EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 19: MIPS Single-Cycle Processor
Implementation

Appending the Instruction Fetch Portion to Combined Datapath

= Can’t share adder and ALU.

PCSrc
1 MO
Add) \
X
ALU
4 Add result
o Readn ALUSrc ALU o .
e . peration
register 10
| PC address g Fead: | o
Readn data 1
- MemtoReg
Instruction register 20
Registers i
Writel Readn N e o
Instructions registerd data 2
memory
— Writel B
C Writel Datar
= rite
RegWrite wi pat=
MemRead
1 .| Signd

extend

Prof. M. Mansour EECE 321: Computer Organization

Executing a 1w Instruction

= Example:

lw S$tO, -4(Ssp) 100011) 11101 | 01000 11111111 1111 1100
31 2625 2120 16 15 0
l RegWrite
) Writ MemToR
Read Instruction | _ 1[25-21] ez | — Meml"’”e B
address [31-0] register 1 data 1 >
| [20 - 16] ALU » Read Read > 1
. Is) »| Read Zero address data
Instruction register 2 Read (o) > . ‘ |\uﬁ
memory gata 2 g RESUIL ! WTrite
Write } M address -
register ‘; ™ J write Data * 0
- . Registers v memory
1115 - 11] Write — 1 ALUOp data
— data N 1
MemRead
RegDst " ., ALUSrc
[15 - 0] [sign |

’{cxtc nd| '

Prof. M. Mansour

EECE 321: Computer Organization

Executing a 1w Instruction (cont’d)

l RegWrite
: '
Read Instruction I[25 - 21] [Read MemWrite MemToReg
address [31-0] " register 1 dRet:? + —
| 20 - 18] = ALU » Read Read f—|
instrciion * > Rea.dt , Reas /a\ > Zero address data M
memory L 0 regisier - RESUI by Write u
X data 2 M X
M Write address .
u register : s Write _Data &
1(5-11] X | | wrire OOIStErs 1 ALUOp data memery
———u data ~
MemRead
— ALUSrc
RegDst / \
1 [15-0] | sign |
Tlextend,
Prof. M. Mansour EECE 321: Computer Organization 4

Executing a 1w Instruction (cont’d)

l RegWrite
I MemWrite MemTcReg
s H . = v
Read Insiruction _.I[25 21] .| Read Read \ l l
address [31-0] reqister 1 »> \
20 18§ g ek ALU Read Read —s| 1
2 .—’ —
Instruction o — F{egdt , Read ’/o > Zero address data M
memory —»{ 0! register data 2 — Result Write urT
M Write :‘ / address x
u register _ x| |~ Write Data Y,
(15111 X | p| write c0OIStOrs — ALUOp data omery
- ALUSrC MemRead
RegDst / \
1[15 - 0] [sign |
'lextond
Prof. M. Mansour EECE 321: Computer Organization 5

Adding the Branch Datapath: beq $s0,$sl,label

= Branch instructions use the main ALU for comparison, but needs separate adder for branch
target address computation.

We need a second adder, since the ALU
is already doing subtraction for the beq.

PC

-

Read Instruction
address [31-0]

Instruction
memory

o o) = PCSrc=1 branches
l 1w to PC+4+(offsetx).
dene (RN = PCSrc=0 continues
4 Multiply constant [\ > Add F» 1) to PC+4.
by 4 to get offset. — ot] ‘
)V PCSrc <
RegWrite
J MemWrite MemToReg
—QI == Read Read . \ |
| [20 - 16] regiter! datat ALU o Read Read ey 1
[Read > Zero address data M
0 register 2 dRa?aag — 0 RESUN | Wit u
M Write M address] x
u register) : | wriie Data 0
115-11]| * Write M aaan ALUOp data memery
* 1
1 data A T
MemRead
RegDst m ALUST
1[15 - 0] [sign |
']Qend"

Prof. M. Mansour

EECE 321: Computer Organization

The Final Datapath

Prof. M. Mansour

EECE 321: Computer Organization

PCSrc
— »
SAdd l . \
X
AL
4 amp / >Addresullfj
—p
Registers :
Read 3] ALU operation MemWrite
pC k4, | Read register 1 o AUIJSFC
address Read data 1 g MemtoReg
register 2
Instruction | _ Read
er_tet theazd ey Address dea?a —
Instruction reg.|s . ata u '\lﬁl
memory \oll\értlée X Data X
_ ' > |\write Memory
Regerte| "| data
1\6‘ Sign 32
| extend MemRead
7

Controlling the Datapath

= The control unit is responsible for setting all the control signals in the datapath so
that each instruction executes properly.
= Single-cycle implementation => Combinational controller.

