EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 17: Performance

SPEC Ratings for Pentium Processors

= Dell Precision desktop computers

1400

1200

Pentium 4 CFP2000

1000

800 k/

600

Pentium 4 CINT2000

Pentium [l CINT2000

400

Pentium [Il CFP2000

SPEC CINT2000 and CFP2000 performance

200

0 T T T T T T
500 1000 1500 2000 2500 3000 3500

Clock rate in MHz

 Does doubling the clock rate double the performance?

 Can a machine with a slower clock rate have better performance?

Prof. M. Mansour EECE 321: Computer Organization

Amdahl’s Law

= Common Pitfall: Expecting the improvement of one aspect of a machine to
increase performance by an amount proportional to the size of the improvement.

= Example:
"Suppose a program runs in 100 seconds on a machine, with multiply responsible

for 80 seconds of this time. How much do we have to improve the speed of
multiplication if we want the program to run 4 times faster?“

= Solution:

Execution time before improvement = E, = 80 + 20 sec.

Execution time after improvement = E, = 100/4 = 25 sec.

E,.=T +20=>T_ . =5

Improvement in speed of multiplication: 100 ---> 5 or 20 times faster.

+ Time unaffected =T

mult mult mult

How about making it 5 times faster?
E,=100/5=T,_,;+20=>T_ . =0.
Hence no improvement in multiplication alone can make application run 5 times faster.

mult mult

Prof. M. Mansour EECE 321: Computer Organization 3

Amdahl's Law

= General formula for Amdahl’s law:

Ezec. Time Af fected
Amount of improvement

Ezec. Time After Improvement = Exec. Time Unaf fected+

= Principle: Make the common case fast
— This is better than optimizing the rare case.

Prof. M. Mansour EECE 321: Computer Organization

Example 1

= Suppose we enhance a machine by making all floating-point instructions run five
times faster. If the execution time of some benchmark before the floating-point
enhancement is 10 seconds, what will the speedup be if half of the 10 seconds is
spent executing floating-point instructions?

Solution:
Ey, = 10 sec.
Ta cte 5
Eqo = Tunaffected + [lected —_ 54 — = 6 sec.
Improvement 5

Speedup =]I;Z:;: = gb = 16—0 = 1.67

Prof. M. Mansour EECE 321: Computer Organization

Example 2

= We are looking for a benchmark to show off the new floating-point unit described
in the previous example, and want the overall benchmark to show a speedup of 3.
One benchmark we are considering runs for 100 seconds with the old floating-
point hardware. How much of the execution time would floating-point instructions

have to account for in this program in order to yield our desired speedup on this
benchmark?

= Solution:
Ey =100 = Tynajsfected + ITrp

_ By _100 _ T

Ea — Lunaf fecte T e
3 3 waf fected T =
2
=> Tpp = iO sec.
3
50
Tu.naffected — % S€EC.

Prof. M. Mansour EECE 321: Computer Organization 6

Points to Remember

= Performance is specific to a particular set of programs

— Total execution time is a consistent summary of performance

» For a given architecture performance increases come from:

— Increases in clock rate (without adverse CPI affects)
— Improvements in processor organization that lower CPI
— Compiler enhancements that lower CPI and/or instruction count

= Pitfall: Expecting improvement in one aspect of a machine’s performance to affect

the total performance

= You should not always believe everything you read! Read carefully!

Prof. M. Mansour EECE 321: Computer Organization

Power Consumption --- Barrier to Performance Scaling

10000 - —120
o000 9800 2667
+ 100
N 1000 + A
S g
g 100+ + 60 %
< S
X
g 12.5 ta 3
O 10 +
+ 20
3.3 :
1 ’*l T T T T T T 0
28 28 28 53 £§ ticefsols
S o S0 S o ':-g 29 55 5380 9%0
T ®T ®T = ET 5o E=3S 52
2T §5 5285883559
Ly a2z ot X

= |n CMOS IC technology
Power = Capacitive loadx Voltage * x Frequency

\- \- \-

Prof. M. Mansour EECE 321: Computer Organization 8

Reducing Power

= Suppose a new CPU has
— 85% of capacitive load of old CPU
— 15% voltage and 15% frequency reduction

Pow Cogx0.85x(V x 0.85)*xF ,x0.85

Py Coq X Vold2 X Fyiq

= The power wall

— We can’t reduce voltage further
— We can’t remove more heat

= How else can we improve performance?

