EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 11: MIPS Instruction Formats

Announcements

Prof. M. Mansour EECE 321: Computer Organization

opcode rs rt immediate

Branch Example 6b 56 | 5b 16b

= MIPS Code:
Loop: beq S$9, SO, End
add S8, S8, 510
addi S9,S9, -1
j Loop
End:
= beq branch is [-Format:
— opcode =4 (look up in table)
— rs =9 (first operand)
— rt =0 (second operand)
— immediate = ??7?
= |mmediate Field:

— Number of instructions to add to (or subtract from) the PC, starting at the instruction
following the branch.

— In beq case, immediate = 3

decimal opcode rs rt immediate
4 9 0 3
binar opcode rs rt immediate
y 000100 | 01001 | 00000 0000 0000 0000 0011

Prof. M. Mansour EECE 321: Computer Organization

Questions on PC-Relative Addressing

= Does the value in branch field change if we move the code?
= What do we do if destination is > 2%° instructions away from branch?

= Since it’s limited to + 21° instructions, doesn’t this generate lots of extra MIPS
instructions?

= Why do we need all these addressing modes? Why not just one?

Prof. M. Mansour EECE 321: Computer Organization

J-Format Instructions

= For branches, we assumed that we don’t want to branch too far, so we can specify
change in PC.

= For general jumps (j and jal), we may jump to anywhere in memory.
= |deally, we could specify a 32-bit memory address to jump to.

= Unfortunately, we can’t fit both a 6-bit opcode and a 32-bit address into a single
32-bit word, so we compromise.

= Define “fields” as follows:

opcode target address
6b 26b

= Opcode for J-Formats is 2 or 3.
= Key Concepts

— Keep opcode field identical to R-format and I-format for consistency.
— Combine all other fields to make room for large target address.

= For now, we can specify 26 bits of the 32-bit bit address.

= Note that, just like with branches, jumps will only jump to word aligned addresses,
so last two bits are always 00 (in binary).

Prof. M. Mansour EECE 321: Computer Organization

J-Format Instructions

= Now, 28 bits out of the 32-bit address have been specified.

= Where do we get the other 4 bits?
— By definition, take the 4 highest order bits from the PC.

— Technically, this means that we cannot jump to anywhere in memory, but it’s adequate
99.9999...% of the time, since programs aren’t that long

* only if straddle a 256 MB boundary

— If we absolutely need to specify a 32-bit address, we can always put it in a register and
use the jr instruction (which is an R-Format instruction).

= Summary:
— New PC={PC[31..28], target address, 00 }

= Understand where each part came from!

= Note:{,, } means concatenation
{ 4 bits, 26 bits, 2 bits } = 32 bit address

- {1010,111112111211122111221122111,00}=10101111111111111111111111111100
= Note: Book uses the symbol ‘| |’

Prof. M. Mansour EECE 321: Computer Organization

MIPS Addressing Modes

1. Immediate addressing

| op l rs l rt | Immediate |

2. Register addressing

| op | rs | rt | rd I - | funct | Registers
L I Register
3. Base addressing
| op | rs | rt | Address | Memory
1
| Register | é—)—» | Halfword Word
I 1
4. PC-relative addressing
[op [s [it | Address | Memory
| PC | C-b— Word
[
5. Pseudodirect addressing
| op | Address | Memory
L
| PC | Cb— Word

addi

add

lw/sw

beq

Prof. M. Mansour

EECE 321: Computer Organization

Summary of MIPS Instruction Formats

= MIPS Machine Language Instruction:
32 bits representing a single instruction

R opcode rs rt rd shamt funct
6b 5b 5b 5b 5b 6b

| opcode rs rt immediate
6b 5b 5b 16b

J opcode target address
6b 26b

= Branches use PC-relative addressing
= Jumps use absolute addressing

Prof. M. Mansour EECE 321: Computer Organization

Disassembling Machine Instructions

compiler assembler
—_— —_—

C Code MIPS Instructions Machine Instructions
— —

Dis-assembler

= How do we convert 1’s and 0’s to C code?
— Machine language = C?

= For each 32-bit word:
— Look at opcode: 0 means R-Format, 2 or 3 mean J-Format, otherwise I-Format.
— Use instruction type to determine which fields exist.

— Write out MIPS assembly code, converting each field to name, register number/name, or
decimal/hex number.

— Logically convert this MIPS code into valid C code. Always possible? Unique?

= Example: Here are six machine language instructions in hexadecimal:

0x00001025
0x0005402A
0x11000003
0x00441020
Ox20AS5FFFF

0x08100001

= Let the first instruction be at address 4,194,304ten (0x00400000).

Prof. M. Mansour EECE 321: Computer Organization

Example (cont’d)

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111717211111211
00001000000100000000000000000001

Next step: identify opcode and format

The six machine language instructions in binary:

0x00001025
0x0005402A
0x11000003
0x00441020
Ox20ASFFFF
0x08100001

R opcode rs rt rd shamt funct
0 5b 5b 5b 5b 6b
. opcode rs rt immediate
1, 4-31 5b 5b 16b
opcode target address
Y 2 or 3 26b
00000000000000000001000000100101 0x00001025
00000000000001010100000000101010 0x0005402A
00010001000000000000000000000011 0x11000003
00000000010001000001000000100000 0x00441020
0010000010100101111712117121171211712111 Ox20AS5FFFF
00001000000100000000000000000001 0x08100001

Prof. M. Mansour

EECE 321: Computer Organization

10

Example (cont’d)

= Look at opcode: 0 means R-Format, 2 or 3 mean J-Format, otherwise I-
Format. Next step: separation of fields

= Fields separated based on format/opcode:

Format
R 0 0 0 2 0 37
R 0 0 5 8 0 42
| 4 8 0 +3
R 0 2 4 2 0 32
| 8 5 5 -1
J 2 1,048,577

= Next step: translate (“disassemble”) to MIPS assembly instructions

Prof. M. Mansour EECE 321: Computer Organization 11

Example (cont’d)

MIPS Assembly (Part 1):
— Address: Assembly instructions:

0x00400000 or $2,30,30 0 0 0 2 0 37
0x00400004 slt S8, SO, S5 0 0 5 8 0 42
0x00400008 beq $8, $0, 3 4 8 0 +3
0x0040000c add $2, $2, $4 0 2 4 2 0 32
0x00400010 addi $5, $5, -1 8 5 5 -1
0x00400014 j 0x100001 2 1,048,577

= Better solution: translate to more meaningful MIPS instructions (fix the branch/jump
and add labels, registers)

= MIPS Assembly (Part 2):
or Sv0, SO, SO
Loop: slt StO, SO, Sal
beq St0, SO, Exit
add Sv0, Sv0, Sa0
addi Sail, Sail, -1
J Loop
Exit:
= Note: PCforjis:
— {PC[31..28], target address, 00 } = 0000 01 0000 0000 0000 0000 0001 00
= Next step: translate to C code.

Prof. M. Mansour EECE 321: Computer Organization 12

Example (cont’d)

Before

0x00001025
0x0005402A
0x11000003
0x00441020
O0x20AS5FFFF
0x08100001

= After C code (Mapping below)
— SvO: product
— $a0: multiplicand
— Sal: multiplier
= product = 0;
while (multiplier > 0) {
product += multiplicand;
multiplier -=1;

or $v0,$0,5$0
Loop: slt $t0,$0,S$al
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $al,$al,-1
I Loop
Exit:

Prof. M. Mansour EECE 321: Computer Organization

13

