EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 7: MIPS ISA

Announcements

= Reading assignment
— Section 2.7
= Machine problem 1 posted
— Due Friday March 12 @ 5:00pm
— Submit on Moodle (one submission per team)

= Drop quiz next lecture

Prof. M. Mansour EECE 321: Computer Organization

Making Decisions

All instructions so far only manipulate data ... we’ve built a calculator.

In order to build a computer, we need ability to make decisions.
— C(and MIPS) provide labels to support “goto” jumps to places in the code.
— C: Horrible style; MIPS: Necessary!
C Decisions: if Statements
2 kinds of if statements in C
— if (condition) clause
— if (condition) clausel else clause?2

Rearrange 2nd if into following:
— if (condition) goto L1;
Clause2;
goto L2;
L1: clausel;
L2: ...

Note: Labels are simply locations of statements in your code, and not instructions
Not as elegant as if-else, but same meaning.

Prof. M. Mansour EECE 321: Computer Organization

MIPS Decision Instructions: BEQ, BNE

= Decision instruction in MIPS:
— beq registerl, register2, L1

— beq is “Branch if (registers are) equal”
Same meaning as (using C):

if (registerl==register2) goto L1
= Complementary MIPS decision instruction
— bne registerl, register2, L1

— bne is “Branch if (registers are) not equal”
Same meaning as (using C):
if (registerl!=register2) goto L1

= beqand bne are called conditional branches

Prof. M. Mansour EECE 321: Computer Organization

MIPS Goto Instruction: J

= |n addition to conditional branches, MIPS has an unconditional branch:
— j label

= (Called a Jump Instruction: jump (or branch) directly to the given label without
needing to satisfy any condition.

= Same meaning as (using C):
— goto label
= Technically, it’s the same as:
— beq $0, SO, label
since it always satisfies the condition.

Prof. M. Mansour EECE 321: Computer Organization

Compiling Cif Statements into MIPS

= Compile by hand the following C code:

— if(i == j) f£=g+h;
else f=g-h; arue)

— Use the following mappings: i==]
f: SsO
g: Ss1
h: Ss2 f=g-h
i: Ss3 | |

j: Ss4 é
xit

= Final compiled MIPS code:

(false)
i 1=

beq $s3, $s4, True # branch i==j
sub $s0, $sl, $s2 # f=g-h(false)
J Finish # goto Finish
True: add $s0, $sl, $s2 # f=g+h (true)

Finish:

= Note: Compiler automatically creates labels to handle decisions (branches).
Generally not found in HLL code.

Prof. M. Mansour EECE 321: Computer Organization

Loops in C/Assembly

= Simple loopin C; A[] is an array of int’s
= Consider the following loop:

do{
g =g + A[i];
i=1i+3;

} while (i '= h);

= First, rewrite this as:

Loop: g=g I Af[i];
i=1i J;
if (1 '= h) goto Loop;

= Use this mapping:
— g:$s1, h:$s2, i:$s3, j:$s4, base of A:$s5

= Final compiled MIPS code:

— Loop: sll $tl1, $s3, 2 # $tl = 4*i
add $tl, $tl, $s5 # $tl = address A
lw $tl, 0($tl) # Stl = A[i]
add $sl1, $sl1l, S$tl # g =g + A[i]
add $s3, $s3, $s4 #1i=1+73
bne $s3, $s2, Loop # goto Loop
if il=

Prof. M. Mansour EECE 321: Computer Organization

Loops in C/Assembly

= There are three types of loops in C:
— while
— do... while
— for
= Each can be rewritten as either of the other two, so the method used in the
previous example can be applied to while and for loops as well.
= Key Concept: Although there are multiple ways of writing a loop in MIPS, the key to
decision making is conditional branch

Prof. M. Mansour EECE 321: Computer Organization 8

Inequalities in MIPS

= Until now, we’ve only tested equalities (== and !=in C).
— General programs need to test < and > as well.
= Create a MIPS Inequality Instruction:
“Set on Less Than”
— Syntax: slt regl, reg2, reg3
= Meaning: set a register to ‘1’ if a certain condition is satisfied
— if (reg2 < reg3)
regl = 1;
else regl = 0;
= How do we use this? Compile by hand the following C statement:

— if (g < h) goto Less; // g:$s0, h:$sl
= Answer: compiled MIPS code...
slt $t0, $s0, S$sl # $t0=1 if g<h
bne $t0, $0, Less # goto Less
if $t0!'=0

(if (g<h))
Less:

= BranchifSt0!=0 < (g<h)

= Register SO always contains the value 0, so bne and beq often use it for comparison
after an slt instruction.

