EECE 321: Computer Organization

Mohammad M. Mansour

Dept. of Electrical and Compute Engineering

American University of Beirut

Lecture 13: Floating-Point Arithmetic

Announcements

Midterm

Notes on Integer Arithmetic in MIPS

- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers: 0 to 2^{N-1}
 - Signed Integers (Two's Complement): $-2^{(N-1)}$ to $2^{(N-1)}-1$.
- In case of overflow (result doesn't fit in 32 bits), what should be done?
- MIPS designers provide instructions that cause overflow to be detected (add), and instructions that do not cause overflow to be detected (addu)
- It is up to the programmer to deal with overflow:
 - C ignores overflow, hence MIPS C compilers always generate the unsigned version of the arithmetic instructions addu, addiu, subu no matter what the type of the variable is.
 - In Fortran, overflow is not ignored, and MIPS Fortran compilers pick the appropriate instruction depending on the type of the operands.
- MIPS detects overflow with an exception (also called interrupt)
- <u>Exceptions</u>: An exception is simply an unscheduled procedure (function) call
 - The address of the instruction that overflowed is saved in a register and the computer jumps to a predefined address to invoke the appropriate routine for that exception.
 - The interrupted address is saved so that in some situations the program can continue after corrective code is executed.

Notes on Integer Arithmetic in MIPS (cont'd)

- MIPS includes a register called the exception program counter (EPC) to contain the address of the instruction that caused the exception.
- The instruction *move from system control* (mfc0) is used to copy EPC (and other special registers) into a general-purpose register so that MIPS software has the option of returning to the offending instruction. mfc0 \$s1, \$epc
- Although MIPS can trap overflow, there is no conditional branch to test overflow. Is it possible to write a sequence of instructions that discovers overflow for signed/ unsigned numbers and branch accordingly to some procedure to handle the overflow?
- Multiplication and Division in MIPS: (R-format)
 - Mult(Multu) \$s0, \$s1
 - Div(Divu) \$s0, \$s1
- Same hardware unit used for both (review EECE 320)
 - Result is produced in a 64-bit register part of hardware unit

Notes on Integer Arithmetic in MIPS (cont'd)

- Multiply: HI:LO represent product
 - MIPS provides 2 instructions mfhi (mflo) move from HI (move from LO) to move HI (LO) into a general purpose register. EX: mfhi \$s0
- Multiply pseudo-instructions: mul (mulo,mulou) \$rd, \$rs1, \$rs2
- Divide: LO = \$s2/\$s3 (quotient), HI = Ss2 mod \$s3 (remainder); use mfhi (mflo)
- Divide pseudo-instructions: Div (Divu) \$rd,\$rs1,\$rs2

Real Numbers

- Decimal or real numbers:
 - Very large numbers? (seconds/century) $3,155,760,000_{10}$ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter) $0.00000001_{10} (1.0_{10} \times 10^{-8})$
 - Rationals (repeating pattern)

Irrationals

$$2^{1/2}$$
 (1.414213562373...)

Transcendentals

$$e$$
 (2.718...), π (3.141...)

Represent real numbers in scientific notation:

Scientific Notation

- Normalized scientific notation: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: 0.1×10^{-8} , 10.0×10^{-10} .
- Binary scientific notation:

- Computer arithmetic that supports it called *floating point*, because it represents numbers where binary point is not fixed, as it is for integers
 - Declare such variable in C as float.

Floating Point Representation

- Normal format: +1.xxxxxxxxxxx_{two}*2^{yyyy}_{two}
- Multiple of Word Size (32 bits)

- S represents Sign
- Exponent (e) represents y's (in 2's complement)
- Significand (f) represents x's
- Represent numbers as small as 2⁻¹²⁸ to as large as 1.1111...₂x 2¹²⁷.
- Representation of number 0:
 - Has exponent all 0's so that hardware doesn't attach 1 in all 0's significand.
 - S is disregarded
 - More about this in IEEE FP standard

Floating Point Representation (cont'd)

- What if result too large? (> 1.1111...₂x 2¹²⁷)
 - Overflow!
 - Overflow → Exponent larger than represented in 8-bit Exponent field
- What if result too small? (>0, < 2⁻¹²⁸)
 - Underflow!
 - Underflow → Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?