= We’ll construct a multi-level controller as follows:

— An ALU controller
— A Main controller that controls datapath and ALU controller

PCSr
1
Add M
ALU 3
— 0
4 Add result
RegWrite >
l
Instruction [25D21] Read
Read register 1 Read MemWrite
=|PC address Instruction [20D16] | Read data 1 ALUSro | MemtoReg
Instruction register 2 Zero
31D0 L - Read) DALU ALU
[] M Write data 2 result Address ReadL__ ("
. . u register M data M
Instruction Instruction [15D11] | x Write u M
memory 0| data Registers -)(‘) X
wiite Data 0
RegDst data Mmemory
Instruction [15D0] 16 [sign |32
L\ extend
Instruction [5DO0]
ALUOp

Prof. M. Mansour EECE 321: Computer Organization

The ALU Control

= Multi-levels of control (Main controller + ALU controller) is a common technique:

— |t reduces the size of the main controller.

— Can potentially improve speed of the controller.

= Examining the datapath, the ALU must:
— Add for Iw/sw

— Subtract for beq

— Perform operation specified by function field for remaining instructions

= ALU controller inputs:

— An ALUop field from main controller specifies a load/store (00), beq (01), R-Format (10).

— 6-bit function field from instruction

ALU control

o Function
000 AND
001 OR
010 ADD
110 SUBTRACT
111 SLT

input input output
Opcode ALUop Operation Funct Field Desg:goiLU ALIiJncl;:lttml

1w 00 Load XXXXXX add 010

swW 00 Store XXXXXX add 010
beq 01 Branch EQ XXXXXX subtract 110
R-format 10 Add 100000 add 010
R-format 10 Subtract 100010 subtract 110
R-format 10 AND 100100 and 000
R-format 10 OR 100101 or 001
R-format 10 Set on LT 101010 set on LT 111

Prof. M. Mansour

EECE 321: Computer Organization

The ALU Control (cont’d)

F (5D0)

ALUop[1:0] Funct Field[5:0] Operation
00 XXXXXX 010
00 XXXXXX 010
01 XXXXXX 110
10 100000 010
10 100010 110
10 100100 000
10 100101 001
10 101010 111
ALUOp

J, ALU control block

ALUOpO

ALUOp1

F3 | Operation2

F1

F2 { Operation1
I |

Operation0

Fo) D>

)
| J

» Operation

Prof. M. Mansour

EECE 321: Computer Organization

10

Datapath with Main Control

N

>Add

Instruction [31 -26]

Read

PC

address

Instruction
[31D0]

Instruction
memory

Instruction [25 -21]

Control

RegDst
Branch

ALU
>Add result

[]

MemRead

xcZ ©

RN

PCSrc

MemtoReg

ALUOp

MemWrite

ALUSIrc

RegWrite

Read

Instruction [20 -16]

register 1

Read

Read data 1

| .

Instruction [15 -11]

“xc=Z©°

register 2
Registers Read

Write
register

data 2

Write

Instruction [15 -0]

data

—\XCEO\

Zero
>ALU ALU

result

16 .
\ Sign
\ lextend

Instruction [5-0]

Read

Address data

Data
memory

Oxecz

Write
data

Prof. M. Mansour

EECE 321: Computer Organization

11

Designing the Main Controller

= Main controller takes as inputs the opcode field of the instruction.

= |t controls the signals:
— RegDst: Destination register address
— RegWrite: Enables writing to register file
— ALUsrc: selects appropriate second input to ALU
— MemWrite/Read: Enables reading and writing from/to data memory
— MemtoReg: Selects appropriate value to be written to register file.

— PCsrc: Selects appropriate value to load next PC
* This signal is set when there is a branch instruction AND zero output from ALU is 1
* Controller generates a control signal called ‘branch’

Instruction opcode RegDst ALUsrc MemtoReg RegWrite MemWrite Branch ALUop

R-Format 000000 1 0 0 1 0 0 10
Iw 100011 0 1 1 1 0 0 00
sw 101011 X 1 X 0 1 0 00
beq 000100 X 0 X 0 0 1 01

Prof. M. Mansour EECE 321: Computer Organization 12

PLA Implementation of Main Controller

Instruction opcode RegDst ALUsrc MemtoReg RegWrite MemWrite Branch ALUop

R-Format 000000 1 0 0 1 0 0 10
Iw 100011 0 1 1 1 0 0 00
swW 101011 X 1 X 0 1 0 00
beq 000100 X 0 X 0 0 1 01

Inputs

Op5

Op4

Op3

Op2

Op1

Op0 . . °
le) I olo I 000 os

JUU ..

