EECE 321: Computer Organization

Mohammad M. Mansour
Dept. of Electrical and Compute Engineering
American University of Beirut

Lecture 4: Machine Instructions

Announcements

= HW 2 to be posted
— More questions on C/C++ programming??

= Reference: “The C Programming Language”, by Kernighan and Ritchie

SEOONDEDITON

THE

‘ 1"";‘:5\ ‘

PROGRAMMING
LANGUAGE

BRIAN W KERNICHAN
DENNS MURTTCHE.

= Focus on bit-wise operators in C
= All HW assignments to be done individually
= Use the FOURTH edition of the textbook by Patterson and Hennessy

= Reading assignment:
— Sections 1.1,1.2,1.3,1.5,1.6
— Sections 2.1, 2.2

Prof. M. Mansour EECE 321: Computer Organization

Example of Processor Internal Registers

——— S -
l" Memory \/‘ ~~~~~~~~~~~~~
N Y o, oo’ ‘ ‘,)’ s‘\
%~T;_______;:_.'r________'d,—‘f‘ /, \\\
MAR & MDR registers , — /MAR
communicate with addres:s —) M DR“.I
] 1
memory .‘ 2kx n :
\ RAM data
R —
W _' x//
processor h g

’
N pr-
~, -’
~o PR
~ -
~o. -
~~~~~~~

A processor uses registers internally to store instructions and data operands:
— General purpose registers: RO, R1, ... can be accessed by user.

* These registers typically reside in a Register File

— Special purpose register used exclusively by processor in controlling/executing
instructions.

MDR: Memory Data Register
MAR: Memory Address Register
IR: Instruction Register

PC: Program Counter

Data and instructions of a program are stored in memory externally.

— Processor has to fetch them internally into its registers in order to operate on them
Remark: Don’t mix up registers with external memory.

Prof. M. Mansour EECE 321: Computer Organization



Basic Operational Concepts

= Atypical instruction looks like:
— [instruction name] [one or more operands]
— Each instruction has a name.
— Operands can be register addresses and/or memory addresses.

= Ex: Add RO,LOCA
— It adds the operand at memory location LOCA to the operand in a register RO in the processor.
The result is placed in RO.
— This is called an ADD instruction. It combines a memory access operation and an arithmetic
operation.
— Time to execute instruction = time to access memory + time to add.
= Modern microprocessors implement these 2 operations using two separate
instructions: Load followed by an Add.
— Load Rtemp, LOCA
— Add RO,Rtemp
= A special register called Program Counter (PC) keeps track of the execution of a
program. It contains the memory address of the next instruction to be fetched.

= The Instruction Register (IR) holds the instruction that is being executed.
= Communication between memory and processor is done using 2 registers:
— Memory Address Register (MAR) holds the address of location to be accessed.

— Memory Data Register (MDR) contains data to be written into or read out of the addressed
location.

Prof. M. Mansour EECE 321: Computer Organization



Typical Operating Steps

= Assume the instructions of a program are stored in memory (entered via Input).

1.

Execution starts when the PC is set to point to the 1t instruction of the
program.

The contents of PC are sent to MAR, and Read signal is sent to Memory
After Memory-Access time, the addressed word (1%t program inst) is loaded
into MDR

The contents of MDR are transferred into IR. This completes the instruction
fetch phase; the instruction is ready to be decoded and executed.

The instruction is decoded to determine its type and its operands.

For the previous Add instruction, it is necessary to obtain the first operand

from memory (operand fetch). Its address is sent to MAR and the operand is
fetched into MDR. The second operand is supplied by the register file.

Operands are forwarded to the ALU which executes the instruction.

The result needs to be stored back either in a register or in memory. For the
latter case, the address of the destination is sent to MAR and the result is sent
into MDR, and a Write control signal is asserted.

At some point during execution of the current instruction, the PC s
incremented to point to the next instruction to be executed.

Prof. M. Mansour EECE 321: Computer Organization 5



Summary of Steps in Executing a Typical Instruction

= |nstruction fetch

= Instruction decode
= Operand fetch

= |nstruction execute
= Result write-back

Prof. M. Mansour



Instructions and Instruction Sequencing

= The tasks carried out by a computer program consist of a sequence of small steps,
such as adding two numbers, testing a condition, reading a character from the
keyboard, or sending a character for display on a screen.

= |nstruction sequencing: Determining which instruction comes next

= A microprocessor must have instructions capable of performing 4 types of
operations:

— Data transfers between memory and the processor registers
— ALU operations on data

— Program sequencing and control (branches and jumps)

— 1/0 transfers

= Assembly Language Notation to represent machine instructions and programs:
INSTRUCTION_NAME OPERANDS
— Operands are either in registers (R1, R2, ...) or in memory locations MEM[Address]
— One of the operands should be the destination where the result is stored.
— Convention: leftmost operand is the destination.

Prof. M. Mansour



