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Appending the Instruction Fetch Portion to Combined Datapath

=  Can’t share adder and ALU.
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Executing a 1w Instruction

=  Example:
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Executing a 1w Instruction (cont’d)

l RegWrite
: '
Read Instruction I[25 - 21] [ Read MemWrite MemToReg
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Executing a 1w Instruction (cont’d)

l RegWrite
I MemWrite MemTcReg
s H . = v
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Adding the Branch Datapath: beq $s0,$sl,label

=  Branch instructions use the main ALU for comparison, but needs separate adder for branch
target address computation.

We need a second adder, since the ALU
is already doing subtraction for the beq.
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The Final Datapath
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Controlling the Datapath

= The control unit is responsible for setting all the control signals in the datapath so
that each instruction executes properly.
= Single-cycle implementation => Combinational controller.

= We’ll construct a multi-level controller as follows:

— An ALU controller
— A Main controller that controls datapath and ALU controller

PCSr
1
Add M
ALU 3
— 0
4 Add result
RegWrite >
l
Instruction [25D21] Read
Read register 1 Read MemWrite
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The ALU Control

=  Multi-levels of control (Main controller + ALU controller) is a common technique:

— |t reduces the size of the main controller.

— Can potentially improve speed of the controller.

=  Examining the datapath, the ALU must:
— Add for Iw/sw

— Subtract for beq

— Perform operation specified by function field for remaining instructions

= ALU controller inputs:

— An ALUop field from main controller specifies a load/store (00), beq (01), R-Format (10).

— 6-bit function field from instruction

ALU control

o Function
000 AND
001 OR
010 ADD
110 SUBTRACT
111 SLT

input input output
Opcode ALUop Operation Funct Field Desg:goiLU ALIiJncl;:lttml

1w 00 Load XXXXXX add 010

swW 00 Store XXXXXX add 010
beq 01 Branch EQ XXXXXX subtract 110
R-format 10 Add 100000 add 010
R-format 10 Subtract 100010 subtract 110
R-format 10 AND 100100 and 000
R-format 10 OR 100101 or 001
R-format 10 Set on LT 101010 set on LT 111
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The ALU Control (cont’d)

F (5D0)

ALUop[1:0] Funct Field[5:0] Operation
00 XXXXXX 010
00 XXXXXX 010
01 XXXXXX 110
10 100000 010
10 100010 110
10 100100 000
10 100101 001
10 101010 111
ALUOp

J, ALU control block

ALUOpO

ALUOp1

F3 | Operation2

F1

F2 { Operation1
I |

Operation0

Fo ) D>

)
| J
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Datapath with Main Control
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Designing the Main Controller

=  Main controller takes as inputs the opcode field of the instruction.

= |t controls the signals:
— RegDst: Destination register address
— RegWrite: Enables writing to register file
— ALUsrc: selects appropriate second input to ALU
— MemWrite/Read: Enables reading and writing from/to data memory
— MemtoReg: Selects appropriate value to be written to register file.

— PCsrc: Selects appropriate value to load next PC
* This signal is set when there is a branch instruction AND zero output from ALU is 1
* Controller generates a control signal called ‘branch’

Instruction opcode RegDst ALUsrc MemtoReg RegWrite MemWrite Branch  ALUop

R-Format 000000 1 0 0 1 0 0 10
Iw 100011 0 1 1 1 0 0 00
sw 101011 X 1 X 0 1 0 00
beq 000100 X 0 X 0 0 1 01
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PLA Implementation of Main Controller

Instruction opcode RegDst ALUsrc MemtoReg RegWrite MemWrite Branch ALUop

R-Format 000000 1 0 0 1 0 0 10
Iw 100011 0 1 1 1 0 0 00
swW 101011 X 1 X 0 1 0 00
beq 000100 X 0 X 0 0 1 01

Inputs

Op5

Op4

Op3

Op2

Op1

Op0 . . °
le) I olo I 000 os

JUU ..