=0.85% =0.52

Prof. M. Mansour EECE 321: Computer Organization

Uniprocessor Performance

10,000

Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
6505

1000

100

Performance (vs.VAX-11/780)

52%]/year

10

e
-
s
-
e

,,,,, 25%l/year

1.5, VAX-11/785

-
.
-
.

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Prof. M. Mansour EECE 321: Computer Organization

Multiprocessors

= Answer: Use multi-cores

= Multi-core microprocessors
— More than one processor core per chip

= Requires explicitly parallel programming
— Compare with instruction level parallelism

* Hardware executes multiple instructions at once

* Hidden from the programmer

— Hard to do

* Programming for performance

* Load balancing

* Optimizing communication and synchronization

Prof. M. Mansour

EECE 321: Computer Organization

11

SPEC Power Benchmark

= SPEC also offers benchmark sets to test server power consumption

— SPECpower benchmarks

= Power consumption of server at different workload levels
— Performance: ssj_ops/sec (business operations per second)
— Power: Watts (Joules/sec)

10 10
Overall ssj_ops per Watt = (E SSj_0ops,) / () power;)
i=0 i=0

Prof. M. Mansour EECE 321: Computer Organization

12

SPECpower_ssj2008 Running on an AMD Processor

Target Load % Performance (ssj_ops/sec) Average Power (Watts)
100% 231,867 295
90% 211,282 286
80% 185,803 275
70% 163,427 265
60% 140,160 256
50% 118,324 246
40% 920,35 233
30% 70,500 222
20% 47,126 206
10% 23,066 180
0% 0 141
Overall sum 1,283,590 2,605
> ssj_ops/) power 493

Prof. M. Mansour

EECE 321: Computer Organization

13

Fallacy: Low Power at Idle

Look back at X4 power benchmark
— At 100% load: 295W
— At 50% load: 246W (83%)
— At 10% load: 180W (61%)

Google data-center
— Mostly operates at 10% — 50% load
— At 100% load less than 1% of the time

Consider designing processors to make power proportional to load

Prof. M. Mansour EECE 321: Computer Organization

14

Intel x86 ISA

Prof. M. Mansour

EECE 321: Computer Organization

15

The Intel x86 ISA

= An example of a CISC ISA

— Provides more powerful instructions than MIPS
— Goalis the reduce number of instructions executed by a program
— Cons: Complex; slow because instructions take longer to execute

= Evolution with backward compatibility

— 8080 (1974): 8-bit microprocessor
* Accumulator, plus 3 index-register pairs

— 8086 (1978): 16-bit extension to 8080
* Complex instruction set (CISC)

— 8087 (1980): floating-point coprocessor
* Adds FP instructions and register stack

— 80286 (1982): 24-bit addresses, Memory Management Unit (MMU)
* Segmented memory mapping and protection

— 80386 (1985): 32-bit extension (now 1A-32)
* Additional addressing modes and operations
* Paged memory mapping as well as segments

Prof. M. Mansour EECE 321: Computer Organization 16

The Intel x86 ISA

= Further evolution...

— i486 (1989): pipelined, on-chip caches and FPU
* Compatible competitors: AMD, Cyrix, ...

— Pentium (1993): superscalar, 64-bit datapath
* Later versions added MMX (Multi-Media eXtension) instructions
* The infamous FDIV bug

— Pentium Pro (1995), Pentium Il (1997)
* New microarchitecture

— Pentium Il (1999)
* Added SSE (Streaming SIMD Extensions) instructions and associated registers
* 128-bit registers that can pack 4 single-precision FP numbers

— Pentium 4 (2001)
* New microarchitecture
* Added SSE2 instructions: Pairs of double-precision FP numbers to operate in parallel

Prof. M. Mansour EECE 321: Computer Organization 17

The Intel x86 ISA

= And further...