Instructions and Instruction Sequencing (cont’d)

=  Example: Assume we want to execute the following statement in C language:

— C=A+B //A,B,Care variables assigned to distinct memory locations.
= Let the variable name (A) designate the memory address, and the content of the

addressed location represent the value of the variable (MEM[A]).

= The processor can’t directly operate on variables while they are in memory.

= Use a pair of loads to fetch A and B into two registers:
— Load R1l, A //fetchesthe contents of A into register R1; R1 <= MEM[A]
— Load R2, B //fetchesthe contents of B into register R2; R2 <= MEM|B]

= Now that the operands are available in registers, the processor can add them.
— Add R3,R1,R2 //R3<R1+R2,assuming a 3-address add instr.
— Add R1,R2 //R1<—R1+R2, assuming a 2-address add instr.

= After the addition operation has been carried out, the sum is available in some register R.
=  This sum must be stored back in memory at location C.

= Use a store instruction:
— Store R, C // stores R into memory address C; MEM[C]<R

Prof. M. Mansour



Instructions and Instruction Sequencing (cont’d)

C statement Assembly language instructions

Load R1, A

Load R2, B

C=A+B
Add R1l, R2

Store R1, C

= How does the sequencing of instruction execution take place?

= Assume memory word length is 32 bits and memory is byte addressable.
" The 4 instructions are stored in successive word locations.

= The first instruction is stored in memory starting at address i.

= Since instructions are 4 bytes long, the other 3 instructions start at addresses i+4, i
+8, i+16

Prof. M. Mansour



Straight-Line Instruction Sequencing

= Register PCis initialized to address i.

Address Contents
= Instructions are fetched one after
the other into IR for execution. i Load R1, A )
= This is referred to as straight-line i+ 4 Load R2, B A-instruction
sequencing. i+8 Add R1,R2 Program segment
= Note that the place where i+ 16 Store R1, C )
instructions are stored is separate
from the place where data are .
stored. :
= Five main phases of operations: A MEMIA] )
— Instruction fetch .
— Instruction decode ’ Data for
— Operand fetch B MEM[B] “— the program
— Instruction execute
— Result write-back :
C MEMI|C] «

Prof. M. Mansour



Machine Instructions

= Basic job of a CPU: execute lots of instructions.

= Instructions are the primitive operations that the CPU may execute.
= Different CPUs implement different sets of instructions.

=  Analogy:

— Instructions: The words of a machine’s language.
— Instruction set: The vocabulary of the language.
= The set of instructions a particular CPU implements is an Instruction Set
Architecture (ISA).
= Examples:
— Intel 80x86 (Pentium 4)
— IBM/Motorola PowerPC (Macintosh)
— MIPS
— Intel 1AG4 ...

=  More primitive than higher level languages (HLLs)
— e.g., no sophisticated control flow

= \ery restrictive
— e.g., MIPS Arithmetic Instructions

Prof. M. Mansour EECE 321: Computer Organization

11



Instruction Set Architectures (or simply Architectures)

= Early trend was to add more and more instructions to new CPUs to do elaborate
operations

VAX architecture had an instruction to multiply polynomials!

=  Complex Instruction Set Computer (CISC)

Many complex instructions
Different instruction formats depending
* Number of operands
* Addressing modes
Corresponding micro-architecture is complex (especially pipelining)
EX: Intel 80x86 ISA

= RISC philosophy (Cocke IBM, Patterson, Hennessy, 1980s) — Reduced Instruction Set
Computing

Keep the instruction set small and simple

This makes it easier to build fast hardware

Let software do complicated operations by composing simpler ones.

Proponents argue RISC is cheaper and faster; opponents say it puts burden on software
Ex: SPARC (Scalable Processor ARChitecture) by SUN Microsystems

=  Modern architectures:

Combine attributes of both RISC and CISC flavors

Prof. M. Mansour EECE 321: Computer Organization 12



MIPS Instruction Set Architecture

Prof. M. Mansour

EECE 321: Computer Organization

13



MIPS ISA

= MIPS
— Microprocessor without Interlocked Pipeline Stages
— A semiconductor company that built one of the first commercial RISC architectures

—  We will study the MIPS architecture in detail in this class
=  Why MIPS instead of Intel 80x867
— MIPS is simple, elegant. Don’t want to get bogged down in gritty details.
— MIPS widely used in embedded applications (e.g., NEC, Nintendo, Silicon Graphics, Sony)
— x86 rarely used in embedded computers
— There more embedded computers than PCs !

Most HP Laserjet
workgroup printers are
driven by MIPS-based™

64-bit processors.,

Prof. M. Mansour EECE 321: Computer Organization 14



Assembly Variables: Registers

Unlike high-level languages like C or Java, assembly cannot use variables
— Why not? Keep Hardware Simple

Assembly Operands are Registers
— Limited number of special locations built directly into the hardware

— Operations can only be performed on these!

Benefit: Since registers are directly in hardware, they are very fast
(faster than 1 billionth of a second)

Drawback: Since registers are in hardware, they are limited
