EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 6: MIPS ISA

Announcements

= Office Hours:
— Mondays: 1:00-2:00pm
— Tuesdays: 11:00-12:00 noon
— Fridays: 9:00-10:00am

= Reading assignment
— Sections 2.4, 2.5, 2.6

Prof. M. Mansour EECE 321: Computer Organization

Data Transfers: Memory to Registers

To transfer a word of data, we need to specify two things:
— Register to receive data: specify this by number ($0-$31) or symbolically ($s0,...,5t0,...)
— Memory address: more difficult

Think of memory as a single one-dimensional array, so we can address it simply by
supplying a pointer to a memory address.

Other times, we want to be able to offset from this pointer.
Remember: “Load FROM memory”
To specify a memory address to copy from, need to specify two things:

— Avregister containing a pointer to memory
— A numerical offset (in bytes)

The desired memory address is the sum of these two values.

Syntax: offset(Sreg)
— Example: 8(5t0)
— specifies the memory address pointed to by the value in $t0, plus an offset of 8 bytes

Prof. M. Mansour EECE 321: Computer Organization

Data Transfers: Memory to Registers

= Load Instruction Syntax:
1 2, 3(4)
where:
1) operation name: “lw” ... Load Word
2) Register that will receive value
3) Numerical offset in bytes
4) Register containing pointer (address) to memory: Called based register

= MIPS Instruction Name:

— Ilw (meaning Load Word, so 32 bits or one word are loaded at a time)
ataflow

= Example: Iw $t0,12(Ss0)
— This instruction will take the pointer in $s0, adds 12 bytes to it, and then loads the value
from the memory pointed to by this calculated sum into register $tO0.
= Notes:
— S$s0is called the base register
— 12 is called the offset

— offset is generally used in accessing elements of array or structure: base register points
to beginning of array or structure

Prof. M. Mansour EECE 321: Computer Organization

Data Transfers: Registers to Memory

= Also want to store from register into memory
— Store instruction syntax is identical to Load’s
= MIPS Instruction Name: “sw” or Store Word

— 32 bits or one word are stored at a time
dataflow,

—>

= Example: sw St0, 12(Ss0)
— This instruction will take the pointer in $s0, add 12 bytes to it to form an address to
memory, and then stores the contents of register $St0 into memory at that address

= Remember: “Store INTO memory”
= Pointers versus Values:

— Key Concept: A register can hold any 32-bit value. That value can be a

* (signed) int, an unsigned int, a pointer (memory address), and so on.
— If you write add St2, St1, $t0, then StO and $t1 better contain values
— If you write Iw $t2,0(St0), then StO better contain a pointer

= These shouldn’t be mixed up!

Prof. M. Mansour EECE 321: Computer Organization

Memory Addresses and Compilation

Every word in memory has an address, similar to an index in an array
Early computers numbered words like C numbers elements of an array:

Memory[0], Memory[1], Memory([2], ...

\

Called the “address” of a word

Computers needed to access 8-bit bytes as well as words (4 bytes/word)

Today machines address memory as bytes, (i.e.,"Byte Addressable”) hence 32-bit (4
byte) word addresses differ by 4

Memory[0], Memory[4], Memory[8], ...

What offset in Iw to select A[8] in C?

4 x 8 = 32 to select A[8]; byte v. word

Compile by hand using registers the following C statement: g = h + A[8];

Assume the following mappings: g:5s1, h:Ss2, base address of A:Ss3
First, transfer from memory to register.
This is done by adding 32 to Ss3 to select A[8], then put value into StO
e |w S$t0, 32(Ss3) # St0 gets A[8]
Next add loaded value to h and placein g
* add Ssl, Ss2, St0 #Ss1=h+A[8]

Prof. M. Mansour EECE 321: Computer Organization

A Note About Memory

= Pitfall: Forgetting that sequential word addresses in machines with byte addressing
do not differ by 1.

— Many assembly language programmers have made errors assuming that the address of
the next word can be found by incrementing the address in a register by 1 instead of by
the word size in bytes.

— So remember that for both lw and sw, the sum of the base address and the offset must
be a multiple of 4 (to be word aligned)

= MIPS requires that all words start at byte addresses that are multiples of 4 bytes
= (Called Alignment: objects must fall on address that is multiple of their size.

o , 1 , 2 , 3 Last hex digit

1 of address is:

Aligned 05 45 8s or Chex

Not 1,5,9, or D,
Aligned

2,6,A,orE,,

3,7, B, orF,

Prof. M. Mansour EECE 321: Computer Organization 7

Role of Registers Versus Memory

= What if we have more variables than registers?
— Compiler tries to keep most frequently used variable in registers
— Less common in memory: register spilling

