EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 5: Machine Instructions

Announcements

= HW2 due on Friday
= Reading assignment

— Sections 2.1, 2.2,2.3

= Project group member name due today

= Makeup sessions
— Thursday or Saturday

Prof. M. Mansour EECE 321: Computer Organization

MIPS ISA

= MIPS
— Microprocessor without Interlocked Pipeline Stages
— A semiconductor company that built one of the first commercial RISC architectures

— We will study the MIPS architecture in detail in this class
= Why MIPS instead of Intel 80x867

— MIPS is simple, elegant. Don’t want to get bogged down in gritty details.

— MIPS widely used in embedded applications (e.g., NEC, Nintendo, Silicon Graphics, Sony)

— x86 rarely used in embedded computers

— There more embedded computers than PCs !

Most HP Laserjet
workgroup printers are
driven by MIPS-based™

64-bit processors.

Prof. M. Mansour EECE 321: Computer Organization

Assembly Variables: Registers

Unlike high-level languages like C or Java, assembly cannot use variables
— Why not? Keep Hardware Simple

Assembly Operands are Registers
— Limited number of special locations built directly into the hardware

— Operations can only be performed on these!

Benefit: Since registers are directly in hardware, they are very fast
(faster than 1 billionth of a second)

Drawback: Since registers are in hardware, they are limited
— Solution: MIPS code must be very carefully put together to efficiently use registers
32 registers in MIPS
— Why 327 Smaller is faster
Each MIPS register is 32 bits wide
— Groups of 32 bits form a word in MIPS
Registers are numbered from 0 to 31

— Each register can be referred to by number or name

— Number references (convention):
$0, 581, 52, ..., $30, 531

Prof. M. Mansour EECE 321: Computer Organization

Assembly Variables: Registers

= By convention, each register also has a name to make it easier to code

= For now:
— S16-S23 - Ss0 —Ss7
(correspond to C variables)
— S$8-515 > St0 — St7

(correspond to temporary variables)

= Later will explain the other 16 register names
= |n general, use names to make your code more readable

Prof. M. Mansour EECE 321: Computer Organization

Assembly Language vs. C/C++, Java

Statements in an assembly language are instructions. They execute exactly one of a
short list of simple commands.

Unlike in C, Java (and most other High Level Languages), each line of assembly
code contains at most 1 instruction.
Comments in Assembly:

— Hash (#) is used for MIPS comments, anything from hash mark to end of line is a
comment and will be ignored

— Not like C comments which can span multiple line /* comment */
In C, Java (and most HLLs) variables are declared first and given a type

— Example:
int fahr, celsius;
chara, b, c, d, e;
Each variable can ONLY represent a value of the type it was declared as (cannot
mix and match int and char variables).

In Assembly Language, the registers have no type; operation determines how
register contents are treated

— There are no types associated with variables — the types are associated with the
instructions.

Instructions are related to operations (=, +, -, *, /) in C/C++ or Java

Prof. M. Mansour EECE 321: Computer Organization 6

MIPS Addition and Subtraction

= Syntax of Instructions:
1 2,34
where:
1) operation name
2) operand getting result (“destination”)
3) 1st operand for operation (“sourcel”)
4) 2nd operand for operation (“source2”)
= Syntax is rigid:
— 1 operator, 3 operands
— Why? Keep Hardware simple via regularity
= Addition in Assembly
— Example: add Ss0, Ss1, Ss2 #in MIPS
— Equivalentto: a=b+c /¥inC*/
where MIPS registers $s0, Ss1, $s2 are associated with C variables a, b, ¢
= Subtraction in Assembly
— Example: sub Ss3, Ss4, Ss5 # in MIPS
— Equivalentto: d=e-f /*¥inC*/
where MIPS registers Ss3, Ss4, $s5 are associated with C variables d, e, f

Prof. M. Mansour EECE 321: Computer Organization

Compiling C statements into Assembly

Compile the following C statement into MIPS Assembly
— a=b+c+d-e;

Break into multiple instructions:

— add StO0, Ss1, Ss2 #temp=b+c
— add StO0, St0, Ss3 #temp =temp + d
— sub Ss0, St0, Ss4 #a=temp-e

Notice: A single line of C may break up into several lines of MIPS.
Compile the following C statement into MIPS Assembly

- f=-2%g;
Use intermediate temporary registers

— add $t0,5s1,5s1 # temp0 = 2*g
— add St1,5t0,St0 #templ = 4*g
— sub S$s2,5t0,5t1 #f=2%g-4*g

Prof. M. Mansour EECE 321: Computer Organization

What About Immediate Operands?