Double Precision Floating Point Representation

Next Multiple of Word Size (64 bits)

31 30 20 19 0

S e f

1 bit 11 bits 20 bits

f (cont'd)

32 bits

- Double Precision (vs. Single Precision)
 - C variable declared as double
 - Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
 - But primary advantage is greater accuracy due to larger significand
- Quad Precision Floating Point Representation (IEEE 754-2008 standard)
 - Next Multiple of Word Size (128 bits)
 - Unbelievable range of numbers
 - Unbelievable precision (accuracy)

Quad Precision Floating Point Representation

- Officially referred to as binary128.
- Format:
 - Sign bit: 1
 - Exponent width: 15
 - Significand precision: 112 (113 implicit)

exponent

Significand

15b

112b

IEEE 754 Floating Point Standard

Kahan: "Father" of the Floating point standard

- Single Precision (Double Precision similar)
- Sign bit: 1 means negative, 0 means positive
- Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - 1 + 23 bits single, 1 + 52 bits double
 - always true: Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0
- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using <u>integer</u> compares.
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
 - Highest order bit is sign (negative < positive)
 - Exponent next, so big exponent => bigger #
 - Significand last: exponents same => higger #

IEEE 754 Floating Point Standard (cont'd)

- Negative Exponent?
 - 2's comp? 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)
- This notation using unsigned integer compare of 1/2 v. 2 makes 1/2 > 2!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive
 - 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)
- Called <u>Biased Notation</u>, where bias is a number subtracted to get real number
 - IEEE 754 uses bias of 127 for single precision
 - Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision
 - Bias converts all single-precision exponents from -128 to +127 into unsigned numbers from 0 to 255, and all double-precision exponents from -1024 to +1023 into unsigned numbers from 0 to 2047.

Summary of IEEE 754 Single Precision FP Standard

- $(-1)^S \times (1 + f) \times 2(e^{-127})$
- Double precision identical, except with exponent bias of 1023
- Exponent is treated as an unsigned number
- Bias will produce actual number
- Example
 - If the actual exponent is 4, the e field will be $4 + 127 = 131 (10000011_2)$.
 - If e contains 01011101 (93), the actual exponent is 93 127 = -34.
- Storing a biased exponent before a normalized mantissa means we can compare IEEE values as if they were signed integers.

Computing the Significand

Method 1 (Fractions):

- In decimal: $0.340_{(10)} => 340_{(10)}/1000_{(10)}$
- In binary: $0.110_{(2)} \Rightarrow 110_{(2)}/1000_{(2)} = 6_{(10)}/8_{(10)}$ => $11_{(2)}/100_{(2)} = 3_{(10)}/4_{(10)}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Method 2 (Place Values):

- Convert from scientific notation
- In decimal: $1.6732 = (1x10^{0}) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})$
- In binary: $1.1001 = (1x2^{-0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

 $=>34_{(10)}/100$

Example: Converting Binary IEEE 754 FP Number to Decimal

0 0110 1000 101 0101 0100 0011 0100 0010

- Sign: 0 => positive
- Exponent:
 - 0110 1000_{two} = 104_{ten}
 - Bias adjustment: 104 127 = -23
- Significand:

```
0 	 1 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 1x2^{-5} + ...
= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22}
= 1.0_{ten} + 0.666115_{ten}
```

- Represents: $1.666115_{ten} *2^{-23} \sim 1.986 *10^{-7}$ (about 2/10,000,000)
- Decimal equivalent: 0.21875

Converting Decimal to IEEE 754 FP

- Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it's easy.
- Show IEEE 754 FP representation of -0.75
 - -0.75 = -3/4 = -11_{two}/100_{two} = -0.11_{two}
 - Normalized to -1.1_{two} x 2^{-1} .
 - (-1)^S x (1 + f) x 2^(e-127)
 - (-1)1 x (1 + .100 0000 ... 0000) x 2⁽¹²⁶⁻¹²⁷⁾

1 0111 1110 100 0000 0000 0000 0000 0000

- Not So Simple Case: If denominator is not an exponent of 2.
 - Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
 - Once we have significand, normalizing a number to get the exponent is easy.
 - So how do we get the significand of a never-ending number?
- Fact: All rational numbers have a repeating pattern when written out in decimal.
 - Fact: This still applies in binary.
- To finish conversion:
 - Write out binary number with repeating pattern.
 - Cut it off after correct number of bits (different for single v. double precision).
 - Derive Sign, Exponent and Significand fields.