EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 18: MIPS Single-Cycle Processor
Implementation

Announcement

= Makeup session: Thursday from 5:00-6:30pm
— Room: TBA by email

Prof. M. Mansour EECE 321: Computer Organization

MIPS Processor Implementation

= Performance of a processor is determined by inst. count, cc time, and CPI
— Compiler and ISA determine instruction count.
— Implementation (micro-architecture) determines cc time and CPI.
= We'll construct the datapath and control unit for three different implementations
of the MIPS ISA:
— Single-cycle implementation: All operations take the same amount of time a single cycle.

— Pipelined implementation: Lets a processor overlap the execution of several instructions,
potentially leading to big performance gains.

= The implementation includes a subset of the core MIPS instruction set:

Arithmetic: s1lt, or, and, sub, add
Data Transfer: 1w, sw

Control: beq, j

= First we'll build a single-cycle implementation of this reduced instruction set piece
by piece, and then combine pieces together to form datapath + control.

— All instructions will execute in the same amount of time; this will determine the clock
cycle time for the performance equations.

— WEe'll explain the datapath first, and then design the control unit.

Prof. M. Mansour EECE 321: Computer Organization 3

Implementation Overview

= Memory, ALU, and branch instructions have their first two steps identical:
— Send PC to memory to fetch instruction
— Read one (lw) or two registers (most others)
= There are even more similarities: All instructions use ALU after reading registers
— Memory instructions use ALU for address calculation
— ALU instructions use ALU for operation executions
— Branch instructions use ALU for comparison
= After using ALU, actions required depend on the instruction class:
— Memory instructions access memory to read/write data
— ALU instructions write back results to a register

— Branch instructions may need to change the next instruction address

= A high-level view of a MIPS implementation:

Instruction
memory

Instruction

—

Registers

Data
Register #
PC Address 5

Register #

Register #

>

Address

Data
memory

Data

Prof. M. Mansour

EECE 321: Computer Organization

Conventions

= A computer is just a big complex state machine.

Registers, memory, hard disks and other storage form the state.
The processor keeps reading/updating the state, according to the instructions in some program.

State

| element

Combinational logic

= Combinational elements to be used: ALU

= Sequential elements:

Register file

Instruction memory

Data memory

Note: Separating instructions from data by using instruction memory and data memory is referred to

as Harvard Architecture.

ALU control

MemWirite

O .| Read
register 1 Read |
I Read Read
Register) _5 | Read data 1 . — —
numbers register 2 Read Instruction address data
5 Registers Data address [31-0] Wi
N Write —’
register Read address
Wit data 2 | - Instruction _ Data
Data {—» e memory —P m“"‘e memory
RegWrite |
MemRead
a. Registers b. AI__U
Prof. M. Mansour EECE 321: Computer Organization 5

Building the Datapath: Instruction Fetch

= The processor is always in an infinite loop, fetching instructions from memory and
executing them.
— The program counter or PC register holds the address of the current instruction.
— PCin MIPS should be incremented by four to read the next instruction in sequence.

. Instruction
address —]
Datapath elements pC
needed to fetch an Instruction fe—— >Add Sum
instruction Instruction
memory I
a. Instruction memory b. Program counter c. Adder
. >Add
Datapath portion for
instruction fetch 4 =
PC Read

| address

Instruction fr——

Instruction
memory

Prof. M. Mansour EECE 321: Computer Organization

R-Format Instructions Datapath

= R-format instructions read 2 registers, perform and ALU operation, and write back
result into a register.
— Need a register file and an ALU

— Register file outputs the contents of whatever register numbers are on the address
inputs, but performs writes only when ‘RegWrite’ is enabled

* Each register specifier is 5 bits long.
* Canread from two registers at a time.
* New values written into register file are available for next clock cycle.

R-format | op | rs | rt | rd | shamt | func |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
N\ J
Y
Read 3 ALU operation
register 1 Read R ALUOp Function
Read data 1 . 000 and
: i erol—»
Instruction register 2 001 or
_ Registers >ALU ALU 010 add
W”-tet result 110 subtract
register d;gazd ’ 111 slt
_| Write
| data
RegWrite

Prof. M. Mansour EECE 321: Computer Organization

Executing an R-Type Instruction

= Read an instruction from the instruction memory.

