EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 10: MIPS Instruction Formats

Announcements

= |nstall and learn the SPIM tool (from textbook CD)
— MIPS assembler simulator
= Assighments:
— HWS3 due Monday Mar. 15 @ 5:00pm
— MP1 due Friday March 12 @ 5:00pm
* Submit on Moodle (one submission per team)
= Makeup lectures on the following dates (SPIM, Modelsim, problem session):
— M: Mar. 15
— F: Mar. 19
— M: Mar. 22

= Makeup lectures on Saturday March 13
— Time and place TBA

Prof. M. Mansour EECE 321: Computer Organization

Instructions as Numbers

= All data and instructions are stored in memory as numbers, and hence must have
addresses.
= Currently all data we work with is in words (32-bit blocks):
— Each register is a word
— Iw and sw both access memory one word at a time.

= So how do we represent instructions?
— MIPS wants simplicity: since data is in words, make instructions be (32-bit) words too

= One word is 32 bits, so divide instruction word into “fields”.
— Each field tells computer something about instruction.

— We could define different fields for each instruction, but MIPS is based on regularity and
simplicity, so define 3 basic types of instruction formats:

* |-format

* J-format

* R-format
= |-format: used for instructions with immediates, Iw and sw (since the offset counts
as an immediate), and the branches (beqg and bne), (but not the shift instructions)

= J-format: used for j and jal
= R-format: used for all other instructions

Prof. M. Mansour EECE 321: Computer Organization 3

R-Format Instructions

= Define “fields” with the following number of bits: 6 +5+5+5+5+6 =32

opcode rs rt rd shamt funct
6b 5b 5b 5b 5b 6b

= What do these field integer values tell us?

opcode: partially specifies what instruction it is
Note: This number is equal to 0 for all R-Format instructions.

funct: combined with opcode, this number exactly specifies the variant of the
instruction.

rs (Source Register): generally used to specify register containing first operand

rt (Target Register): generally used to specify register containing second operand (note
that name is misleading)

rd (Destination Register): generally used to specify register which will receive result of
computation

shamt: This field contains the amount a shift instruction will shift by. Shifting a 32-bit
word by more than 31 is useless, so this field is only 5 bits (so it can represent the
numbers 0-31). This field is set to 0 in all but the shift instructions.

= See green cover of P&H textbook for a detailed description of field usage for each
instruction.

Appendix B.10 lists all MIPS R2000 Assembly instructions and their format.

Prof. M. Mansour EECE 321: Computer Organization

opcode rs rt rd shamt funct

R-Format Example 6b 56 | 5b | sb | 5b 6b
= MIPS Instruction: add S8, S9, $10
— opcode =0 (look up in table in book) $zero 0
— funct =32 (look up in table in book) $v0-$vl 2-3
— rs =9 (first operand) $a0-$a3 4-7
— rt =10 (second operand) $t0-$t7 8-15
— rd = 8 (destination) $s0-$s7 16-23
— shamt =0 (not a shift) $t8-$t9 24-25
= Decimal number per field representation: $gp 28
$sp 29
opcode rs rt rd shamt funct s£p 30
0 9 10 8 0 32
$ra 31

= Binary number per field representation:

opcode rs rt rd shamt funct
000000 { 01001 | 01010 | 01000 00000 | 100000

= hexrepresentation: Ox 012A 4020
= Decimal representation: 19,546,144(10)
= (Called Machine Language Instruction

Prof. M. Mansour EECE 321: Computer Organization 5

I-Format Instructions

What about instructions with immediates?
— 5-bit field only represents numbers up to 31: immediates may be much larger than this
— Ideally, MIPS would have only 1 inst. format: unfortunately, we need to compromise
Define new instruction format that is partially consistent with R-format:
— First notice that, if instruction has immediate, then it uses at most 2 registers.
Define “fields” with the following number of bits each: 6 + 5+ 5 + 16 = 32 bits

opcode rs rt funct
6b 5b 5b 16b

Key Concept: Only one field is inconsistent with R-format. Most importantly,
opcode is still in same location.

— opcode: same as before except that, since there’s no funct field, opcode uniquely
specifies an instruction in I-format. opcode is either 1, or 4-31.

— This also answers question of why R-format has two 6-bit fields to identify instruction
instead of a single 12-bit field: in order to be consistent with other formats.

— rs: specifies the only register operand (if there is one)
— rt: specifies register which will receive result of computation

— Immediate: addi, slti, sltiu, the immediate is sign-extended to 32 bits. Thus, it’s treated
as a signed integer. 16 bits = can be used to represent immediates up to 21° different
values

Prof. M. Mansour EECE 321: Computer Organization

immediate

I-Format Example 6 5 5 16

MIPS Instruction: addi $21, S22, -50

Name Register Number

— opcode = 8 (look up in table in book) $zero 0
— rs =22 (register containing operand) Sv0-$vl 2-3
— rt =21 (target register) $a0-$a3 4-7
— immediate = -50 (by default, this is decimal) $t0-$t7 8-15
= Decimal/field representation: $s0-$s7 16-23
$t8-$t9 24-25
opcode rs rt immediate
8 22 21 -50 39p 28
. .) $sp 29
= Binary/field representation: stp 20
opcode rs rt immediate $ra 31

001000 | 10110 | 10101 1111 1111 1100 1110

= hexadecimal representation: 0x22D5 FFCE
= decimal representation: 584,449,998, .