— Solution: MIPS code must be very carefully put together to efficiently use registers
32 registers in MIPS
— Why 327 Smaller is faster
Each MIPS register is 32 bits wide
— Groups of 32 bits form a word in MIPS
Registers are numbered from 0 to 31

— Each register can be referred to by number or name

— Number references (convention):
$0, 581, 52, ..., $30, 531

Prof. M. Mansour EECE 321: Computer Organization

15



Assembly Variables: Registers

= By convention, each register also has a name to make it easier to code

=  For now:
— S16-S23 - SsO - Ss7
(correspond to C variables)
— $8-515 > StO - St7

(correspond to temporary variables)

= Later will explain the other 16 register names
= |n general, use names to make your code more readable

Prof. M. Mansour EECE 321: Computer Organization

16



Assembly Language vs. C/C++, Java

Statements in an assembly language are instructions. They execute exactly one of a
short list of simple commands.

Unlike in C, Java (and most other High Level Languages), each line of assembly
code contains at most 1 instruction.
Comments in Assembly:

— Hash (#) is used for MIPS comments, anything from hash mark to end of line is a
comment and will be ignored

— Not like C comments which can span multiple line /* comment */
In C, Java (and most HLLs) variables are declared first and given a type

— Example:
int fahr, celsius;
chara, b, c, d, e;
Each variable can ONLY represent a value of the type it was declared as (cannot
mix and match int and char variables).

In Assembly Language, the registers have no type; operation determines how
register contents are treated

— There are no types associated with variables — the types are associated with the
instructions.

Instructions are related to operations (=, +, -, *, /) in C/C++ or Java

Prof. M. Mansour EECE 321: Computer Organization 17



MIPS Addition and Subtraction

= Syntax of Instructions:
1 2,34
where:
1) operation name
2) operand getting result (“destination”)
3) 1st operand for operation (“sourcel”)
4) 2nd operand for operation (“source2”)
= Syntax is rigid:
— 1 operator, 3 operands
— Why? Keep Hardware simple via regularity
= Addition in Assembly
— Example: add Ss0, Ss1, Ss2 #in MIPS
— Equivalentto: a=b+c /¥inC*/
where MIPS registers $s0, Ss1, $s2 are associated with C variables a, b, ¢
= Subtraction in Assembly
— Example: sub Ss3, Ss4, Ss5 # in MIPS
— Equivalentto: d=e-f /*¥inC*/
where MIPS registers Ss3, Ss4, $s5 are associated with C variables d, e, f

Prof. M. Mansour EECE 321: Computer Organization

18



Compiling C statements into Assembly

Compile the following C statement into MIPS Assembly
— a=b+c+d-e;

Break into multiple instructions:

— add StO0, Ss1, Ss2 #temp=b+c
— add StO0, St0, Ss3 #temp =temp + d
— sub Ss0, St0, Ss4 #a=temp-e

Notice: A single line of C may break up into several lines of MIPS.

Compile the following C statement into MIPS Assembly
- f=-2%g
Use intermediate temporary registers

— add $t0,5s1,5s1 # temp0 = 2*g
— add St1,5t0,St0 #templ = 4*g
— sub S$s2,5t0,5t1 #f=2%g-4*g

Prof. M. Mansour EECE 321: Computer Organization

19



What About Immediate Operands?

= One particular immediate, the number zero (0), appears very often in code.

= So we define register zero (SO or Szero) to always have the value 0; e.g.
— add Ss0, Ss1, Szero #in MIPS
— f=g /¥inC*/
where MIPS registers $s0, Ss1 are associated with C variables f, g
= Szerois defined in hardware, so an instruction
— add Szero, Szero, SsO
will not do anything if the destination address is the register Szero!
= |n general, immediates are numerical constants.
= They appear often in code, so there are special instructions for them.
= Add Immediate:
— addi Ss0, Ss1, 10 # in MIPS: add the immediate constant 10 to contents of Ss1
— f=g+10 /*inC*/
where MIPS registers $s0, Ss1 are associated with C variablesf, g

= Syntax similar to add instruction, except that last argument is a number instead of
a register.

Prof. M. Mansour EECE 321: Computer Organization 20



Immediates

= There is no Subtract Immediate in MIPS: Why?

= Limit types of operations that can be done to absolute minimum
— if an operation can be decomposed into a simpler operation, don’t include it
— addi ..., -X is equivalent to subi ..., X =>so no subi

= addi Ss0, Ss1, -10 #in MIPS
= f=g-10 [*inC*/
where MIPS registers Ss0, Ss1 are associated with C variables f, g

Prof. M. Mansour EECE 321: Computer Organization

21



Overflow in Arithmetic

=  Reminder: Overflow occurs when there is a mistake in arithmetic due to the limited
precision in computers.

= Example (4-bit unsigned numbers):

+15 1111
+3 0011
+18 10010
— But we don’t have room for 5-bit solution, so the solution would be 0010, which is +2,
and wrong.

= Some languages detect overflow (Ada), some don’t (like C)
= MIPS solution is 2 kinds of arithmetic instructions to recognize 2 choices:

— add (add), add immediate (addi) and subtract (sub) cause overflow to be detected

— add unsigned (addu), add immediate unsigned (addiu) and subtract unsigned (subu) do
not cause overflow detection

=  Compiler selects appropriate arithmetic

= MIPS C compilers produce
— addu, addiu, subu

Prof. M. Mansour EECE 321: Computer Organization 22



