EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 15: Floating-Point Arithmetic

Rounding

= Math on real numbers = we worry about rounding to fit result in the significant
field.
= Rounding occurs when converting...
— double to single precision
— floating point # to an integer
= FP hardware carries 3 extra bits of precision, and rounds for proper value
— Guard, Round, Sticky bits.

— The goal is to obtain final results as if the intermediate results were calculated using

infinite precision and then rounded.
mantissa format plus extra bits:

1 . XXXXXXXXXXXXXXXXXXXKXXXX 0 0 0

A A A A A

- round bit (r)
guard bit (g)
23 bit mantissa from a representation

I I I

| | | | - sticky bit (s)
I I I

I I -

I -

hidden bit

Prof. M. Mansour EECE 321: Computer Organization

Rounding (cont’d)

= When a mantissa is to be shifted in order to align radix points, the bits that fall off the least significant end
of the mantissa go into these extra bits.

= The guard & round bits are just 2 extra bits of precision used in calculations.

= The sticky bit is an indication of what is/could be in lesser significant bits that are not kept. If a value of 1
ever is shifted into the sticky bit position, that sticky bit remains a 1 ("sticks" at 1), despite further shifts.

Example:

mantissa from representation, 11000000000000000000100
must be shifted by 8 places (to align radix points)

grs
Before first shift: 1.11000000000000000000100 0 0 O
After 1 shift: 0.11100000000000000000010 0 0 O
After 2 shifts: 0.01110000000000000000001 0 0O O
After 3 shifts: 0.00111000000000000000000 1 0 O
After 4 shifts: 0.00011100000000000000000 0 1 O
After 5 shifts: 0.00001110000000000000000 0 0 1
After 6 shifts: 0.00000111000000000000000 0 0 1
After 7 shifts: 0.00000011100000000000000 0 0 1
After 8 shifts: 0.00000001110000000000000 0 0 1

= |EEE four modes of rounding:

Round towards + o=: ALWAYS round “up”:2.1=3,-2.1 = -2

Round towards - o=: ALWAYS round “down”:1.9=1,-1.9 = -2

Truncate: Just drop the last bits (round towards 0)

Round to (nearest) even (default): Normal rounding, almost: 2.5=2,3.5=4

Prof. M. Mansour EECE 321: Computer Organization

MIPS Floating Point Architecture

= MIPS supports the IEEE 754 SP & DP formats.

= Separate floating point instructions:
— Single Precision:
add.s, sub.s, mul.s, div.s, c.eq.s (also neq, It, le, gt, ge)
— Double Precision:
add.d, sub.d, mul.d, div.d, c.eq.d (also neq, It, le, gt, ge)
= FP branch instructions: bclt, bcl1f
= FP comparisons set a bit to true/false, and a FP branch decides to branch based on
that bit.
= These are far more complicated than their integer counterparts

— Can take much longer to execute

= Problems:
— Inefficient to have different instructions take vastly differing amounts of time.
— Generally, a particular piece of data will not change FP to int within a program.
* Only 1 type of instruction will be used on it.
— Some programs do no FP calculations
— It takes lots of hardware relative to integers to do FP fast

Prof. M. Mansour EECE 321: Computer Organization

MIPS Floating Point Architecture

= 1990 Solution: Make a completely separate chip that handles only FP.
= Coprocessor 1: FP chip

— contains 32 32-bit registers: $f0, Sf1, ...

— most of the registers specified in .s and .d instructions refer to this set

— separate load and store: lwcl and swcl

n u

(“load word coprocessor 17, “store ...”)
— The base registers for FP data transfers remain integers

= Double Precision: by convention, even/odd pair contain one DP FP number: $f0/5f1,
Sf2/Sf3, ..., Sf30/5f31

— Evenregister is the name

= Ex:load 2 SP numbers from memory, add them and store result back:

- lwcl Sf4, 4(Ssp)
- lwcl Sf6, 8(Ssp)
— add.s $f2, $f4, 5f6
- swcl $f2, 12(Ssp)
= Ex:load 2 DP numbers from memory, add them and store result back:
- lwcl Sf4, 4(Ssp) # loads f4, f5
— lwcl Sf6, 8(Ssp) # loads 6, f7
— add.d Sf2, Sf4, Sfe #sumin f2, f3
— swcl $f2, 12(Ssp) # stores f2, 3

Prof. M. Mansour EECE 321: Computer Organization

FP Hardware

= When floating point was introduced in microprocessors, there wasn’t enough
transistors on chip to implement it.