R-format Iw sw beq RegDst

) ALUSrc
MemtoReg
) RegWrite
MemRead
MemWrite

Branch
ALUOp1

——— ALUOPO

Prof. M. Mansour EECE 321: Computer Organization 13

Example: Execution of add $tl1,$t2,$t3 on Datapath

= Divide operations into 4 steps: inst. fetch, operand fetch, exec., write-back

xcZ ©O

RN

>Add
RegDst
[cm—

Instruction [31 -26]

ALU
> Add osult

\

Control ALUOp

RegWrite

Instruction [25 -21] Read

Read ister 1
| address register Read
Instruction [20 -16] Read data 1
. register 2
Instr[g;:tgg] l—v 0 ~ Registers Read >ALU ALU
M Write data 2 e Address Read
u
X

0
Instruction register M result data ?VI
memory Instruction [15-11] ; Write)L(‘ Dt u
ata X
data L) memory 0
Write

| data r
Instruction [15-0] 1\6 Sign ?{2
\ @ \

Instruction [5-0]

Prof. M. Mansour EECE 321: Computer Organization 14

Example: Executionof 1w $tl,offset ($t2) on Datapath

= Divide into 5 steps: inst fetch, op fetch, addition, mem read, write-back.

Instruction [31D26]

Read
| address
Instruction
D0
Instruction
memory

Instruction [25D21]

ALU
>Add result

MemRead

xcZ O

RN

MemtoReg

Control ALUOp

ALUSrc
RegWrite

Read

Instruction [20D16]

register 1 Read

Read data 1

L.

Instruction [15D11]

register 2
Registers Read
Write data 2 e

“xcZ©

Write

Instruction [15D0]

_\XCEO\

data

>ALU ALU

result

register
16 /-\ 32
\ Sign |\

\ @ \
Instruction [5DQ] r

Address Readl _,
data

Data

) memory
Write
data
I

Oxec=z ™

Prof. M. Mansour

EECE 321: Computer Organization

15

Example: Execution of beg $tl,$t2, offset on Datapath

o Divide into 4: inst fetch, op fetch, branch target address computation, branch decision.

>Add

Instruction [31D26]

4 —p
Read
address
Instruction
[31D0Q]
Instruction
memory

Instruction [25D21]

Branch

ALU
>Add result

» Control

ALUOPp

Read

Instruction [20D16]

"| register 1 Read

Read data 1

L

,xc=Z©

Instruction [15D11]

register 2
Registers Read

Write data 2
register

Write

Instruction [15D0]

data

“xc=Z©

Zero
ALU Alu

0
M
u
X

-

result

16 /_\32
\ Sign |\

\@\

Instruction [5D0]

Read
Address data
Data
) memory
Write
"| data

Oxcz™

Prof. M. Mansour

EECE 321: Computer Organization

16

Implementing Jumps

= WEe'll extend the datapath to include jump instructions: J Label
— Jump is similar to branch but computes the target PC differently and is unconditional.
— Jump address: 4 MSBs from PC | | 26 bits from Label field | | 00

— Need an additional control signal called ‘jump’ and an additional MUX

Instruction [25D0] y Q\

Jump address [31D0]

\ \
26 @28

PC+4 [31D28]

Add ALY

Add

Read

address

Instruction
[31D0]

Instruction
memory

Instruction [31D26]
—————————

Instruction [25D21]

Jump

Read

Instruction [20D16]

register 1 Read

Read data 1

L.

M
u

Instruction [15D11] 1*
—_—

Instruction [15D0]

register 2
Registers Read

ALU aALu

Write data 2

Write
data

result

“xc=Z O

N

(—‘ xc= O

© xec=Z

register
16 m 32
\ Sign |\

\@\

Instruction [5D0]

-

Address

Write
data

Read
data

Data
memory

Oxcz

Prof. M. Mansour

EECE 321: Computer Organization

17

Performance of Single-Cycle Machines

= Single-Cycle operations recap:
— On a positive clock edge, the PC is updated with a new address.
— A new instruction can then be loaded from memory. The control unit sets the datapath
signals appropriately so that:
* Registers are read,
* ALU output is generated,
* Data memory is read or written, and
* Branch target addresses are computed.
— Several things happen on the next positive clock edge.
* The register file is updated for arithmetic or Iw instructions.
* Data memory is written for a sw instruction.
* The PCis updated to point to the next instruction.