Prof. M. Mansour EECE 321: Computer Organization

Inequalities in MIPS

= Now, we can implement <, but how do we implement >, <and > ?

= We could add 3 more instructions, but:
— MIPS goal: Simpler is Better

= Can we implement <in one or more instructions using just slt and the branches?
— What about >?
— What about >?

= Ex: Implement <.

Prof. M. Mansour EECE 321: Computer Organization

10

Immediates in Inequalities

= There is also an immediate version of slt to test against constants: slti

= Helpful in for loops
— 1if (g >= 1) goto Loop

Loop:
slti §t0, $s0O, 1 # $t0 = 1 if $s0<1
(g<1)
beq $t0, $0, Loop # goto Loop if $t0==

(if (g>=1))

Prof. M. Mansour EECE 321: Computer Organization

11

What About Unsigned Numbers?

= Also unsigned inequality instructions:
— sltu, sltiu
— They set result to 1 or 0 depending on unsigned comparisons

= Example: What is value of $t0, St1 in the following instructions?
— Llet $s0 = OxFFFF FFFA, $sl = 0x0000 FFFA
— slt $t0, $s0, $s1
— sltu $tl, $s0, $sl

= So far, MIPS signed vs. unsigned:

— Do/Don't sign extend
(Ib/lbu)

— Don't overflow
(addu, addiu, subu, multu, divu)

— Do signed/unsigned compare
(slt, slti/sltu, sltiu)

Prof. M. Mansour EECE 321: Computer Organization

12

Example: The C Switch Statement

= Choose among four alternatives depending on whether k has the value 0, 1, 2 or 3.
Compile this C code:
— switch (k) {

case 0: £ = i+j; break; // k=0
case 1: £ = g+h; break; // k=1
case 2: £ = g-h; break; // k=2
case 3: £ = i-j; break; // k=3

}

= This is complicated, so simplify.
= Rewrite it as a chain of if-else statements, which we already know how to compile:

— if(k==0) £ = i+j;

else if (k==1) f = g+h;
else if (k==2) f=g-h;
else if (k==3) f=i-j;

= Use this mapping:

— £:$8s0, g:$s1, h:$s2, i:$s3, j:$s4, k:$s5

Prof. M. Mansour EECE 321: Computer Organization 13

Example: The C Switch Statement (cont’d)

= f:8s0, g:$s1, h:$s2, i:$s3, j:$s4, k:$s5 if (k==0) f=i+j;
= Final compiled MIPS code: else if (k==1) f=g+h;
bne $s5, $0, L1 # branch k!'=0 else if (k==2) f=g-h;

else if (k==3) f=i-j;

add $s0, $s3, $s4 # k==0 so f=i+j

j Exit # end of case so Exit
Ll: addi $t0, $s5, -1 # $t0=k-1

bne $t0, $0, L2 # branch k'=1

add $s0, $sl, $s2 # k==1 so f=g+h

j Exit # end of case so Exit
L2: addi $t0, $s5, -2 # $t0=k-2

bne $t0, $0, L3 # branch k!'=2

sub $s0, $sl, $s2 # k==2 so f=g-h

j Exit # end of case so Exit
L3: addi $t0, $s5, -3 # $t0=k-3

bne $t0, $0, Exit # branch k!=3

sub $s0, $s3, $s4 # k==3 so f=i-j

Exit:

Prof. M. Mansour EECE 321: Computer Organization 14

Example

= Consider the following MIPS assembly code:

Loop: addi $s0,$s0,-1

#i=1-1

addi $s1,$s1, 1 #$9=93+1

slti $t0,$s1,2 # $t0 = (J < 2)

beq $t0,$0 ,Loop # goto Loop if $t0 ==
slt $t0,S$sl,S$s0 # $t0 = (J < i)

bne $t0,$0 ,Loop # goto Loop if $t0 '= 0

= Assume the following mapping:

— i:$s0, j:s$sl

= What C code properly fills in the blank in loop below?

do {

while (

) ;

=> j >= 2

= j<i

Prof. M. Mansour

EECE 321: Computer Organization

15

Summary

= |n order to help the conditional branches make decisions concerning inequalities,
we introduced a single instruction:
“Set on Less Than” called slt, slti, sltu, sltiu

= One can store and load (signed and unsigned) bytes as well as words
= Unsigned add/sub don’t cause overflow

= New MIPS Instructions:
sll, srl
slt, slti, sltu, sltiu
addu, addiu, subu

Prof. M. Mansour EECE 321: Computer Organization

16