= Why not keep all variables in memory?
— Smaller is faster: registers are faster than memory
— Registers are more versatile:
* MIPS arithmetic instructions can read 2, operate on them, and write 1 per instruction
* MIPS data transfer only read or write 1 operand per instruction, and no operation
= Example: We want to compile the C statement into MIPS
— int *x, *y;
— *x=*y /* where x and y are pointers stored in $s0, $s1 */
— Remember: int *x in C/C++ means x is defined to be a pointer to an integer object

— Answer:
e |w St0, 0(Ss1) # Contents of memory at address pointed to by $s1 loaded into StO
* sw St0, 0(Ss0) # St0 is stored in memory at address pointed to by $sO

Prof. M. Mansour EECE 321: Computer Organization

Pointers in C

= Define variables x, y:

int x;
int *y;

= When used in expressions, x is the “value”. To refer to the address in memory
where X is stored, use “&x”.

= Forthe pointery, y is address, and “*y” refers to the value pointed to by y.

y points to an object that represents an integer

Pointer arithmetic: y + 4 is an address that points to the next consecutive word in

memory

X + 4 increments the value of x by 4

Memory address Memory address
0x00000000 R 0x00000000
&x X 0x00000004 — &x x+4 0x00000004
0x00000008 0x00000008
0x0000000C) 0x0000000C
int*z=y+4,

y *y 0x00000010 y *y 0x00000010
0x00000014 z *2 0x00000014
0x00000018 0x00000018
0x0000001C 0x0000001C

Prof. M. Mansour EECE 321: Computer Organization

Pointers in C

= int *x, *y;

Memory

X Assume *xis 23

y | Assume *yis 46

load

x=ry;

*y

Register St0

store

Memory

*x becomes 46

*y stays 46

Prof. M. Mansour

EECE 321: Computer Organization

10

Loading and Storing Bytes

In addition to word data transfers (Iw, sw), MIPS has byte data transfers:

— load byte: |b
— store byte: sb

same format as lw, sw
What to do with other 24 bits in the 32 bit register?
|b: sign-extends to fill upper 24 bits

XXXX XXXX XXXX XXXX XXXX XXXX FZZ Z2Z2Z2
byte
...is copied to “sign-extend” loaded
This bit

Ex: Ib S$t0, 1(Ss0) #load byte from memory
— Note that offset need not be a multiple of 4 in |b instruction
Normally don't want to sign extend
— Example when dealing with characters
MIPS instruction that doesn't sign extend when loading bytes:
— load byte unsigned: Ibu

Prof. M. Mansour EECE 321: Computer Organization

11

Load Byte Example

= |b St0, 1(Ss0)
= |bu StO, 1(Ss0)

address

0x00000004
Register SsO

Ib St0, 1(Ss0)

Ibu $t0, 1($s0)

)

Memory
0 1 2 3
0x23 | 0x83 | Px1F [Ox8E
\ .
‘\;.
\
\
\
\
3
\
\
\, load
I sign extend \
OXFF | OxFF | OxFK | 0x83
Register St0
l don’t sign extend
0x00 | 0x00 | OxO(| 0x83
Register StO

address
0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C

0x83 = @)oo 0011

Prof. M. Mansour

EECE 321: Computer Organization

Making Decisions

All instructions so far only manipulate data ... we’ve built a calculator.

In order to build a computer, we need ability to make decisions.
— C(and MIPS) provide labels to support “goto” jumps to places in the code.
— C: Horrible style; MIPS: Necessary!
C Decisions: if Statements
2 kinds of if statements in C
— if (condition) clause
— if (condition) clausel else clause?2

Rearrange 2nd if into following:
— if (condition) goto L1;
Clause2;
goto L2;
L1: clausel;
L2: ...

Note: Labels are simply locations of statements in your code, and not instructions
Not as elegant as if-else, but same meaning.

Prof. M. Mansour EECE 321: Computer Organization 13

MIPS Decision Instructions: BEQ, BNE

= Decision instruction in MIPS:
— beq registerl, register2, L1

— beq is “Branch if (registers are) equal”
Same meaning as (using C):

if (registerl==register2) goto L1
= Complementary MIPS decision instruction
— bne registerl, register2, L1

— bne is “Branch if (registers are) not equal”
Same meaning as (using C):
if (registerl!=register2) goto L1

= beqand bne are called conditional branches

Prof. M. Mansour EECE 321: Computer Organization

14

MIPS Goto Instruction: J

= |n addition to conditional branches, MIPS has an unconditional branch:
— j label

= (Called a Jump Instruction: jump (or branch) directly to the given label without
needing to satisfy any condition.

= Same meaning as (using C):
— goto label
= Technically, it’s the same as:
— beq $0, SO, label
since it always satisfies the condition.

Prof. M. Mansour EECE 321: Computer Organization

15

