EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 13: Floating-Point Arithmetic

Announcements

= Midterm

Prof. M. Mansour EECE 321: Computer Organization

Notes on Integer Arithmetic in MIPS

= Computers are made to deal with numbers
= What can we represent in N bits?
— Unsigned integers: 0 to 2N -1
— Signed Integers (Two’s Complement): — 2(N-1) to 2(N-1)— 1,
= |n case of overflow (result doesn’t fit in 32 bits), what should be done?

= MIPS designers provide instructions that cause overflow to be detected (add), and
instructions that do not cause overflow to be detected (addu)
= |tis up to the programmer to deal with overflow:

— Cignores overflow, hence MIPS C compilers always generate the unsigned version of the
arithmetic instructions addu, addiu, subu no matter what the type of the variable is.

— In Fortran, overflow is not ignored, and MIPS Fortran compilers pick the appropriate
instruction depending on the type of the operands.

= MIPS detects overflow with an exception (also called interrupt)

= Exceptions: An exception is simply an unscheduled procedure (function) call

— The address of the instruction that overflowed is saved in a register and the computer
jumps to a predefined address to invoke the appropriate routine for that exception.

— The interrupted address is saved so that in some situations the program can continue
after corrective code is executed.

Prof. M. Mansour EECE 321: Computer Organization 3

Notes on Integer Arithmetic in MIPS (cont’d)

MIPS includes a register called the exception program counter (EPC) to contain the
address of the instruction that caused the exception.

The instruction move from system control (mfc0) is used to copy EPC (and other
special registers) into a general-purpose register so that MIPS software has the
option of returning to the offending instruction. mfcO Ss1, Sepc

Although MIPS can trap overflow, there is no conditional branch to test overflow. Is
it possible to write a sequence of instructions that discovers overflow for signed/
unsigned numbers and branch accordingly to some procedure to handle the
overflow?
Multiplication and Division in MIPS: (R-format)

— Mult(Multu) Ss0, Ss1

— Div(Divu) Ss0, Ss1
Same hardware unit used for both (review EECE 320)

— Result is produced in a 64-bit register part of hardware unit

64-bit register
HI LO

<4+— 32 —¢— 32 —»

Prof. M. Mansour EECE 321: Computer Organization 4

Notes on Integer Arithmetic in MIPS (cont’d)

= Multiply: HI:LO represent product

— MIPS provides 2 instructions mfhi (mflo) move from HI (move from LO) to move HI (LO)
into a general purpose register. EX: mfhi SsO

= Multiply pseudo-instructions: mul (mulo,mulou) Srd, Srs1, Srs2
= Divide: LO = $s2/Ss3 (quotient), HI = Ss2 mod $s3 (remainder); use mfhi (mflo)
= Divide pseudo-instructions: Div (Divu) Srd,Srs1,5rs2

Prof. M. Mansour EECE 321: Computer Organization

Real Numbers

= Decimal or real numbers:

— \Very large numbers? (seconds/century)
3,155,760,000,, (3.15576,, x 10°)

— Very small numbers? (atomic diameter)
0.00000001,, (1.0, x 10°8)

— Rationals (repeating pattern)

2/3 (0.666666666. . .)
— lIrrationals
21/2 (1.414213562373...)

— Transcendentals
e (2.718...), ® (3.141...)

= Represent real numbers in scientific notation:

mantissa _— exponent
6.02,, x 1023

decimal point radix (base)

Prof. M. Mansour EECE 321: Computer Organization

Scientific Notation

= Normalized scientific notation: no leadings Os (exactly one digit to left of decimal
point)
= Alternatives to representing 1/1,000,000,000
— Normalized: 1.0 x 107
— Not normalized: 0.1 x 108, 10.0 x 1019,

= Binary scientific notation:

mantissa __— exponent

lftwo X 21\

“binary point” radix (base)

= Computer arithmetic that supports it called floating point, because it represents
numbers where binary point is not fixed, as it is for integers
— Declare such variable in C as float

Prof. M. Mansour EECE 321: Computer Organization

Floating Point Representation

" Normal format: +1.XXXXXXXXXXy0 " 2YYY 4
= Multiple of Word Size (32 bits)

31 30 23 22

(0]

|S | Exponent (e) | Significand (f)

1 bit 8 bits 23 bits

= Srepresents Sign

= Exponent (e) represents y’s (in 2’s complement)

= Significand (f) represents x’s

= Represent numbers as small as 27128 to as large as 1.1111...,x 2127,

= Representation of number O:
— Has exponent all 0’s so that hardware doesn’t attach 1 in all 0’s significand.
— Sisdisregarded
— More about this in IEEE FP standard

Prof. M. Mansour EECE 321: Computer Organization

Floating Point Representation (cont’d)

= What if result too large? (> 1.1111...,x 21%/)

— Overflow!

— Overflow =2 Exponent larger than represented in 8-bit Exponent field
= What if result too small? (>0, < 2128

— Underflow!

— Underflow =» Negative exponent larger than represented in 8-bit Exponent field

= How to reduce chances of overflow or underflow?