— You had to buy a floating point co-processor (e.g., the Intel 8087)
= As aresult, many ISA’s use separate registers for floating point.

= Modern transistor budgets enable floating point to be on chip.
— Intel’s 486 was the first x86 with built-in floating point (1989)

= Even the newest ISA’s have separate register files for floating point.
— Makes sense from a chip floor-planning perspective.

Prof. M. Mansour EECE 321: Computer Organization

FPU Like Co-Processor on Chip

U2 Cache v b

L - 1
:ﬁ <h Scan Align
. S Micro-code

DDR Memory Interface

Clock Generator

Opteron

Prof. M. Mansour EECE 321: Computer Organization

Example: FP Matrix Multiplication

void mm(double x[][],double y[][], double z[][]){
int i,3,k;
for (i=0;i1=32;i++) {
for (§=0;31=32;j++) {
for (k=0;k!=32;k++) {
x[i][3] += y[i]l[k] * z[k]1[]];
}

}

= X, Y, zare 32x32 2-Dimensional arrays
= They are stored like 32 1-D arrays, except each element is a 32 element array.
= Soindices skip 32-element arrays corresponding to rows (row-major).

mm: ...
1i $t1,32 # row size/loop end
1i $s0,0 # init i=0
Li: 1i $s1,0 # init j=0
Lj: 1li $s2,0 # init k=0
sll $t2,$s0,5 # row-size of x
addu $t2,$t2,$s1 # $t2=i*32+3
sll $t2,$t2,3 # byte offset of [i][]]
addu $t2,%$a0,$t2 # add base address to offset

1.d $£f4,0($t2) # $£f4 = 8 bytes of x[i][]]

Prof. M. Mansour EECE 321: Computer Organization

Example (cont’d)

Lk: sll
addu

sll
addu
l.d

sll
addu

sll
addu
l.d

$t0,$s2,5
$t0,$t0,$s1
$t0,$t0,3
$t0,%a2,5$t0
$£16,0($t0)
$t2,$s0,5
$t0,$t0,$s2
$t0,$t0,3
$t0,%al,$t0
$£18,0($t0)

row-size of z

$t0=i*32+j

byte offset of [k][]]

add base address to offset
$£f4 = 8 bytes of z[k][]]

#
#
#
#
#

mul.d $f16,$f18,5f16
add.d &f4,8f4,5Ff16 #

addiu $s2,$s2,1

bne
s.d

$s2,$tl,Lk
$£4,0($t2)

addiu $s1,$s1,1

bne

$sl,$tl, L]

addiu $s0,$s0,1

bne

$s0,$tl,Li

#
#
#
#
#
#
#

row-size of y

$t0=i*32+k

byte offset of [i] [k]

add base address to offset
$f18 = 8 bytes of y[i] [k]

$fleé=y[i] [k]*z[k][]]
$£4=x[1i][]] +y[i] [k]1*z[k] []]

k++

k-loop
x[1]1[j1=$£4
J++

j-loop

i++

i-loop

Prof. M. Mansour

EECE 321: Computer Organization

Performance

= Reading assignment:
— Sections1.4,1.5,1.8

Prof. M. Mansour

EECE 321: Computer Organization

10

Defining Performance

= In this part of the course we are concerned with assessing the performance of a
computer.
= Why is performance important?
— It enables making intelligent choices
— See through the marketing hype: Does it really work as fast as they claim?
— Itis key to understanding underlying organizational motivation.
= How do we compare different computers? Why is some hardware better than
others for different programs?
= What factors of system performance are hardware related?
— For example, do we need a new machine, or a new operating system?

= How does the machine's instruction set affect performance?
— Do we need more simple instructions, or few complex instructions?
— What type of instructions do we need to include?

* Ex: For multimedia applications, Intel added specific MMX instructions

= To answer these questions, we need to understand what determines the
performance of a machine.

Prof. M. Mansour EECE 321: Computer Organization

Which of these airplanes has the best performance?

renge ()| speed (o)

Boeing 777 4630

Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

= Performance: Fastest, largest, longest range?

= Which plane transfers a single passenger 4000 miles in the shortest time?

= Which plane transfers 470 passengers 4000 miles in the shortest time?

= Performance can refer to completing a job as quickly as possible, or completing the
most jobs in a given time.

= Example:

— A program is running on 2 different workstations, the faster workstation is the one that gets
the job done first.
— Here one is interested in reducing response time or execution time.

