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Example: Execution of lw $t1,o0ffset($t2) on Datapath

= Divide into 5 steps: inst fetch, op fetch, addition, mem read, write-back.

ﬁ

0
M
* u
X
" ALU
>Add result !
>Add
IRzl et
4 — Frsrichi
I exmiead
Instruction [31526] | | Merntolteg
Control ALUOp
Il ezt
PR
ReqWhie
Instruction [25521] Road
Read register 1
"| address ) _ g Read
Instruction [20516] Read data 1
- ] “| reqister 2
l"S"[g?téD{';] 0 Registers Read /6 >ALU ALU Read
M Write data 2 " »| Address ea
Instruction u register ata M result data :ﬂ
memo - = u
i Instruction [15511] 1" Wiite X Dot u
data ata X
*J memory 0
Write
| data
Instruction [1550] ® 1 sign |32 }
\ @ \
Instiuction [550]
Prof. M. Mansour EECE 321: Computer Organization 2




Example: Execution of beq $t1,%$t2,offset on Datapath

o Divide into 4: inst fetch, op fetch, branch target address computation, branch decision.
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Implementing Jumps

=  WEe'll extend the datapath to include jump instructions: J Label

— Jump is similar to branch but computes the target PC differently and is unconditional.

— Jump address: 4 MSBs from PC || 26 bits from Label field | | 00
— Need an additional control signal called ‘jump’ and an additional MUX
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Performance of Single-Cycle Machines

= Single-Cycle operations recap:
— On a positive clock edge, the PC is updated with a new address.

— A new instruction can then be loaded from memory. The control unit sets the datapath
signals appropriately so that:

* Registers are read,
e ALU output is generated,
 Data memory is read or written, and
* Branch target addresses are computed.
— Several things happen on the next positive clock edge.
* The register file is updated for arithmetic or lw instructions.
e Data memory is written for a sw instruction.
e The PCis updated to point to the next instruction.

" |n asingle-cycle datapath operations in Step 2 must complete within one clock
cycle, before the next positive clock edge.

— Assume that the operation time for the major functional units are:
— memory (2ns,ultra-optimisitic), ALU and adders (2ns), register file access (1ns)
= |gnore delay of all other units

= |f all instructions must complete within one clock cycle, then the cycle time has to
be large enough to accommodate the slowest instruction.
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The Slowest Instruction

=  For example, lw $t0,—4(Ssp) needs 8ns:

reading the instruction memory
reading the base register Ssp

computing memory address $sp-4

reading the data memory
storing data back to St0
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The Slowest Instruction Determines the Clock-Cycle Time

= |f we make the cycle time 8ns then every instruction will take 8ns, even if they
don’t need that much time.

= For example, the instruction add $s4, St1, St2 really needs just 6ns.
reading the instruction memory

reading registers St1 and $t2

computing St1 + $t2
storing the result into $s0O
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Impact on Performance

=  With these same component delays, a sw instruction would need 7ns, and beq
would need just 5ns.

= Let’s consider the ‘gcc’ instruction mix:

Instruction | Frequency

Arithmetic 48%
Loads 22%
Stores 1%

Branches 19%

=  With a single-cycle datapath, each instruction would require 8ns.

= But if we could execute instructions as fast as possible, the average time per
instruction for gcc would be:

— (48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns
= The single-cycle datapath is about 1.26 times slower!

=  We've made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns.
e For comparison, an ALU on the Pentium4 takes ~0.3ns.
= QOur worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.

Tying frequency to worst case path violates first law of performance!!
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What About Hardware-Efficiency?

= Asingle-cycle datapath also
uses extra hardware—one ALU
is not enough, since we must
do up to three calculations in
one clock cycle for a beg.

= Remember we had to use a
Harvard architecture with two
memories to avoid requiring a
memory that can handle two
accesses in one cycle.
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Introduction to Pipelining

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution.
Today, pipelining is key to making processors fast.
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Processor Pipelining

= Same principles can be applied to processors where we pipeline inst. execution.
— For MIPS, the 5 stages are pipelined.

= Designate the 5 stages as follows:
— Instruction fetch (IF)
— Instruction decode and operand fetch: Reg
— ALU operation execution: ALU
— Access an operand in data memory: Data access
— Write the result into a register: Reg

= Aninstruction executes by doing the appropriate work in each stage.

= Ex:load Instructionf ALU Data Re
Fetch g Access &

. read write
= Convention: All stages are balanced

— Register writes occur during first half of the stage, reads in the second half.
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Processor Pipelining

= Example: Assume we pipeline the 5 steps of executing instructions in MIPS (Iw,
sw, add, sub, and, or, slt, beq). Assume access of all functional
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