Prof. M. Mansour EECE 321: Computer Organization

Double Precision Floating Point Representation

= Next Multiple of Word Size (64 bits)

31 30 20 19
5] e | f
1 bit 11 bits 20 bits
| f (cont’d)
32 bits

= Double Precision (vs. Single Precision)
— Cyvariable declared as double
— Represent numbers almost as small as 2.0 x 10-3% to almost as large as 2.0 x 10308
— But primary advantage is greater accuracy due to larger significand
= Quad Precision Floating Point Representation (IEEE 754-2008 standard)
— Next Multiple of Word Size (128 bits)
— Unbelievable range of numbers
— Unbelievable precision (accuracy)

Prof. M. Mansour EECE 321: Computer Organization

10

Quad Precision Floating Point Representation

= Officially referred to as binary128.
= Format:
— Sign bit: 1
— Exponent width: 15
— Significand precision: 112 (113 implicit)

exponent Significand

15b 112b

Prof. M. Mansour EECE 321: Computer Organization

11

IEEE 754 Floating Point Standard

Kahan: “Father” of the Floating point standard

S e f

= Single Precision (Double Precision similar)
= Sign bit: 1 means negative, 0 means positive
= Significand:
— To pack more bits, leading 1 implicit for normalized numbers

— 1+ 23 bits single, 1 + 52 bits double
— always true: Significand < 1 (for normalized numbers)

= Note: 0 has no leading 1, so reserve exponent value 0 just for number O

= Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records
with FP numbers using integer compares.

= Could break FP number into 3 parts: compare signs, then compare exponents, then
compare significands

= Wanted it to be faster, single compare if possible, especially if positive numbers

= Then want order:
— Highest order bit is sign (negative < positive)
— Exponent next, so big exponent => bigger #

—Significand |ast: exponents same => biscor #

Prof. M. Mansour EECE 321: Computer Organization 12

IEEE 754 Floating Point Standard (cont’d)

= Negative Exponent?
— 2'scomp?1.0x2tv.1.0x2*(1/2v. 2)

1/2(0111111111{000 0000 0000 0000 0000 0000]
2 |0 10000 0001]000 0000 0000 0000 0000 0000]

= This notation using unsigned integer compare of 1/2 v. 2 makes 1/2 > 2!

= |nstead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive
— 1.0x2'v.1.0x2*1(1/2v. 2)

1/2[010111 1110/000 0000 0000 0000 0000 0000
2 | 011000 0000]000 0000 0000 0000 0000 0000]

= (Called Biased Notation, where bias is a number subtracted to get real number

— |EEE 754 uses bias of 127 for single precision
— Subtract 127 from Exponent field to get actual value for exponent
— 1023 is bias for double precision

— Bias converts all single-precision exponents from -128 to +127 into unsigned numbers
from 0 to 255, and all double-precision exponents from -1024 to +1023 into unsigned
numbers from 0 to 2047.

Prof. M. Mansour EECE 321: Computer Organization 13

Summary of IEEE 754 Single Precision FP Standard

31 30 23 22
T ; i

1b 8b 23b

= (-1)°x (1 +f) x 2(e1%)

= Double precision identical, except with exponent bias of 1023
= Exponent is treated as an unsigned number

= Bias will produce actual number

= Example
— If the actual exponent is 4, the e field will be 4 + 127 = 131 (10000011,).
— If e contains 01011101 (93), the actual exponent is 93 - 127 = -34.

= Storing a biased exponent before a normalized mantissa means we can compare
IEEE values as if they were signed integers.

Prof. M. Mansour EECE 321: Computer Organization 14

Computing the Significand

= Method 1 (Fractions):
— In decimal: 0.340 4 => 340,,,/1000,4,
— Inbinary: 0.110 => 110,,)/1000,,, = 616/8 1,

=> 11(2)/100(2) = 3(10)/4(10)

Advantage: less purely numerical, more thought oriented; this method usually helps
people understand the meaning of the significand better

= Method 2 (Place Values):

Convert from scientific notation

In decimal: 1.6732 = (1x10°) + (6x101) + (7x102) + (3x103) + (2x10%)

In binary: 1.1001 = (1x2°) + (1x21) + (0x22) + (0x23) + (1x2%)

Interpretation of value in each position extends beyond the decimal/binary point

Advantage: good for quickly calculating significand value; use this method for translating
FP numbers

Prof. M. Mansour EECE 321: Computer Organization 15

=> 34,,,,/10

Example: Converting Binary IEEE 754 FP Number to Decimal

lo| 01101000 |101 0101 0100 0011 0100 0010

Sign: 0 => positive
= Exponent:

— 0110 1000,,,, = 104,,_,
— Bias adjustment: 104 -127 =-23
= Significand:

0 1+ 1Ix214+0x22+ 1x23 +0x24 + 1x2 +...
= 14271423 425 427 4279 42714 42715 42717 4922
= 1.0, +0.666115

= Represents: 1.666115,,,*223~ 1.986*10” (about 2/10,000,000)
= Another example: 1 01111100 11000000000000000000000
= Decimal equivalent: —0.21875

ten

Prof. M. Mansour EECE 321: Computer Organization 16

Converting Decimal to IEEE 754 FP

Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it’s easy.
Show IEEE 754 FP representation of -0.75
~ -0.75=-3/4=-11,,,/100,,, = -0.11
— Normalized to -1.1,,,, x 2°%.
— (-1)°x (1 +f) x 2(e127)
— (1)1 x (1 +.100 0000 ... 0000) x 2(126-127)

11 011111101 100 0000 0000 0000 0000 0000

Not So Simple Case: If denominator is not an exponent of 2.

— Then we can’t represent number precisely, but that’s why we have so many bits in
significand: for precision
— Once we have significand, normalizing a number to get the exponent is easy.

two two

— So how do we get the significand of a never-ending number?

Fact: All rational numbers have a repeating pattern when written out in decimal.
— Fact: This still applies in binary.

To finish conversion:
— Write out binary number with repeating pattern.
— Cut it off after correct number of bits (different for single v. double precision).
— Derive Sign, Exponent and Significand fields.

Prof. M. Mansour EECE 321: Computer Organization 17