— If a computer center maintains two time-shared computers that run jobs submitted by many
users, the faster computer is the one that completes the most jobs per day.

— Here one is interested in maximizing throughput.

Prof. M. Mansour EECE 321: Computer Organization 12

Which airplane has the best performance?

Boeing 777 Boeing 777
Boeing 747 Boeing 747
BAC/Sud BAC/Sud
Concorde Concorde
Douglas Douglas DC-
DC-8-50 8-50
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
@ Passenger Capacity | | =)miles(Cruising Range
Boeing 777 Boeing 777
Boeing 747 Boeing 747
BAC/Sud BAC/Sud
Concorde Concorde
Douglas Douglas DC-
DC-8-50 8-50
0 500 1000 1500 0 100000 200000 300000 400000

| @)mph(Cruising Speed |

@ Passengers X mph

Prof. M.

Mansour EECE 321: Computer Organization

13

Computer Performance: TIME

Metric: Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must | wait for the database query?
= Metric: Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?
= |f we upgrade a machine with a new processor what do we increase?
= |f we add a new machine to the lab what do we increase?
= |n discussing the performance of machines, we will be primarily concerned with
CPU execution time.
— This is the time spent executing the lines of code that are "in" our program.
— Time spent on I/0O, or running other programs, or OS time is not included.

Prof. M. Mansour EECE 321: Computer Organization 14

Performance Metrics

= For some program running on machine X,
Performance, = 1 / Execution time,
= "Xis n times faster than Y"
Performance, / Performance, =n
= Problem:
— machine A runs a program in 20 seconds
— machine B runs the same program in 25 seconds
— Which is faster and by how much?

= Instead of reporting execution time in seconds, we often use clock cycles:

seconds cycles 9 seconds

program program cycle

= CPU execution time = # CPU clock cycles x Clock cycle time.
= CPU clock cycles / Clock frequency.
= So, to improve performance (everything else being equal) you can either

— Decrease the # of required cycles for a program,
— Decrease the clock cycle time or, said another way, increase the clock rate.

Prof. M. Mansour EECE 321: Computer Organization

15

How many cycles are required for a program?

= Could assume that # of cycles = # of instructions

= [ncorrect assumption: Different instructions take different amounts of time on
different machines.

= Need different numbers of cycles for different instructions.

1st instruction
2nd instruction
3rd instruction

time

>
! ! ! ! ! ! ! ! v

= Multiplication takes more time than addition; Floating point operations take longer
than integer ones; Accessing memory takes more time than accessing registers.

= Can compute average clock cycles per instruction (CPI), so
— CPU clock cycles = Instructions per program x Avg. CC per instruction.

= Note: Changing the cycle time often changes the number of cycles required for
various instructions.

Prof. M. Mansour EECE 321: Computer Organization 16

Putting Things Together

So, CPU time = Instruction count x CPI x Clock cycle time.

Instructions Clock Cycles Seconds

PU Time =
CF Time Program . Instruction - Clock cycle

A given program will require
— some number of instructions
— some number of cycles
— some number of seconds
We have a vocabulary that relates these quantities:
— cycle time (seconds per cycle)
— clock rate (cycles per second)
— CPI (cycles per instruction): a floating point intensive application might have a higher CPI

Another performance metric: MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

MIPS < #HInstructions

Exec. Time x10°

Prof. M. Mansour EECE 321: Computer Organization 17

Performance

= Performance is determined by execution time. Do any of the other variables equal
performance?

of cycles to execute program?

of instructions in program?

of cycles per second?

average # of cycles per instruction (CPI)?
average # of instructions per second?

= Common pitfall: thinking one of the variables is indicative of performance when it
really isn’t.

Prof. M. Mansour EECE 321: Computer Organization

18

Example 1: Cycles Per Instruction

Suppose we have two implementations (machine A and machine B) of the same
instruction set architecture (ISA).

For some program,

Machine A has a clock cycle time of 1 ns and a CPI of 2.0
Machine B has a clock cycle time of 2 ns and a CPIl of 1.2

Which machine is faster for this program, and by how much?

CPU performancesy _ Erecution timep I X1.2x2 19

Answer: CPU performancep ~ Execution times I x2x1

Hence machine A is 1.2 times faster than machine B for this program.

If two machines have the same ISA which of our quantities (e.g., clock rate, CPI,
execution time, # of instructions, MIPS) will always be identical?

Prof. M. Mansour EECE 321: Computer Organization

19

