EECE 321: Computer Organization

Mohammad M. Mansour

Dept. of Electrical and Compute Engineering

American University of Beirut

Lecture 14: Floating-Point Arithmetic

Floating Point Representation

- Normal format: +1.xxxxxxxxxxx_{two}*2^{yyyy}_{two}
- Multiple of Word Size (32 bits)

- S represents Sign
- Exponent (e) represents y's (in 2's complement)
- Significand (f) represents x's
- Represent numbers as small as 2⁻¹²⁸ to as large as 1.1111...₂x 2¹²⁷.
- Representation of number 0:
 - Has exponent all 0's so that hardware doesn't attach 1 in all 0's significand.
 - S is disregarded
 - More about this in IEEE FP standard

Double Precision Floating Point Representation

Next Multiple of Word Size (64 bits)

31 30 20 19 0

S e f

1 bit 11 bits 20 bits

f (cont'd)

32 bits

- Double Precision (vs. Single Precision)
 - C variable declared as double
 - Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸
 - But primary advantage is greater accuracy due to larger significand
- Quad Precision Floating Point Representation (IEEE 754-2008 standard)
 - Next Multiple of Word Size (128 bits)
 - Unbelievable range of numbers
 - Unbelievable precision (accuracy)

IEEE 754 Floating Point Standard

Kahan: "Father" of the Floating point standard

- Single Precision (Double Precision similar)
- Sign bit: 1 means negative, 0 means positive
- Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - 1 + 23 bits single, 1 + 52 bits double
 - always true: Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0
- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares.
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
 - Highest order bit is sign (negative < positive)
 - Exponent next, so big exponent => bigger #
 - Significand last: exponents same => bigger #

IEEE 754 Floating Point Standard (cont'd)

- Negative Exponent?
 - 2's comp? 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)
- This notation using unsigned integer compare of 1/2 v. 2 makes 1/2 > 2!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive
 - 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)
- Called <u>Biased Notation</u>, where bias is a number subtracted to get real number
 - IEEE 754 uses bias of 127 for single precision
 - Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision
 - Bias converts all single-precision exponents from -128 to +127 into unsigned numbers from 0 to 255, and all double-precision exponents from -1024 to +1023 into unsigned numbers from 0 to 2047.

Summary of IEEE 754 Single Precision FP Standard

- $(-1)^S \times (1 + f) \times 2(e^{-127})$
- Double precision identical, except with exponent bias of 1023
- Exponent is treated as an unsigned number
- Bias will produce actual number
- Example
 - If the actual exponent is 4, the e field will be $4 + 127 = 131 (10000011_2)$.
 - If e contains 01011101 (93), the actual exponent is 93 127 = -34.
- Storing a biased exponent before a normalized mantissa means we can compare IEEE values as if they were signed integers.

Computing the Significand

Method 1 (Fractions):

- In decimal: $0.340_{(10)} => 340_{(10)}/1000_{(10)} => 34_{(10)}/100_{(10)}$
- In binary: $0.110_{(2)} \Rightarrow 110_{(2)}/1000_{(2)} = 6_{(10)}/8_{(10)}$ => $11_{(2)}/100_{(2)} = 3_{(10)}/4_{(10)}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Method 2 (Place Values):

- Convert from scientific notation
- In decimal: $1.6732 = (1x10^{0}) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})$
- In binary: $1.1001 = (1x2^{-0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating
 FP numbers

Example: Converting Binary IEEE 754 FP Number to Decimal

0 0110 1000 101 0101 0100 0011 0100 0010

- Sign: 0 => positive
- Exponent:
 - 0110 1000_{two} = 104_{ten}
 - Bias adjustment: 104 127 = -23
- Significand:

```
0 	 1 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 1x2^{-5} + ...
= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22}
= 1.0_{ten} + 0.666115_{ten}
```

- Represents: $1.666115_{\text{ten}} * 2^{-23} \sim 1.986 * 10^{-7}$ (about 2/10,000,000)
- Decimal equivalent: 0.21875

