2 AM
B e e L e B o e e e s s B
Task
ord

er
S =
——
A —
—_—
il .
=
—
B —_—
E —=
—
C —
 —

6 PM 7 8 9 10 11 12 1 2AM
Tmem II II | | | -;
Task
ord

er
5] =y
—
A —
—
Sl _/
—
—
E
S|l .
—
—
_
El
sll .
—
—
Dl

c

D

Prof. M. Mansour EECE 321: Computer Organization

10



Processor Pipelining

= Same principles can be applied to processors where we pipeline inst. execution.
— For MIPS, the 5 stages are pipelined.

= Designate the 5 stages as follows:
— Instruction fetch (IF)
— Instruction decode and operand fetch: Reg
— ALU operation execution: ALU
— Access an operand in data memory: Data access
— Write the result into a register: Reg

= Aninstruction executes by doing the appropriate work in each stage.

= Ex:load Instructionf ALU Data Re
Fetch g Access &

. read write
= Convention: All stages are balanced

— Register writes occur during first half of the stage, reads in the second half.

Instruction Data
Fetch Reg ALU Access Reg

read write

Instruction

Fetch Reg ALU Reg

Prof. M. Mansour EECE 321: Computer Organization 11



Processor Pipelining

= Example: Assume we pipeline the 5 steps of executing instructions in MIPS (Iw,
sw, add, sub, and, or, slt, beq). Assume access of all functional

Prog
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

A

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

A 4

2

4

6

units is 2ns, except register file which is 1ns.
8

14

16

18

.
L

f

] ]

Instruction
fetch

Reg{ ALU

Data

access Reg

.
|

F 3

8ns

Instruction
fetch

Reg

ALU

Data
access

Reg

v

F 9

8ns

14

Instruction
fetch

hd

Instruction
fetch

Reg

Data

AlLU
access

Reg

P
2ns

Instruction
fetch

Reg| ALU

Data
access

Reg

oy
2 ns

Instruction

fetch

Reg

AlLU

Data

access

Reg

 —pt—pt—p————Ppt———p
2ns

2ns 2ns

2ns

2ns

.47
8 ns

Prof. M. Mansour

EECE 321: Computer Organization



	Slide Number 1
	Example: Execution of lw $t1,offset($t2) on Datapath
	Example: Execution of beq $t1,$t2,offset on Datapath
	Implementing Jumps
	Performance of Single-Cycle Machines
	The Slowest Instruction
	The Slowest Instruction Determines the Clock-Cycle Time
	Impact on Performance
	What About Hardware-Efficiency?
	Introduction to Pipelining
	Processor Pipelining
	Processor Pipelining

