EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 8: MIPS ISA

Announcements

= Reading assignment
— Sections 2.7, 2.8, 2.10, 2.13, 2.14

= Machine problem 1 due Friday March 12 @ 5:00pm
— Submit on Moodle (one submission per team)

= Drop at the end of the lecture

Prof. M. Mansour EECE 321: Computer Organization

Example

= Consider the following MIPS assembly code:

Loop: addi $s0,$s0,-1 #i=1i-1
addi $s1,$s1, 1 #$9=93+1
slti $t0,$s1,2 # $t0 = (J < 2)
beq $t0,$0 ,Loop # goto Loop if $t0 == => j >= 2
slt $t0,S$sl,S$s0 # $t0 = (J < i)
bne $t0,$0 ,Loop # goto Loop if $t0 '= 0 => j < i

= Assume the following mapping:
— i:$s0, j:s$sl

= What C code properly fills in the blank in loop below?
do {

while () ;

Prof. M. Mansour EECE 321: Computer Organization

Summary

= |n order to help the conditional branches make decisions concerning inequalities,
we introduced a single instruction:
“Set on Less Than” called slt, slti, sltu, sltiu

= One can store and load (signed and unsigned) bytes as well as words
= Unsigned add/sub don’t cause overflow

= New MIPS Instructions:
sll, srl
slt, slti, sltu, sltiu
addu, addiu, subu

Prof. M. Mansour EECE 321: Computer Organization

Procedures

Prof. M. Mansour EECE 321: Computer Organization

C Functions

main() { /* Simple multiplication function */
inti, j, k, m; , , , ,
int mult (int mcand, int mlier){
i = mult(j,k); ... int product;
m = mult(i,i); ... product = 0;
while (mlier > 0){
} product = product + mcand;
What information must the compiler/ mlier = mlier — 1;
programmer keep track of? }
' _ return product;
" Function call bookkeeping !

Registers play a major role in keeping track of information for function calls.
Register conventions:
* Return address: Sra
Arguments: Sa0, Sal, Sa2, Sa3
Return value: SvO0, Svi
Local variables: Ss0, Ss1, ..., Ss7

= \What about

more arguments
more return values
Arrays, structures ...? Use STACK.

Prof. M. Mansour EECE 321: Computer Organization

Instruction Support for Functions

= Consider the following C function:
... sum(a,b);... /*a:5s0,b:Ss1*/

int sum(int x, inty) {

return x +v;
}
= |n MIPS:
address Instruction
1000 add $a0,$s0,S$zero # x = a
1004 add $al,$sl,$zero # vy =b
1008 addi $ra,$zero,1016 # Sra = 1016
1012 j sum # jump to sum
1016 ..
2000 sum: add $v0,$a0, Sal
2004 jr Sra # new instruction

= Whyuse jr here? Why not simply use j?
— sum might be called by many functions, so we can’t return to a fixed place. The calling
procedure to sum must be able to say “return here” somehow.

= MIPS has a single instruction to jump and save return address:
— jump and link (jal)

Prof. M. Mansour EECE 321: Computer Organization

Instruction Support for Functions

Before: After:

1008 addi $ra,$zero,1016 #Sra=1016 1008 jal sum # $ra=1012,go to sum
1012 j sum #go to sum !

= Why have a jal?
— Make the common case fast: function calls are very common.
— Also, no need to know where the code is loaded into memory with jal.
= Syntax for jal (jump and link) is same as for j (jump):
— jal label
= jal should really be called laj for “link and jump”:
— Step 1 (link): Save address of next instruction into Sra (Why next instruction?)
— Step 2 (jump): Jump to the given label
= Syntax for jr (jump register): jr register
= Instead of providing a label to jump to, the jr instruction provides a register which
contains an address to jump to.
= Only useful if we know exact address to jump to.
= Very useful for function calls:
— jal stores return address in register (Sra)
— jr Sra jumps back to that address

Prof. M. Mansour EECE 321: Computer Organization 8

Nested Procedures

int sumSquare (int x, int y) {
return mult(x,x)+ y;

= Function sumSquare calls function mult.

= So there’s a value in Sra that sumSquare wants to jump back to, but this will be
overwritten by the call to mult.

= Need to save sumSquare return address before the call to mult.
= |n general, may need to save some other info in addition to Sra.

= When a C program is run, there are 3 important memory areas allocated:

— Static: Variables declared once per program, cease to exist only after execution
completes. E.g., C global variables

— Heap: Variables declared dynamically

— Stack: Space to be used by procedures during execution; this is where we can save
register values

Prof. M. Mansour EECE 321: Computer Organization

C Memory Allocation

Address
Max
_J Stack
$Ssp
stack i
pointer %
Heap
Static
Code
0

Space for saved
procedure information

Explicitly created space,
e.g., malloc(); C pointers

Variables declared
once per program

Program

= So we have a register Ssp which always points to the last used space in the stack.
= To use stack, we decrement this pointer first by the amount of space we need and then

fill it with info.
= So, how do we compile this?

int sumSquare (int x, int y) {
return mult(x,x)+ y;

}

Prof. M. Mansour EECE 321: Computer Organization 10

Compilation Using the Stack

= Hand-compile

sumSquare:
addi sp,Ssp,-8
“push” sw Sra, 4($Ssp)
sw $al, 0(Ssp)

add $al, $a0,$zero
jal mult

(1w S$al, 0(Ssp)
add $v0,S$v0,Sal

{ 1w Sra, 4(Ssp)

addi $sp,$sp,8
. Jr Sra

13

pop”

mult:

= I I

H I

HT O W

int sumSquare (int x, int y) {
return mult(x,x)+ y;

}

space on stack
save ret address
save y

prepare arguments for mult (x,x)
call mult

restore y
mult ()+y

get ret address

restore stack

sets S$vO0

Prof. M. Mansour EECE 321: Computer Organization

11

Steps for Making a Procedure Call

= Steps:
1. Save all necessary values onto stack (using sw).
2. Assign argument(s), if any.
3. Usejal
4. Restore values from stack (using lw).
= Rules for procedures:
— Called with a jal instruction, returns with a jr Sra
— Accepts up to 4 arguments in $a0,5al,5a2,5a3
— Return value is always in SvO (and if necessary in Sv1)

— Must follow register conventions (even in functions that only you will call).

= Basic structure of a function:

Prologue |entry label: ra
addi $sp,$sp, -framesize # allocate frame area
sw $ra, framesize-4($sp) # save Sra
save other regs if need be
Body ce # (call other functions..)
restore other regs if need be memory
. lw $ra, framesize-4($sp) # restore Sra
Epilogue addi $sp,$sp, framesize
jr Sra
Prof. M. Mansour EECE 321: Computer Organization 12