Converting Decimal to IEEE 754 FP

- Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it's easy.
- Show IEEE 754 FP representation of -0.75
 - -0.75 = -3/4 = -11_{two}/100_{two} = -0.11_{two}
 - Normalized to -1.1_{two} x 2^{-1} .
 - (-1)^S x (1 + f) x 2^(e-127)
 - (-1)1 x (1 + .100 0000 ... 0000) x $2^{(126-127)}$

1 0111 1110

100 0000 0000 0000 0000 0000

- Not So Simple Case: If denominator is not an exponent of 2.
 - Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
 - Once we have significand, normalizing a number to get the exponent is easy.
 - So how do we get the significand of a never-ending number?
- Fact: All rational numbers have a repeating pattern when written out in decimal.
 - Fact: This still applies in binary.
- To finish conversion:
 - Write out binary number with repeating pattern.
 - Cut it off after correct number of bits (different for single v. double precision).
 - Derive Sign, Exponent and Significand fields.

More Examples

- What is the single-precision representation of 347.625?
 - 347.625 = 101011011.101₍₂₎.
 - Normalize the number: $101011011.101 = 1.01011011101 \times 2^8$.
 - The e field should contain: 8 + 127 = 1000 0111.
 - Result: 0 10000111 01011011101000000000000
- What is the decimal equivalent of the following floating point number?

1 1000 0001 111 0000 0000 0000 0000 0000

Special Values

- The smallest and largest possible exponents e=00000000 and e=11111111 (and their double precision counterparts) are reserved for special values.
- If the mantissa is always (1 + f), then how is 0 represented?
 - The fraction field f should be 0000...0000.
 - The exponent field e contains the value 00000000.
 - With signed magnitude, there are two zeroes: +0.0 and -0.0.
- There are representations of positive and negative infinity, which might sometimes help with instances of overflow.
 - The fraction f is 0000...0000.
 - The exponent field e is set to 11111111.
- Finally, there is a special "not a number" or NAN value, which can handle some cases of errors or invalid operations such as 0.0/0.0.
 - The fraction field f is set to any non-zero value.
 - The exponent e will contain 11111111.

Special Value	S	е	f
0	X	All-zeros	All-zeros
+∞	0	All-ones	All-zeros
-∞	1	All-ones	All-zeros
NAN	X	All-ones	Non-zero

Range of IEEE 754 FP Single-Precision Numbers

- What is the smallest positive single-precision value that can be represented?
 - The smallest positive non-zero number is $1 * 2^{-126} = 2^{-126}$.
 - The smallest e is 00000001 (1).
- The largest possible "normal" number is $(2 2^{-23}) * 2^{127} = 2^{128} 2^{104}$.
 - The largest possible e is 11111110 (254).
- In comparison, the smallest and largest possible 32-bit integers in two's complement are only 2^{31} and 2^{31} 1.
- How can we represent so many more values in the IEEE 754 format, even though we use the same number of bits as regular integers?

Finiteness

- There aren't more IEEE numbers.
- With 32 bits, there are $2^{32} 1$, or about 4 billion, different bit patterns.
 - These can represent 4 billion integers or 4 billion reals.
 - But there are an infinite number of reals, and the IEEE format can only represent some of the ones from about -2^{128} to $+2^{128}$.
 - Represent same number of values between 2^n and 2^{n+1} as 2^{n+1} and 2^{n+2} .

- Thus, floating-point arithmetic has "issues"
 - Small round-off errors can accumulate with multiplications or exponentiations, resulting in big errors.
 - Not Associative: Rounding errors can invalidate many basic arithmetic principles such as the associative law, (x + y) + z = x + (y + z).
- The IEEE 754 standard guarantees that all machines will produce the same results
 - but those results may not be mathematically correct!

Limits of the IEEE representation

Even some integers cannot be represented in the IEEE format.