R-format Iw sw beq RegDst

) ALUSrc
MemtoReg
) RegWrite
MemRead
MemWrite

Branch
ALUOp1

——— ALUOPO
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Example: Execution of add $tl1,$t2,$t3 on Datapath

= Divide operations into 4 steps: inst. fetch, operand fetch, exec., write-back
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Example: Executionof 1w $tl,offset ($t2) on Datapath

= Divide into 5 steps: inst fetch, op fetch, addition, mem read, write-back.
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Example: Execution of beg $tl,$t2, offset on Datapath

o Divide into 4: inst fetch, op fetch, branch target address computation, branch decision.
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Implementing Jumps

=  WEe'll extend the datapath to include jump instructions: J Label
— Jump is similar to branch but computes the target PC differently and is unconditional.
— Jump address: 4 MSBs from PC | | 26 bits from Label field | | 00

— Need an additional control signal called ‘jump’ and an additional MUX
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Performance of Single-Cycle Machines

= Single-Cycle operations recap:
— On a positive clock edge, the PC is updated with a new address.
— A new instruction can then be loaded from memory. The control unit sets the datapath
signals appropriately so that:
* Registers are read,
* ALU output is generated,
* Data memory is read or written, and
* Branch target addresses are computed.
— Several things happen on the next positive clock edge.
* The register file is updated for arithmetic or Iw instructions.
* Data memory is written for a sw instruction.
* The PCis updated to point to the next instruction.

= |n asingle-cycle datapath operations in Step 2 must complete within one clock
cycle, before the next positive clock edge.
— Assume that the operation time for the major functional units are:
— memory (2ns,ultra-optimisitic), ALU and adders (2ns), register file access (1ns)
= |gnore delay of all other units

= |f all instructions must complete within one clock cycle, then the cycle time has to
be large enough to accommodate the slowest instruction.
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The Slowest Instruction

=  For example, lw $t0,—4(Ssp) needs 8ns:

reading the instruction memory
reading the base register Ssp
computing memory address $sp-4
reading the data memory
storing data back to St0

2ns N
1ns
2ns
2ns
1ns J

> 8ns

2:;155'"5"‘[‘;’:’3;; | g 29-211 »| Read Read
register 1 data 1 [
|20 16] ALU —jp Read Read
: [ »| Read Zero address data
Instruction register 2 Read
memory Result Write
Witk data 2 /-.-> address
register ) Write Data
2 ns 115 - 1] Witk Registers 2 ns > data memory 0 ns
o —>»
data
0 ns 2 ns
Ons 1ns
I[15-0] Sign
extend/™
Ons
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The Slowest Instruction Determines the Clock-Cycle Time

= |f we make the cycle time 8ns then every instruction will take 8ns, even if they
don’t need that much time.

= For example, the instruction add $s4, St1, St2 really needs just 6ns.
reading the instruction memory

reading registers $t1 and $t2

computing $t1 + $t2
storing the result into $s0O

Ons

2ns
1ns

6ns

2ns
1ns

Read Read
> Zero address data
Resill 1> ;vddntsass
T e
2 ns

Read Instruction 1[25 - 21]
address  [31-0] [ ® »| Read Read
register 1 data 1
1[20 - 16]
Instruction L 4 Re“_‘:t ) read
memory register data 2
Write
register
Registers
2 ns Write g
data
0 ns 1ns
1[15-0] Sign
extend™
0 ns

Ons
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Impact on Performance

=  With these same component delays, a sw instruction would need 7ns, and beq
would need just 5ns.

Instruction | Frequency

= Let’s consider the ‘gcc’ instruction mix: Arithmetic |  48%
Loads 22%
Stores 1%

Branches 19%

=  With a single-cycle datapath, each instruction would require 8ns.
= But if we could execute instructions as fast as possible, the average time per
instruction for gcc would be:
— (48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns
= The single-cycle datapath is about 1.26 times slower!
= We've made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns.
* For comparison, an ALU on the Pentium4 takes ~0.3ns.
= QOur worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.

Tying frequency to worst case path violates first law of performance!!

Prof. M. Mansour EECE 321: Computer Organization



What About Hardware-Efficiency?

= Asingle-cycle datapath also
uses extra hardware—one ALU
is not enough, since we must
do up to three calculations in
one clock cycle for a beq.

=  Remember we had to use a
Harvard architecture with two
memories to avoid requiring a
memory that can handle two
accesses in one cycle.
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