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Floating Point Representation

" Normal format: +1.XXXXXXXXXXy0 " 2YYY 4
=  Multiple of Word Size (32 bits)

31 30 23 22

(0]

|S | Exponent (e) | Significand (f)

1 bit 8 bits 23 bits

= Srepresents Sign

= Exponent (e) represents y’s (in 2’s complement)

= Significand (f) represents x’s

= Represent numbers as small as 27128 to as large as 1.1111...,x 2127,

= Representation of number O:
— Has exponent all 0’s so that hardware doesn’t attach 1 in all 0’s significand.
— Sisdisregarded
— More about this in IEEE FP standard
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Double Precision Floating Point Representation

= Next Multiple of Word Size (64 bits)

31 30 20 19
5] e | f
1 bit 11 bits 20 bits
| f (cont’d)
32 bits

= Double Precision (vs. Single Precision)
— Cyvariable declared as double
— Represent numbers almost as small as 2.0 x 10-3% to almost as large as 2.0 x 10308
— But primary advantage is greater accuracy due to larger significand
= Quad Precision Floating Point Representation (IEEE 754-2008 standard)
— Next Multiple of Word Size (128 bits)
— Unbelievable range of numbers
— Unbelievable precision (accuracy)
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IEEE 754 Floating Point Standard

Kahan: “Father” of the Floating point standard

S e f

= Single Precision (Double Precision similar)
= Sign bit: 1 means negative, 0 means positive
= Significand:
— To pack more bits, leading 1 implicit for normalized numbers
— 1+ 23 bits single, 1 + 52 bits double
— always true: Significand <1 (for normalized numbers)
= Note: 0 has no leading 1, so reserve exponent value O just for number 0

= Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP
numbers using integer compares.

= Could break FP number into 3 parts: compare signs, then compare exponents, then
compare significands

= Wanted it to be faster, single compare if possible, especially if positive numbers

= Then want order:
— Highest order bit is sign ( negative < positive)
— Exponent next, so big exponent => bigger #
— Significand last: exponents same => bigger #
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IEEE 754 Floating Point Standard (cont’d)

= Negative Exponent?
— 2'scomp?1.0x2tv.1.0x2*(1/2v. 2)

1/2(0111111111{000 0000 0000 0000 0000 0000]
2 |0 10000 0001]000 0000 0000 0000 0000 0000]

= This notation using unsigned integer compare of 1/2 v. 2 makes 1/2 > 2!

= |nstead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive
— 1.0x2'v.1.0x2*1(1/2v. 2)

1/2[010111 1110/000 0000 0000 0000 0000 0000
2 | 011000 0000]000 0000 0000 0000 0000 0000]

= (Called Biased Notation, where bias is a number subtracted to get real number

— |EEE 754 uses bias of 127 for single precision
— Subtract 127 from Exponent field to get actual value for exponent
— 1023 is bias for double precision

— Bias converts all single-precision exponents from -128 to +127 into unsigned numbers
from 0 to 255, and all double-precision exponents from -1024 to +1023 into unsigned
numbers from 0 to 2047.
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Summary of IEEE 754 Single Precision FP Standard

31 30 23 22

s] e | f

1b 8b 23b

= (-1)°x (1 +f) x 2(e1%)

= Double precision identical, except with exponent bias of 1023
= Exponent is treated as an unsigned number

= Bias will produce actual number

=  Example
— If the actual exponent is 4, the e field will be 4 + 127 = 131 (10000011,).
— If e contains 01011101 (93), the actual exponent is 93 - 127 = -34.

= Storing a biased exponent before a normalized mantissa means we can compare
IEEE values as if they were signed integers.
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Computing the Significand

= Method 1 (Fractions):
— Indecimal: 0.340 34 => 340,(,/1000,, => 34,,4)/1004,
— Inbinary: 0.110 => 110,,)/1000,,, = 616/8 1,

=> 11(2)/100(2) = 3(10)/4(10)

Advantage: less purely numerical, more thought oriented; this method usually helps
people understand the meaning of the significand better

= Method 2 (Place Values):

Convert from scientific notation

In decimal: 1.6732 = (1x10°) + (6x101) + (7x102) + (3x103) + (2x10%)

In binary:  1.1001 = (1x2°) + (1x21) + (0x22) + (0x23) + (1x2%)

Interpretation of value in each position extends beyond the decimal/binary point

Advantage: good for quickly calculating significand value; use this method for translating
FP numbers
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Example: Converting Binary IEEE 754 FP Number to Decimal

lo| 01101000 |101 0101 0100 0011 0100 0010

Sign: 0 => positive

Exponent:

— 01101000, =104,

— Bias adjustment: 104 -127 =-23
Significand:

0 1+ 1Ix214+0x22+ 1x23 +0x24 + 1x2 +...
= 14271423 425 427 4279 42714 42715 42717 4922
= 1.0, +0.666115

Represents: 1.666115,, %222~ 1.986*107 (about 2/10,000,000)
Another example: 1 01111100 11000000000000000000000
Decimal equivalent: —0.21875

ten
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Converting Decimal to IEEE 754 FP

Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it’s easy.
Show IEEE 754 FP representation of -0.75
~ -0.75=-3/4=-11,,./100,,, = -0.11
— Normalized to -1.1,,,, x 2°1.
—  (-1)5x (1 +f) x 2(e127)
— (-1)1 x (1 +.100 0000 ... 0000) x 2(126-127)

(1] 01111110 100 0000 0000 0000 0000 0000 |

two two

Not So Simple Case: If denominator is not an exponent of 2.

— Then we can’t represent number precisely, but that’s why we have so many bits in significand:
for precision

— Once we have significand, normalizing a number to get the exponent is easy.
— So how do we get the significand of a never-ending number?

Fact: All rational numbers have a repeating pattern when written out in decimal.
— Fact: This still applies in binary.

To finish conversion:
— Write out binary number with repeating pattern.

— Cut it off after correct number of bits (different for single v. double precision).
— Derive Sign, Exponent and Significand fields.
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More Examples

= What is the single-precision representation of 347.6257
— 347.625=101011011.101,,.
— Normalize the number: 101011011.101 =1.01011011101 x 28,
— The e field should contain: 8 + 127 = 1000 0111.
— Result: 010000111 01011011101000000000000

= What is the decimal equivalent of the following floating point number?

11| 1000 0001 | 111 0000 0000 0000 0000 0000 |
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Special Values

= The smallest and largest possible exponents e=00000000 and e=11111111 (and
their double precision counterparts) are reserved for special values.

= |f the mantissa is always (1 + f), then how is O represented?

— The fraction field f should be 0000...0000.
— The exponent field e contains the value 00000000.

— With signed magnitude, there are two zeroes: +0.0 and -0.0.

= There are representations of positive and negative infinity, which might sometimes

help with instances of overflow.
— The fraction f is 0000...0000.
— The exponent field e isset t0 11111111.

= Finally, there is a special “not a number” or NAN value, which can handle some

cases of errors or invalid operations such as 0.0/0.0.
— The fraction field f is set to any non-zero value.

— The exponent e will contain 11111111. Special Value s e f
0 X All-zeros | All-zeros
+0 0 All-ones | All-zeros
=00 1 All-ones | All-zeros
NAN X All-ones | Non-zero
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Range of IEEE 754 FP Single-Precision Numbers

=  What is the smallest positive single-precision value that can be represented?
— The smallest positive non-zero number is 1 * 2 7126 = 2 -126
— The smallest e is 00000001 (1).
— The smallest f is 00000000000000000000000 (0).
= The largest possible “normal” number is (2 - 2-23) * 2127 = 2128 _ 104,
— The largest possible e is 11111110 (254).
— The largest possible fis 11111111111111111111111 (=1 -2-23).

= |n comparison, the smallest and largest possible 32-bit integers in two’s
complement are only - 231 and 231-1.

= How can we represent so many more values in the IEEE 754 format, even though
we use the same number of bits as regular integers?
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Finiteness

»  There aren’t more IEEE numbers.

= With 32 bits, there are 232— 1, or about 4 billion, different bit patterns.
— These can represent 4 billion integers or 4 billion reals.

— But there are an infinite number of reals, and the IEEE format can only represent some
of the ones from about -2128 to +2128,

— Represent same number of values between 2" and 2"*1 as 2"*1 and 2"*2,

<« | |
~

1 |
2 4 8

f—
—
p— .
—
—
—r

G
o

= Thus, floating-point arithmetic has “issues”

— Small round-off errors can accumulate with multiplications or exponentiations, resulting
in big errors.

— Not Associative: Rounding errors can invalidate many basic arithmetic principles such as
the associative law, (x +y) + z=x+ (y + 2).

= The IEEE 754 standard guarantees that all machines will produce the same results
— but those results may not be mathematically correct!
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Limits of the IEEE representation

= Even some integers cannot be represented in the IEEE format.
int x =33554431;
float y = 33554431;
printf( "%d\n", x);
printf( "%f\n", y );

Answer: 33554431
33554432.000000
=  Some simple decimal numbers cannot be represented exactly in binary to begin
with.
— 0.10=0.0001100110011...
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The ‘0.1’ Dilemma

= During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an Iraqi Scud
missile, and 28 Americans were killed.
= Alater study determined that the problem was caused by the inaccuracy of the
binary representation of 0.10.
— The Patriot incremented a counter once every 0.10 seconds.