 Some simple decimal numbers cannot be represented exactly in binary to begin with.

```
- 0.10 = 0.0001100110011...
```

The '0.1' Dilemma

- During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an Iraqi Scud missile, and 28 Americans were killed.
- A later study determined that the problem was caused by the inaccuracy of the binary representation of 0.10.
 - The Patriot incremented a counter once every 0.10 seconds.
 - It multiplied the counter value by 0.10 to compute the actual time.
- However, the (24-bit) binary representation of 0.10 actually corresponds to 0.099999904632568359375, which is off by 0.000000095367431640625.
- This doesn't seem like much, but after 100 hours the time ends up being off by 0.34 seconds—enough time for a Scud to travel 500 meters!
- Professor Skeel (from UIUC) wrote a short article about this.
 - Round-off Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

Multiplication and Floating Point

Floating-Point Addition and Multiplication

- Much more difficult than with integers; can't just add/multiply significands!
- How do we do addition?
 - 1. De-normalize to match larger exponent
 - 2. Add significands to get resulting one
 - 3. Normalize (& check for under/overflow)
 - 4. Round if needed (may need to renormalize)
- EX: Assume we keep four bits of precision: 0.5 0.4375 = 1.000x2⁻¹ 1.110x2⁻².
 - De-normalize and add significands: $1.000x2^{-1} 0.111x2^{-1} = 0.001 \times 2^{-1}$.
 - Normalize the sum checking for overflow: 1.000 x 2⁻⁴.
 - No need for rounding in this case.
- If signs ≠, do a subtract. (Subtract similar)
- Multiplication: To multiply two floating-point values, first multiply their magnitudes and add their exponents.
 - Then round and normalize the result
 - The sign of the product is the exclusive-or of the signs of the factors.
- Question: How do we integrate these into the integer arithmetic unit?
- Answer: We don't!

FP Addition Algorithm and Datapath

Rounding

- Math on real numbers ⇒ we worry about rounding to fit result in the significant field.
- Rounding occurs when converting...
 - double to single precision
 - floating point # to an integer
- FP hardware carries 3 extra bits of precision, and rounds for proper value
 - Guard, Round, Sticky bits.
 - The goal is to obtain final results as if the intermediate results were calculated using infinite precision and then rounded.

mantissa format plus extra bits:

Rounding (cont'd)

- When a mantissa is to be shifted in order to align radix points, the bits that fall off the least significant end of the mantissa go into these extra bits.
- The guard & round bits are just 2 extra bits of precision used in calculations.
- The sticky bit is an indication of what is/could be in lesser significant bits that are not kept. If a value
 of 1 ever is shifted into the sticky bit position, that sticky bit remains a 1 ("sticks" at 1), despite
 further shifts.

```
Example:
```

```
mantissa from representation, 11000000000000000000100
must be shifted by 8 places (to align radix points)
                                g r s
After 1 shift:
              After 2 shifts:
              After 3 shifts:
              After 4 shifts:
              0.00011100000000000000000 0 1 0
After 5 shifts:
              0.00001110000000000000000 0 0 1
After 6 shifts:
              After 7 shifts:
              0.00000011100000000000000 0 0 1
After 8 shifts:
              0.00000001110000000000000 0 0 1
```

- IEEE four modes of rounding:
 - Round towards + ∞: ALWAYS round "up": $2.1 \Rightarrow 3$, $-2.1 \Rightarrow -2$
 - Round towards ∞ : ALWAYS round "down": 1.9 \Rightarrow 1, -1.9 \Rightarrow -2
 - Truncate: Just drop the last bits (round towards 0)
 - Round to (nearest) even (default): Normal rounding, almost: $2.5 \Rightarrow 2$, $3.5 \Rightarrow 4$