— AMD®64 (2003): extended architecture to 64 bits
* EMG64T — Extended Memory 64 Technology (2004)
* AMDG64 adopted by Intel (with refinements)
* Added SSE3 instructions
— Intel Core (2006)
* Added SSE4 instructions, virtual machine support
— AMD®64 (announced 2007): SSES5 instructions
* Intel declined to follow, instead...
— Advanced Vector Extension (announced 2008)
* Longer SSE registers, more instructions

= |f Intel didn’t extend with compatibility, its competitors would!
— Technical elegance # market success

Prof. M. Mansour EECE 321: Computer Organization

18

Basic x86 Registers

Name Use
31

o

EAX GPR O

ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6

EDI GPR 7

Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

EIP Instruction pointer (PC)

EFLAGS Condition codes

Prof. M. Mansour EECE 321: Computer Organization

19

Basic x86 Addressing Modes

= Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

= Memory addressing modes

Address in register
Address = R, _.. + displacement

— scale
Address =R, .. + 2°¢ x R, 4.,

— scale
Address = R, + 2 X R dex

(scale=0, 1, 2, or 3)
+ displacement

Prof. M. Mansour

EECE 321: Computer Organization

20

Basic x86 Addressing Modes

= The Base-plus-Scaled-Index addressing mode, not found in ARM or MIPS, is

included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register
into a byte address.

— A scale factor of 1 is used for 16-bit data
— A scale factor of 3 for 64-bit data
— A scale factor of 0 means the address is not scaled

— If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS
equivalent mode would need two more instructions

Register
Description restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP | 1w $s0,0($s1)
Based mode with 8- or 32-bit | Address is contents of base register plus Not ESP Tw $s0,100($s1)# <= 16-bit
displacement displacement. ##displacement
Base plus scaled index The address is Base: any GPR | mu] $t0,%$s2,4
Base + (25°@€ x Index) Index: not ESP | add $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,0($t0)
Base plus scaled index with The address is Base: any GPR | mu1 $t0,%$s2,4
8- or 32-bit displacement Base + (25°@'¢ x Index) + displacement Index: not ESP | 3dd $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,100($t0)# 016-bit
f#displacement

Prof. M. Mansour EECE 321: Computer Organization 21

x86 Instruction Encoding

= X86 encoding is complex with many instruction format

= |nstruction length varies from 1 byte (no operands) up to 15 bytes
= Variable length encoding

— Postfix bytes specify addressing mode

— Prefix bytes modify operation

— Operand length, repetition, locking, ...

Prof. M. Mansour EECE 321: Computer Organization

22

x86 Instruction Encoding

e = R

je name if equal(condition code) {EIP=name};
EIP-128 <=name < EIP+128

Jjmp name EIP=name

call name SP=SP-4; M[SP]=EIP+5; EIP=name;

movw EBX, [EDI+45] EBX=M[EDI+45]

push ESI SP=SP-4; M[SP]=ESI

pop EDI EDI=M[SP]; SP=SP+4

add EAX,#6765
test EDX,#42
movs|

EAX=EAX+6765
Set condition code (flags) with EDX and 42

MLCEDIJ=M[ESIT;:
EDI=EDI+4; ESI=ESI+4

*Many instructions contain the 1-bit field w, which says whether
the operation is a byte or a double word.

*The d field in MOV is used in instructions that may move to or
from memory and shows the direction of the move.

*The ADD instruction requires 32 bits for the immediate field,

because in 32-bit mode, the immediates are either 8 bits or 32
bits.

*The immediate field in the TEST is 32 bits long because there is no
8-bit immediate for test in 32-bit mode.

a. JE EIP + displacement

4 4 8
Jgg | Cond- Displacement
tion

b. CALL
8 32
CALL Offset
c.MOV EBX, [EDI + 45]
6 11 8 8
r/m .
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
4 3 1

32

ADD [Reg|w

Immediate

f. TEST EDX, #42
7 1 8

32

‘ TEST ‘w‘ Postbyte ‘

Immediate

Prof. M. Mansour

23

23

