EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 9: MIPS ISA

Announcements

Reading assignment
— Ch2: Sections 2.1-2.15, 2.18, 2.19
Install and learn the SPIM tool (from textbook CD)
— MIPS assembler simulator
HW3 posted
— Due Monday Mar. 15, 5:00pm
Machine problem 1 due Friday March 12 @ 5:00pm
— Submit on Moodle (one submission per team)
No lectures on the following dates:
— M: Mar. 15
— W: Mar. 17
— F:Mar. 19
— M: Mar. 22
— W: Mar. 24
Makeup lectures on Saturday March 13
— Time and place TBA

Prof. M. Mansour EECE 321: Computer Organization

Steps for Making a Procedure Call

= Steps:
1. Save all necessary values onto stack (using sw).
2. Assign argument(s), if any.
3. Usejal
4. Restore values from stack (using lw).
= Rules for procedures:
— Called with a jal instruction, returns with a jr Sra
— Accepts up to 4 arguments in $a0,5al,5a2,5a3
— Return value is always in SvO (and if necessary in Sv1)

— Must follow register conventions (even in functions that only you will call).

= Basic structure of a function:

Prologue |entry label: ra
addi $sp,$sp, -framesize # allocate frame area
sw $ra, framesize-4($sp) # save Sra
save other regs if need be
Body ce # (call other functions..)
restore other regs if need be memory
. lw $ra, framesize-4($sp) # restore Sra
Epilogue addi $sp,$sp, framesize
jr Sra
Prof. M. Mansour EECE 321: Computer Organization 3

MIPS Registers

+ sremay ety e s N T T

at any time; unsafe to use

The constant 0 Szero

" 5k0-Sk1: may be used by the OS at Reserved for Assembler s1 Sat
any time; unsafe to use Return Values $2-S3 Sv0-Sv1
= Sgp, Sfp : don’t worry about them PY—— P Spiens
_ Ee(igcrgsrr]e;g)out them in Appendix Temporary $8-$15 $t0-5t7
— You can write perfectly good MIPS SR 216:523 2S0-557
code without them More Temporary $24-525 $t8-5t9
Used by Kernel $26-27 Sk0-Sk1

Global Pointer $28 Sgp

Stack Pointer S29 Ssp

Frame Pointer $30 Sfp

Return Address $31 Sra

Prof. M. Mansour EECE 321: Computer Organization 4

Allocating Space for New Data

High address

$p $fp —»

$sp —» $sp —

$fp — Saved argument
registers (if any)

Saved return address

Saved saved
registers {if any)

Local arrays and
structures (if any)

$sp ——»

Low address
a. b. C.

Stack pointer may change during the procedure, making procedure harder to understand
Frame pointer offers a stable base register within a procedure for local memory references.

Prof. M. Mansour EECE 321: Computer Organization

Register Conventions When Calling Procedures

= (CalleR: the calling function
= (CalleE: the function being called

= When callee returns from executing, the caller needs to know which registers may
have changed and which are guaranteed to be unchanged.

= Register Conventions: A set of generally accepted rules as to which registers will be
unchanged after a procedure call (jal) and which may be changed.
= Saved:
— S0: No Change. Always 0.

— S$s0-Ss7: Restore if you change. That’s why they’re called saved registers. If the callee
changes these in any way, it must restore the original values before returning.

— Ssp: Restore if you change. The stack pointer must point to the same place before and
after the jal call, or else the caller won’t be able to restore values from stack.

= \/olatile:

— Sra: Can Change. The jal call itself will change this register. Caller needs to save on stack
if nested call.

— Sv0-Sv1: Can Change. These will contain the new returned values.

— Sa0-Sa3: Can change. These are volatile argument registers. Caller needs to save if
they’ll need them after the call.

— St0-5t9: Can change. That’s why they’re called temporary: any procedure may change
them at any time. Caller needs to save if they’ll need them afterwards.

Prof. M. Mansour EECE 321: Computer Organization 6

Register Conventions

= What do these conventions mean?

— If function R calls function E, then function R must save any temporary registers that it
may be using onto the stack before making a jal call.

— Function E must save any S (saved) registers it intends to use before modifying their
values.

— Remember: Caller/callee need to save only temporary/saved registers they are using,
not all registers.

= Example:

— R:.. # R/W S$s0, SvO, $t0, Sa0, Ssp, Sra, mem
PUSH REGISTER(S) TO STACK?
jal E # Call E
R/W Ss0, SvO, St0, Sa0, Ssp, Sra, mem
jrSra # Return to caller of R

E: .. # R/W Ss0, SvO, St0, Sa0, Ssp, Sra, mem
jr Sra # Return to R

= What does R have to push on the stack before “jal E”?
— 550, Ssp, S0, $t0, $a0, Sra?