— It multiplied the counter value by 0.10 to compute the actual time.

= However, the (24-bit) binary representation of 0.10 actually corresponds to
0.099999904632568359375, which is off by 0.000000095367431640625.

= This doesn’t seem like much, but after 100 hours the time ends up being off by
0.34 seconds—enough time for a Scud to travel 500 meters!

= Professor Skeel (from UIUC) wrote a short article about this.
— Round-off Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

Multiplication and Floating Point
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Floating-Point Addition and Multiplication

=  Much more difficult than with integers; can’t just add/multiply significands!
= How do we do addition?

1. De-normalize to match larger exponent

2. Add significands to get resulting one

3. Normalize (& check for under/overflow)

4. Round if needed (may need to renormalize)

= EX: Assume we keep four bits of precision: 0.5 - 0.4375 = 1.000x21 - 1.110x22.
— De-normalize and add significands: 1.000x21 - 0.111x21 = 0.001 x 2-1.
— Normalize the sum checking for overflow: 1.000 x 24.
— No need for rounding in this case.

= |fsigns #, do a subtract. (Subtract similar)

=  Multiplication: To multiply two floating-point values, first multiply their magnitudes
and add their exponents.
— Then round and normalize the result
— The sign of the product is the exclusive-or of the signs of the factors.

= (Question: How do we integrate these into the integer arithmetic unit?
= Answer: We don’t!
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FP Addition Algorithm and Datapath

{ Start }

Sign | Exponent Significand Sign | Exponent Significand
1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its | |
exponent would match the larger exponent A .
N Compare
Sma" ALU exponents
2. Add the significands v
Exponent
gl | difference Smallest $IG + {largestSIG
»l
3. Normalize the sum, either shifting right and &1_) Lo 1) |_'( o 1)
incrementing the exponent or shifting left v
and decrementing the exponent La rgest EXP v _
Control Shift right Shift smaller
g number right
LWA i
Overflow or \\_Yes A4
underflow? Big ALU Add
v
‘ Exception } ¥ v ?
-0 1) |
4. Round the significand to the appropriate
i Increment or .
number of bits | “decrement | —>|  Shift left or right Normalize
l I
No > i Round
Still normalized? Rounding hardware
A A A
Sign | Exponent Significand
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Rounding

=  Math on real numbers = we worry about rounding to fit result in the significant
field.
=  Rounding occurs when converting...
— double to single precision
— floating point # to an integer
= FP hardware carries 3 extra bits of precision, and rounds for proper value
— Guard, Round, Sticky bits.

— The goal is to obtain final results as if the intermediate results were calculated using

infinite precision and then rounded.
mantissa format plus extra bits:

1 . XXXXXXXXXXXXXXXXXXXKXXXX 0 0 0

A A A A A

- round bit (r)
guard bit (g)
23 bit mantissa from a representation

I I I

| | | | - sticky bit (s)
I I I

I I -

I -

hidden bit
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Rounding (cont’d)

= When a mantissa is to be shifted in order to align radix points, the bits that fall off the least

significant end of the mantissa go into these extra bits.

= The guard & round bits are just 2 extra bits of precision used in calculations.

=  The sticky bit is an indication of what is/could be in lesser significant bits that are not kept. If a value

of 1 ever is shifted into the sticky bit position, that sticky bit remains a 1 ("sticks" at 1), despite
further shifts.

Example:

mantissa from representation,
must be shifted by 8 places (to align radix points)

Before first shift:

After
After
After
After
After
After
After
After

= |EEE four modes of roun

SJSouodbdh WN R

8

shift:

shifts:
shifts:
shifts:
shifts:
shifts:
shifts:
shifts:

aing:

.11000000000000000000100
.11100000000000000000010
.01110000000000000000001
.00111000000000000000000
.00011100000000000000000
.00001110000000000000000
.00000111000000000000000
.00000011100000000000000
.00000001110000000000000

(el elelNolNelNo ool
OO O0OO0OO0OKFrR OO0V
OO O0OO0ORrR OO OOH

— Round towards + oo: ALWAYS round “up”: 2.1 =3,-2.1 = -2
— Round towards - e=: ALWAYS round “down”:1.9=1,-1.9 = -2
— Truncate: Just drop the last bits (round towards 0)

— Round to (nearest) even (default): Normal rounding, almost: 2.5=2,3.5=4

11000000000000000000100

P RPRPRPOOOOODN
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MIPS Floating Point Architecture

=  MIPS supports the IEEE 754 SP & DP formats.