Prof. M. Mansour EECE 321: Computer Organization 7

Another Example

" Which instruction has same representation as 35 ,,?

1. add $0, $0, $0 opcode rs rt rd shamt funct
2. subu $50,550,$s0 opcode rs rt rd shamt funct
3. lw S0, 0(S0) opcode rs rt offset

4. addi S0, SO, 35 opcode rs rt immediate

5. subu S0, $0, SO opcode rs rt rd shamt funct

6. Not possible

= Registers numbers and names:

— 0:50, .. 8:St0, 9:5t1, ..15: St7, 16: Ss0, 17: Ss1, .. 23: Ss7
= Opcodes and function fields (if necessary)

— add: opcode =0, funct = 32

— subu: opcode =0, funct =35

— addi: opcode =8

— |w: opcode = 35

Prof. M. Mansour EECE 321: Computer Organization

I-Format Limitations

= Chances are that addi, lw, sw and slti will use immediates small enough to fit in the
immediate field.

— We need a way to deal with a 32-bit immediate in any I-format instruction.
= Solution: Add a new instruction to help out
= New instruction: lui register, immediate

— stands for Load Upper Immediate

— takes 16-bit immediate and puts these bits in the upper half (high order half) of the
specified register

— sets lower half to Os
= So how does lui help us?
= Example: addi St0, St0, OXABABCDCD
— The immediate is too big to fit in a 16-bit field
— So need to make use of lui instruction
lui Sat, OXABAB
ori Sat, Sat, OxCDCD
add St0,5t0,Sat
= Now each I-format instruction has only a 16-bit immediate.

= Wouldn’t it be nice if the assembler would do this for us automatically? (later)

Prof. M. Mansour EECE 321: Computer Organization 9

Branches: PC-Relative Addressing

= Use |l-Format: opcode rs rt immediate

— opcode specifies beq v. bne 6b Sb 5b 16b

— rs and rt specify registers to compare
= What can “immediate” specify?
— Immediate is only 16 bits

— PC (Program Counter) has byte address of current instruction being executed;
32-bit pointer to memory

— So immediate cannot specify entire address to branch to.
= How do we usually use branches?

— Answer: if-else, while, for

— Loops are generally small: typically up to 50 instructions

— Function calls and unconditional jumps are done using jump instructions (j and jal), not
the branches.

= Conclusion: may want to branch to anywhere in memory, but a branch often
changes PC by a small amount

= Solution to branches in a 32-bit instruction: PC-Relative Addressing

= Let the 16-bit immediate field be a signed two’s complement integer to be added
to the PC if we take the branch (actually added to PC+4).

Prof. M. Mansour EECE 321: Computer Organization 10

Branches: PC-Relative Addressing

= Now we can branch * 21> bytes from the PC, which should be enough to cover
almost any loop.

= Note: Instructions are words, so they’re word aligned (byte address is always a
multiple of 4, which means it ends with 00 in binary).
— So the number of bytes to add to the PC will always be a multiple of 4.
— So specify the immediate in words.
= Now, we can branch * 21> words from the PC (or * 217 bytes), so we can handle
loops 4 times as large.
= Branch Calculation:
— If we don’t take the branch:
e PC&PC+4
* PC+4is the byte address of next instruction
— If we do take the branch:
* PC €« (PC+4) + (immediate * 4)
= QObservations

— Immediate field specifies the number of words to jump, which is simply the number of
instructions to jump.

— Immediate field can be positive or negative.
— Due to hardware, add immediate to (PC+4), not to PC

Prof. M. Mansour EECE 321: Computer Organization 11

opcode rs rt immediate

Branch Example 6b 56 | 5b 16b

= MIPS Code:
Loop: beq S$9, SO, End
add S8, S8, 510
addi S9,S9, -1
j Loop
End:
= beq branch is [-Format:
— opcode =4 (look up in table)
— rs =9 (first operand)
— rt =0 (second operand)
— immediate = ??7?
= |mmediate Field:

— Number of instructions to add to (or subtract from) the PC, starting at the instruction
following the branch.

— In beq case, immediate = 3

decimal opcode rs rt immediate
4 9 0 3
binar opcode rs rt immediate
y 000100 | 01001 | 00000 0000 0000 0000 0011

Prof. M. Mansour EECE 321: Computer Organization

Questions on PC-Relative Addressing

= Does the value in branch field change if we move the code?
= What do we do if destination is > 2%° instructions away from branch?

= Since it’s limited to + 21° instructions, doesn’t this generate lots of extra MIPS
instructions?

= Why do we need all these addressing modes? Why not just one?

Prof. M. Mansour EECE 321: Computer Organization

13