= The source registers, specified by instruction fields rs and rt, should be read from
the register file.

= The ALU performs the desired operation.

= |ts result is stored in the destination register, which is specified by field rd of the
instruction word.

‘ RegWrte
|
Read Instruction | 1[25-21] [Read >
address [31-0] -2 register 1 (:;a? ;U Zero
120-16] | Read Resut
Instruction register 2 Read >
memory I[15-11] | Write 2
register . ALUOp
Wite ~ egisters
r data
op rs rt rd shamt func
31 26 25 21 20 16 15 1 10 6 5 0

Prof. M. Mansour EECE 321: Computer Organization

Datapath for Load and Store

= Memory instructions: MemWite
— Iw/sw S$t2, offset(St1)
»= These instructions need an ALU to compute a memory | Address et 16 é\ 32
\ ign \
address: Write Data ' @ '
) . | data memory
— Add base register to the 16-bit sign-extended offset.
— Read or write a register
. . MemRead
— For store, write a result in memory
. . . a. Data memory unit b. Sign-extension unit
= Hence, we need a register file, ALU, sign-extender, and a
data memory unit
" [Read 3 ALU operation
St1]--- ~|register1_ _ _ _ _ Read [St1] MemWrite
_| Read data 1
Instruction | register 2 Zero
(. Registers ALU ALu
__| Write Read
. "| register Address data
|
! _| Write
: data Data
' - Write memory
| RegWrite data
|
! 16
l'__________(__ [$t2] for store MemRead
\
4 _____________________________

Load into $t2

Prof. M. Mansour

EECE 321: Computer Organization

Datapath for Branch/Jump Instructions

= Branch instructions: beq/bne S$t1,5t2,offset
— Decide if branch taken/not taken: Two registers are compared (using ALU, check zero
output)
— Branch target address: Use 16-bit offset to compute branch target address relative to the
branch instruction address.
* Need to add sign-extended offset to PC (+4)
* Note that the offset field is shifted 2 bits to the left to get byte offset
— Hence, we need a register file, ALU, sign-extender, and a data memory unit

For jumps, need to rep|ace lower PC + 4 from instruction datapath =

28 bits of PC with lower 26 bits > Add Sum Branch targe
from instruction shifted left by 2.
p—p> |
ALU operation
Read
Instruction register 1 Read [$tl]
Read data 1
reglstekz st To branch
Write egisters control logic
register Read
: data 2
Write
data [$t2]
RegWrite

Prof. M. Mansour EECE 321: Computer Organization 10

Combining the Datapaths

= The previous datapaths are combined to implement Iw, sw, beq, add, sub, and, or, slt.

= For this single-cycle datapath, all instructions execute in 1 cc, hence no resource can be used

more than once per instruction. Hence,

— Need separate instruction memory from data memory

— Duplicate functional units that can’t be shared.

= Combining R-Format and Memory datapaths:

Instruction

extend

opcode rs rt rd shamt funct opcode rs rt immediate
6 5 5 5 5 6 6 5 5 16
Regdtn ; ALU operation
registerit dRafaa?D - ‘ MemWrite
Read Zero MemtoReg
reglste;2[1 ALUSrc ALU Fond
_ egisters ALU eadd
Writel dlzteaagl] (00 result Address gata 1I\3I
registert “L’llg u[ﬁ]
. X X
| Writel 1 0
data Writes Datar
RegWrite g dat[lae memory
16 Signo MemRead

Prof. M. Mansour

EECE 321

: Computer Organization

11

Appending the Instruction Fetch Portion to Combined Datapath

= Can’t share adder and ALU.