= |n asingle-cycle datapath operations in Step 2 must complete within one clock
cycle, before the next positive clock edge.
— Assume that the operation time for the major functional units are:
— memory (2ns,ultra-optimisitic), ALU and adders (2ns), register file access (1ns)
= |gnore delay of all other units

= |f all instructions must complete within one clock cycle, then the cycle time has to
be large enough to accommodate the slowest instruction.

Prof. M. Mansour EECE 321: Computer Organization 18

The Slowest Instruction

= For example, lw $t0,—4(Ssp) needs 8ns:

reading the instruction memory
reading the base register Ssp
computing memory address $sp-4
reading the data memory
storing data back to St0

2ns N
1ns
2ns
2ns
1ns J

> 8ns

2:;155'"5"‘[‘;’:’3;; | g 29-211 »| Read Read
register 1 data 1 [
|20 16] ALU —jp Read Read
: [»| Read Zero address data
Instruction register 2 Read
memory Result Write
Witk data 2 /-.-> address
register) Write Data
2 ns 115 - 1] Witk Registers 2 ns > data memory 0 ns
o —>»
data
0 ns 2 ns
Ons 1ns
I[15-0] Sign
extend/™
Ons
Prof. M. Mansour EECE 321: Computer Organization 19

The Slowest Instruction Determines the Clock-Cycle Time

= |f we make the cycle time 8ns then every instruction will take 8ns, even if they
don’t need that much time.

= For example, the instruction add $s4, St1, St2 really needs just 6ns.
reading the instruction memory

reading registers $t1 and $t2

computing $t1 + $t2
storing the result into $s0O

Ons

2ns
1ns

6ns

2ns
1ns

Read Read
> Zero address data
Resill 1> ;vddntsass
T e
2 ns

Read Instruction 1[25 - 21]
address [31-0] [® »| Read Read
register 1 data 1
1[20 - 16]
Instruction L 4 Re“_‘:t) read
memory register data 2
Write
register
Registers
2 ns Write g
data
0 ns 1ns
1[15-0] Sign
extend™
0 ns

Ons

Prof. M. Mansour

EECE 321: Computer Organization

Impact on Performance

= With these same component delays, a sw instruction would need 7ns, and beq
would need just 5ns.

Instruction | Frequency

= Let’s consider the ‘gcc’ instruction mix: Arithmetic | 48%
Loads 22%
Stores 1%

Branches 19%

= With a single-cycle datapath, each instruction would require 8ns.
= But if we could execute instructions as fast as possible, the average time per
instruction for gcc would be:
— (48% x 6ns) + (22% x 8ns) + (11% x 7ns) + (19% x 5ns) = 6.36ns
= The single-cycle datapath is about 1.26 times slower!
= We've made very optimistic assumptions about memory latency:
— Main memory accesses on modern machines is >50ns.
* For comparison, an ALU on the Pentium4 takes ~0.3ns.
= QOur worst case cycle (loads/stores) includes 2 memory accesses
— A modern single cycle implementation would be stuck at <10Mhz.
— Caches will improve common case access time, not worst case.

Tying frequency to worst case path violates first law of performance!!

Prof. M. Mansour EECE 321: Computer Organization

What About Hardware-Efficiency?

= Asingle-cycle datapath also
uses extra hardware—one ALU
is not enough, since we must
do up to three calculations in
one clock cycle for a beq.

= Remember we had to use a
Harvard architecture with two
memories to avoid requiring a
memory that can handle two
accesses in one cycle.

Prof. M. Mansour

Add
4
‘ Re?wme
Read Instruction 1125 -21] »| Read Read e e
address [31-0] register 1 data 1
1[20_ 16] >
Instruction »| Read
memory register2 Read
; ata 2
Write
register . 0
Write Registers ALU
data
MemRead
RegDst ALUSrc
1[15-0] Sign|__|
xten
Add
4
PCSrc
RegWrite
i MemToR
Read Instruction 1[25-21] | Read | - T
address [31-0] " register 1 ey Erm——
1120 - 16] - e > 2 i
, o Read address data
Instruction d register 2 Read >
memory . data 2 e
Witle address
register ' _’ Write Data
1511 | wite Rewsters data memen
*—> data T
MemRead
RegDst ALUSrc
115-0] sign
v,

EECE 321: Computer Organization