= Separate floating point instructions:
— Single Precision:
add.s, sub.s, mul.s, div.s, c.eq.s (also neq, It, le, gt, ge)
— Double Precision:
add.d, sub.d, mul.d, div.d, c.eq.d (also neq, It, le, gt, ge)
=  FP branch instructions: bclt, bcl1f
= FP comparisons set a bit to true/false, and a FP branch decides to branch based on
that bit.
= These are far more complicated than their integer counterparts

— Can take much longer to execute

= Problems:
— Inefficient to have different instructions take vastly differing amounts of time.
— Generally, a particular piece of data will not change FP to int within a program.
* Only 1 type of instruction will be used on it.
— Some programs do no FP calculations
— It takes lots of hardware relative to integers to do FP fast
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MIPS Floating Point Architecture

= 1990 Solution: Make a completely separate chip that handles only FP.
=  Coprocessor 1: FP chip

— contains 32 32-bit registers: $f0, Sf1, ...

— most of the registers specified in .s and .d instructions refer to this set

— separate load and store: lwcl and swcl

n u

(“load word coprocessor 17, “store ...”)
— The base registers for FP data transfers remain integers

= Double Precision: by convention, even/odd pair contain one DP FP number: $f0/5f1,
Sf2/Sf3, ..., Sf30/5f31

— Evenregister is the name

= Ex:load 2 SP numbers from memory, add them and store result back:

- lwcl Sf4, 4(Ssp)
- lwcl Sf6, 8(Ssp)
—  add.s $f2, $f4, 5f6
- swcl $f2, 12(Ssp)
= Ex:load 2 DP numbers from memory, add them and store result back:
- lwcl Sf4, 4(Ssp) # loads f4, f5
— lwcl Sf6, 8(Ssp) # loads 6, f7
— add.d Sf2, Sf4, Sfe #sumin f2, f3
— swcl $f2, 12(Ssp) # stores f2, 3
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FP Hardware

When floating point was introduced in microprocessors, there wasn’t enough
transistors on chip to implement it.

— You had to buy a floating point co-processor (e.g., the Intel 8087)
As a result, many ISA’s use separate registers for floating point.

Modern transistor budgets enable floating point to be on chip.
— Intel’s 486 was the first x86 with built-in floating point (1989)

Even the newest ISA’s have separate register files for floating point.
— Makes sense from a chip floor-planning perspective.
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FPU Like Co-Processor on Chip

U2 Cache v b

-

-1 {
:ﬁ <h Scan Align
. S Micro-code

Clock Generator

DDR Memory Interface

&y

Opteron
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Example: FP Matrix Multiplication

void mm(double x[][],double y[][], double z[][]) {
int 1i,3,k;
for (i=0;1'=32;i++) {
for (j=0;3'=32;j++) {
for (k=0;k!'=32;k++) {
x[1][J] += y[i]1[k] * =z[k][3]’
}

¥
= X, Y, zare 32x32 2-Dimensional arrays

= They are stored like 32 1-D arrays, except each element is a 32 element array.
= Soindices skip 32-element arrays corresponding to rows (row-major).

mm :
1i $t1,32 # row size/loop end
1i $s0,0 # init i=0
Li: 1li §s1,0 # init j=0
Lj: 1li $s2,0 # init k=0
sll $t2,$s0,5 # row-size of x
addu $t2,$t2,$s1 # $t2=i*32+3
sll $t2,$t2,3 # byte offset of [i][]]
addu $t2,%$a0,$t2 # add base address to offset
1.d $£4,0(5t2) # $£f4 = 8 bytes of x[i][j]
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Example (cont’d)

Lk: sll
addu

sll
addu
l.d

sll
addu

sll
addu
l.d

$t0,$s2,5
$t0,$t0,$s1
$t0,$t0,3
$t0,%a2,5$t0
$£16,0($t0)
$t2,$s0,5
$t0,$t0,$s2
$t0,$t0,3
$t0,%al,$t0
$£18,0($t0)

# row-size of =z
# $t0=i*32+7
# byte offset of [k][j]
# add base address to offset
# $£f4 = 8 bytes of z[k][]]
# row-size of y
# $t0=i*32+k
# byte offset of [i] [k]
# add base address to offset
# $£18 = 8 bytes of y[i] [k]

mul.d $£16,$£18,$£16 # S$flé=y[i] [k]*z[k][]]
add.d S5£4,$£4,8£16 # $f4=x[i][j]  +y[il[k]l*z[k][]]

addiu $s2,$s2,1

bne
s.d

$s2,$tl,Lk
$£4,0($t2)

addiu $s1,$s1,1

bne

$s1,$t1,Lj

addiu $s0,$s0,1

bne

$s0,$tl,Li

k++
k-loop
x[1][]]1=5£4

j-loop

i++
i-loop

#
#
#
# j++
#
#
#
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