PCSrc
Mo
Add l . u
X
— ALU
¢ Add result
Readl ALUSIC ALU operati
Readn : peration
e register 10
—~PC address 9 Readn | MemWrite
data 1
Regdn MemtoReg
. register 20
Instruction Registers cond:
Writel Readl - Address data
Instructionn registerd data 2
memory
.| Writel —
data Writed Datal
e rie
RegWrite data memory
MemRead
e .| Signd

extend

Prof. M. Mansour EECE 321: Computer Organization 12

Executing a 1w Instruction

= Example:

lw S$tO, -4(Ssp) 100011) 11101 | 01000 11111111 1111 1100
31 2625 2120 16 15 0
l RegWrite
) Writ MemToR
Read Instruction | _ 1[25-21] ez | — Meml"’”e B
address [31-0] register 1 data 1 >
| [20 - 16] ALU » Read Read > 1
. Is) »| Read Zero address data
Instruction register 2 Read (o) > . ‘ |\uﬁ
memory gata 2 g RESUIL ! WTrite
Write } M address -
register ‘; ™ J write Data * 0
- . Registers v memory
1115 - 11] Write — 1 ALUOp data
— data N 1
MemRead
RegDst " ., ALUSrc
[15 - 0] [sign |

’{cxtc nd| '

Prof. M. Mansour

EECE 321: Computer Organization

13

Executing a 1w Instruction (cont’d)

l RegWrite
: [
Read Instruction I[25 - 21] [Read MemWrite MemToReg
address [31-0] | register 1 dRet:‘: > P
| [20 - 16] . ALU » Read Read fp
Instruction . t = Rea.dt , Reac /a\ > Zero address data M
memory 0 negrens 4 RESUlt i Write u
X data 2 M X
M Write address .
u register : s Write _Data &
1(5-11] X | | wrire OOIStErs 1 ALUOp data memery
———u data ~
MemRead
— ALUSrc
RegDst / \
1 [15-0] | sign |
Tlextend,
Prof. M. Mansour EECE 321: Computer Organization 14

Executing a 1w Instruction (cont’d)

l RegWrite
I MemWrite MemTcReg
. H . e v
Read Insiruction _.I[25 21] .| Read Read \ l l
address [31-0] reqister 1 »> \
20 18§ g ek ALU Read Read —s| 1
= .—’ —
Instruction * —~ Re?dt " Rt (0 > Zero address data ”
memory —»{ 0! register data 2 4+ Result Write urT
M Write :‘ / address x
u register _ x| |~ Write Data Y,
(15111 X | p| write c0OIStOrs — ALUOp data omery
1 data \ l
- ALUSrC MemRead
RegDst / \
1[15 - 0] [sign |
'lextond
Prof. M. Mansour EECE 321: Computer Organization 15

Adding the Branch Datapath: beq $s0,$sl,label

= Branch instructions use the main ALU for comparison, but needs separate adder for branch
target address computation.

We need a second adder, since the ALU
is already doing subtraction for the beq.

PC

-

Read Instruction
address [31-0]

Instruction
memory

o o) = PCSrc=1 branches
l 1w to PC+4+(offsetx).
dene (RN = PCSrc=0 continues
4 Multiply constant [\ > Add F» 1) to PC+4.
by 4 to get offset. — ot] ‘
)V PCSrc <
RegWrite
J MemWrite MemToReg
—QI == Read Read . \ |
| [20 - 16] regiter! datat ALU o Read Read ey 1
[Read > Zero address data M
0 register 2 dRa?aag — 0 RESUN | Wit u
M Write M address] x
u register) : | wriie Data 0
115-11]| * Write M aaan ALUOp data memery
* 1
1 data A T
MemRead
RegDst m ALUST
1[15 - 0] [sign |
']Qend"

Prof. M. Mansour

EECE 321: Computer Organization 16

The Final Datapath

PCSrc
— »
SAdd l . \
X
AL
4 amp / >Addresullfj
—p
Registers :
Read 3] ALU operation MemWrite
pC k4, | Read register 1 o AUIJSFC
address Read data 1 g MemtoReg
register 2
Instruction | _ Read
er_tet theazd ey Address dea?a —
Instruction reg.|s . ata u '\lﬁl
memory \oll\értlée X Data X
_ ' > |\write Memory
Regerte| "| data
1\6‘ Sign 32
| extend MemRead
17

Prof. M. Mansour

EECE 321: Computer Organization