= One particular immediate, the number zero (0), appears very often in code.

= So we define register zero (SO or Szero) to always have the value 0; e.g.
— add Ss0, Ss1, Szero #in MIPS
— f=g /¥inC*/
where MIPS registers $s0, Ss1 are associated with C variables f, g
= Szerois defined in hardware, so an instruction
— add Szero, Szero, SsO
will not do anything if the destination address is the register Szero!
= |n general, immediates are numerical constants.
= They appear often in code, so there are special instructions for them.
= Add Immediate:
— addi Ss0, Ss1, 10 # in MIPS: add the immediate constant 10 to contents of Ss1
— f=g+10 /*inC*/
where MIPS registers $s0, Ss1 are associated with C variablesf, g

= Syntax similar to add instruction, except that last argument is a number instead of
a register.

Prof. M. Mansour EECE 321: Computer Organization

Immediates

= There is no Subtract Immediate in MIPS: Why?

= Limit types of operations that can be done to absolute minimum
— if an operation can be decomposed into a simpler operation, don’t include it
— addi ..., -X is equivalent to subi ..., X =>so no subi

= addi Ss0, Ss1, -10 #in MIPS
= f=g-10 [*inC*/
where MIPS registers Ss0, Ss1 are associated with C variables f, g

Prof. M. Mansour EECE 321: Computer Organization

10

Overflow in Arithmetic

= Reminder: Overflow occurs when there is a mistake in arithmetic due to the limited
precision in computers.

= Example (4-bit unsigned numbers):

+15 1111
+3 0011
+18 10010
— But we don’t have room for 5-bit solution, so the solution would be 0010, which is +2,
and wrong.

= Some languages detect overflow (Ada), some don’t (like C)
= MIPS solution is 2 kinds of arithmetic instructions to recognize 2 choices:

— add (add), add immediate (addi) and subtract (sub) cause overflow to be detected

— add unsigned (addu), add immediate unsigned (addiu) and subtract unsigned (subu) do
not cause overflow detection

= Compiler selects appropriate arithmetic

= MIPS C compilers produce
— addu, addiu, subu

Prof. M. Mansour EECE 321: Computer Organization 11

Logic Instructions

= Logical Shift Left:
— sl18s1,8s2,2 #sl=s2<<2
— Stores in Ss1 the value from $s2 shifted 2 bits to the left, inserting 0’s on right;
— Equivalent to the “<<“ operatorin C

= Example:
— $s2 =0x0000 0002 = 0000 0000 0000 0000 0000 0000 0000 0010,
— sl Ss1, Ss2, 2
— S$s1 =0x0000 0008 = 0000 0000 0000 0000 0000 0000 0000 1000,,,
— Operation equivalent to multiplication by 4

= What arithmetic effect in general does shift left have?
— Answer: Multiplication by a power of 2
= Shift Right (srl):
— srlis opposite shift
— Equivalent to “>>" in C
— Arithmetic effect: Divide by a power of 2, then take the floor

* Ex: $s2 = 0x0000 004C = 0000 0000 0000 0000 0000 0000 0100 1100,
* sl $s1, Ss2, 2 =>Ss1 = 0x0000 0013 = 0000 0000 0000 0000 0000 0000 0001 0011,

— Note if LSBs are not zero, right-shifting is equivalent to dividing by a power of 2 then
taking the floor.

Prof. M. Mansour EECE 321: Computer Organization

Summary of Instructions So Far

= To summarize, in MIPS Assembly Language:

Registers replace C variables

One Instruction (simple operation) per line
Simpler is Better

Smaller is Faster

= New Instructions:

Arithmetic: add, addi, sub, addu, subu, addiu
Logical: sll, srl

= New Registers:

C Variables: SsO - Ss7
Temporary Variables: StO - $t9
Zero: Szero

Prof. M. Mansour EECE 321: Computer Organization

13

Assembly Operands: Memory

= Cvariables are mapped onto registers.
— What about large data structures like arrays?
= 1 of 5 components of a computer: memory contains such data structures
= But MIPS arithmetic instructions only operate on registers, never directly on memory.
= Data transfer instructions transfer data between registers and memory:
— Memory to register: LOAD
— Register to memory: STORE
= Registers are in the datapath of the processor

— If operands are in memory, we must transfer them to the processor to operate on them, and then
transfer back result to memory when done.

Computer
Processor Memory Devices
Control | | | store o) | || Input
(“brain”) P
~
atapath| [~~__
Q L oad (from) Output

Prof. M. Mansour EECE 321: Computer Organization 14