MIPS Floating Point Architecture

- MIPS supports the IEEE 754 SP & DP formats.
- Separate floating point instructions:
 - Single Precision:
 add.s, sub.s, mul.s, div.s, c.eq.s (also neq, lt, le, gt, ge)
 - Double Precision:
 add.d, sub.d, mul.d, div.d, c.eq.d (also neq, lt, le, gt, ge)
- FP branch instructions: bc1t, bc1f
- FP comparisons set a bit to true/false, and a FP branch decides to branch based on that bit.
- These are far more complicated than their integer counterparts
 - Can take much longer to execute
- Problems:
 - Inefficient to have different instructions take vastly differing amounts of time.
 - Generally, a particular piece of data will not change FP to int within a program.
 - Only 1 type of instruction will be used on it.
 - Some programs do no FP calculations
 - It takes lots of hardware relative to integers to do FP fast

MIPS Floating Point Architecture

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip
 - contains 32 32-bit registers: \$f0, \$f1, ...
 - most of the registers specified in .s and .d instructions refer to this set
 - separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...")
 - The base registers for FP data transfers remain integers
- Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3, ..., \$f30/\$f31
 - Even register is the name
- Ex: load 2 SP numbers from memory, add them and store result back:
 - lwc1 \$f4, 4(\$sp)
 - lwc1 \$f6, 8(\$sp)
 - add.s \$f2, \$f4, \$f6
 - swc1 \$f2, 12(\$sp)
- Ex: load 2 DP numbers from memory, add them and store result back:
 - lwc1 \$f4, 4(\$sp) # loads f4, f5
 - lwc1 \$f6, 8(\$sp) # loads f6, f7
 - add.d \$f2, \$f4, \$f6 # sum in f2, f3
 - swc1 \$f2, 12(\$sp) # stores f2, f3

FP Hardware

- When floating point was introduced in microprocessors, there wasn't enough transistors on chip to implement it.
 - You had to buy a floating point co-processor (e.g., the Intel 8087)
- As a result, many ISA's use separate registers for floating point.
- Modern transistor budgets enable floating point to be on chip.
 - Intel's 486 was the first x86 with built-in floating point (1989)
- Even the newest ISA's have separate register files for floating point.
 - Makes sense from a chip floor-planning perspective.

FPU Like Co-Processor on Chip

Example: FP Matrix Multiplication

- x, y, z are 32x32 2-Dimensional arrays
- They are stored like 32 1-D arrays, except each element is a 32 element array.
- So indices skip 32-element arrays corresponding to rows (row-major).

```
li $t1,32  # row size/loop end
li $s0,0  # init i=0

Li: li $s1,0  # init j=0

Lj: li $s2,0  # init k=0

sll $t2,$s0,5  # row-size of x
addu $t2,$t2,$s1  # $t2=i*32+j

sll $t2,$t2,3  # byte offset of [i][j]
addu $t2,$a0,$t2  # add base address to offset

l.d $f4,0($t2)  # $f4 = 8 bytes of x[i][j]
```

Example (cont'd)

```
sll $t0,$s2,5
                      # row-size of z
Lk:
     addu $t0,$t0,$s1 # $t0=i*32+j
     sll $t0,$t0,3  # byte offset of [k][j]
     addu $t0,$a2,$t0 # add base address to offset
     1.d $f16,0($t0) # $f4 = 8 bytes of z[k][j]
     sll $t2,$s0,5 # row-size of y
     addu $t0,$t0,$s2 # $t0=i*32+k
     sll $t0,$t0,3  # byte offset of [i][k]
     addu $t0,$a1,$t0 # add base address to offset
     1.d $f18,0($t0) # $f18 = 8 bytes of y[i][k]
     mul.d $f16,$f18,$f16 # $f16=y[i][k]*z[k][j]
     add.d f_4, f_4, f_6 # f_4=x[i][j] +y[i][k]*z[k][j]
     addiu $s2,$s2,1 # k++
           $s2,$t1,Lk # k-loop
     bne
     s.d $f4,0($t2) # x[i][j]=$f4
     addiu $s1,$s1,1 # j++
           $s1,$t1,Lj # j-loop
     bne
     addiu $s0,$s0,1 # i++
           $s0,$t1,Li # i-loop
     bne
```