= Answer: R needs to save any registers it will use after the function call, and which
are not preserved in E by convention: SvO0, $t0, Sa0, Sra

Prof. M. Mansour EECE 321: Computer Organization

Example: Fibonacci Numbers

= The Fibonacci numbers are defined as follows: F(n) = F(h— 1) + F(n — 2), where F(0)=1

and F(1)=1.
" |nC: int fib(int n) {
if(n == 0) { return 1; }
if(n == 1) { return 1; }

return (fib(n - 1) + fib(n - 2));
}
= Compile into MIPS. Start by writing the prologue:

— For now, need to save Sra register. If we need more later, come back and revise FRAMESIZE in
prologue, and save registers to be modified:

FIB: addi Ssp, Ssp, -FRAMESIZE # space for FRAMESIZE>=4 words
prologue - # save more registers if any
sw Sra, 0(Ssp) # save return address
— Write epilogue: (later modify FRAMESIZE, and registers to be restored)
FINISH: lw Sra, 0(Ssp) # restore Sra
Ca # restore saved registers
epilogue addi Ssp, Ssp, FRAMESIZE # adjust stack pointer
jrSra # return to caller

Prof. M. Mansour EECE 321: Computer Organization

Example: Fibonacci Numbers

int fib(int n) {

" Translate first 2 if statements if(n == 0) { return 1; }
if(n == 1) { return 1; }
return (fib(n - 1) + fib(n - 2));
addi SvO0, Szero, 1 # here we have set the}return value
beq $a0, Szero, FINISH #if n==0 (note argument n -> $a0)
addi St0, Szero, 1
beq S$a0, $tO, FINISH #ifn==

= Next, translate the last return statement:

addi $a0, Sao0, -1 # argument for fib(n-1)
sw Sa0, 8(Ssp) # save n-1 on stack
jal FIB # call fib(n-1)
lw Sa0, 8(Ssp) # pop n-1 from stack
note: return result of fib(n-1) is now in SvO
addi Sa0, Sao0, -1 # argument for fib(n-2)
add Ss0, Sv0, Szero # save returned value in SsO (note we could have used also stack)
jal FIB # call fib(n-2), return value in SvO
add SvO0, Sv0, SsO # fib(n-1) + fib(n-2)

since SsO0, is the only other registers to be saved on stack,
set FRAMESIZE=12 in prologue/epilogue; add sw/lw for $sO

Prof. M. Mansour EECE 321: Computer Organization 9

Example: Fibonacci Numbers

FIB:

FINISH:

ﬁaddi $sp, $sp, -12

sw $s0, 4(S$Ssp)
sw $ra, 0(S$sp)

addi $v0, S$zero, 1

beq $a0, $zero, FINISH
addi $t0, S$zero, 1
beq $a0, $t0, FINISH

addi $a0, $a0, -1
sw $al0, 8($sp)

jal FIB <

> 1w $a0, 8($sp)

addi $a0, $a0, -1
add $s0, $v0, S$zero
jal FIB

n>1

1w $ra, 0($sp) <
lw $s0, 4(Ssp)

addi $sp, $sp, 12

jr $ra

Prof. M.

Mansour

v

MIPS Instruction Summary So Far

MIPS operands

Name

Example

Comments

32 registers

$50-$s7, $t0-$t9, Szero,
$al0-$a3, $v0-35vl, $Sgp,
$fp, $sp, Sra, Sat

Fast locations for data. In MIPS, data must be in registers to perform
arithmetic. MIPS register $zero always equals 0. Register $at is
reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
2% memory |Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category Instruction Example Meaning N Comments
add add $sl1, $s2, $s3 $31 = S$s32 + S$s3 Three operands; data in registers
Arithmetic subtract sub $s1, $s2, $s3 $sl = $32 - $s3 Three operands; data in registers
add immediate addi $s1, $s2, 100 $31 = $s2 + 100 Used to add constants
load word lw $sl1, 100($s2) $s1 = Memory[5s2 + 100] |Word from memory to register
store word sw S$s1, 100($s2) Memory[5=2 + 100] = $s1 Word from register to memory
Data transfer |load byte 1b $s1, 100($s2) $s1 = Memory[5s52 + 100] |Byte from memory to register
store byte s $s1, 100 ($s2) Memory[5=2 + 100] = $s1 Byte from register to memory
load upper immediate |lui $s1, 100 $s1 =100 * 21 Loads constant in upper 16 bits
branch on equal beq $sl1, $s2, 25 if (551 == S$=s2)goto PC |Equal test; PC-relative branch
+4 + 100
branch on not equal bne $sl1, $s2, 25 if (551 != $=s2)goto PC |Not equal test; PC-relative
.\ +4 + 100
Conditional
branch set on less than slt $sl1, $s2, $s3 if (552 < $s3) $s1=1 Compare less than; for beq, bne
else 551 =0
set less than immediate [s1ti S$s1, $s2, 100 if (532 < 100) $s1=1; Compare less than constant
else 551 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr Sra goto sSra For switch, procedure return
tional jump jump and link jal 2500 Sra =PC + 4; go to 10000 For procedure call

Prof. M. Mansour

EECE 321: Computer Organization

11

Conclusion

= Functions called with jal, return with jr Sra.

= The stack is your friend: Use it to save anything you need. Just be sure to leave it
the way you found it.
= Instructions we know so far
— Arithmetic/Logic: add, addi, sub, addu, addiu, subu, sll, srl
— Memory: lw, sw, Ib, sb, lbu
— Decision: beq, bne, slt, sltj, sltu, sltiu
— Unconditional Branches (Jumps): j, jal, jr
= Registers we know so far
— All of them!

Prof. M. Mansour EECE 321: Computer Organization

12

