EECE 321: Computer Organization

Mohammad M. Mansour

Dept. of Electrical and Compute Engineering

American University of Beirut

Lecture 2: History of Computers

Announcements

Course webpage:

http://webfea.fea.aub.edu.lb/mmansour/eece321/index.htm

- Follow the course calendar on the course web page.
- Homework:
 - HW1: Posted, Due Monday Feb. 22, class time
 - Submit using Moodle
- Reading assignment
 - Ch.1 P&H: Sections 1.1 1.4
- Modelsim for VHDI:
 - You need to download the student version and learn how to use it
 - See web page for details
- Project: The following is due by Wednesday Feb. 24:
 - Assemble a team of three members
 - I will circulate a paper in class to write down the group member names on it
 - Have "Modelsim" up and running
 - Document on a log-sheet, all project activities on a weekly basis, showing what each member has achieved throughout the semester.
 - Log-sheet to handed in and graded as part of the project

Computers: A Historical Perspective

- Early computers were mechanical/electromechanical in nature.
- Digital computer generations
 - Since early 50's, thousands of new computers have appeared using a wide range of technologies and offering wide range of capabilities.

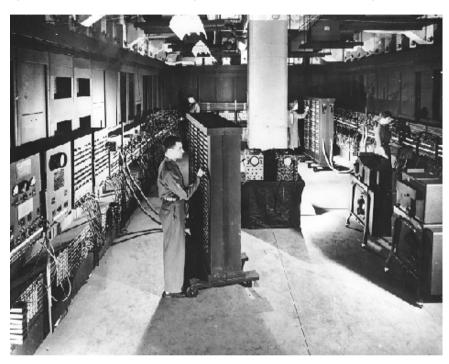
Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

World's First 'Mechanical' Computer

- The Babbage Difference Engine (1832), by Charles Babbage
- Inspired by Jacquard's loom: Read the article "The Loom that Wove the Future" by James Essinger
 http://www.popularscience.co.uk/features/feat15.htm
 - Check also wiki page

Difference Engine, 1832

It included a pipelined-adder!


Specs:

- Based on mechanical gears that perform arithmetic
- Uses the decimal number system
- 25,000 parts
- cost: £17,470

The photos in this lecture are adapted from the literature for teaching purposes.

World's First General-Purpose 'Electronic' Computer

ENIAC: Built by Eckert & Mauchly at Univ. of Pennsylvania around World War II.

ENIAC, 1946

- Specs:
 - Weighed 30 tons
 - Occupied 1500 square feet
 - Used 18,000 vacuum tubes
 - Had 20 10-digit registers each 2 feet long
 - Consumed 140 KW of power
 - Performed 5000 additions/sec

The photos in this lecture are adapted from the literature for teaching purposes.

Commercial Developments: IBM System/360 Computers

■ IBM introduced the System/360 models in 1964 after investing \$5B.

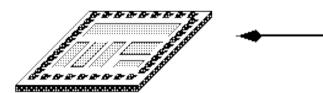
- Four models were introduced:
 - Model 40 (shown above): 1.6 MHz, 32KB-256KB, \$225,000
 - Model 50: 2.0 MHz, 128KB-256KB, \$550,000
 - Model 65: 5.0 MHz, 256KB-1MB, \$1,200,000
 - Model 75: 5.1 MHz, 256KB-1MB, \$1,900,000

Minicomputers: DEC PDP-8

 Digital Equipment Corporation (DEC) introduced the first commercial minicomputer in 1965.

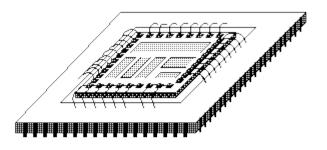
• Cost: \$20,000

Minicomputers were forerunners of microprocessors.

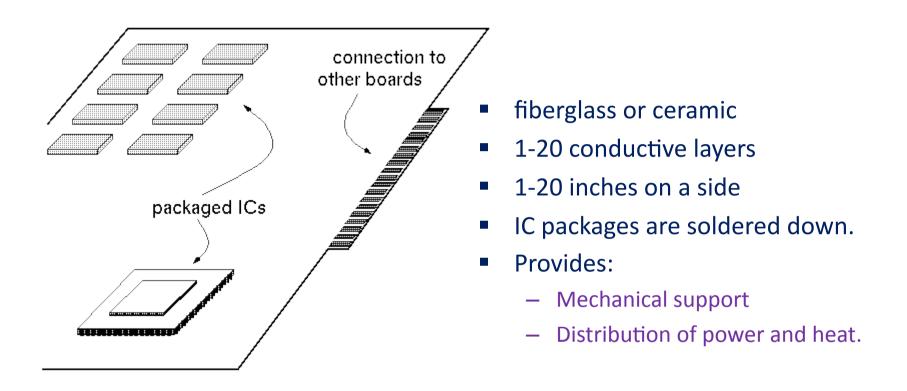


Computers Today: Overview of Physical Implementations

- The hardware out of which we make systems.
- Integrated Circuits (ICs)
 - Combinational logic circuits, memory elements, analog interfaces (CPU)
- Printed Circuits (PC) boards
 - Substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.
- Power Supplies
 - Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
 - holds boards, power supply, provides physical interface to user or other systems.
- Connectors and cables

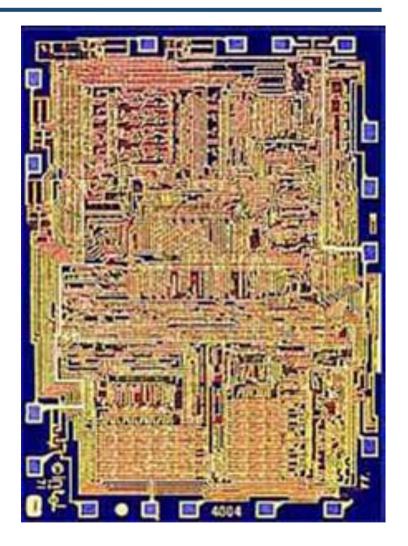

Integrated Circuits (2009 ~ state-of-the-art)

Bare Die

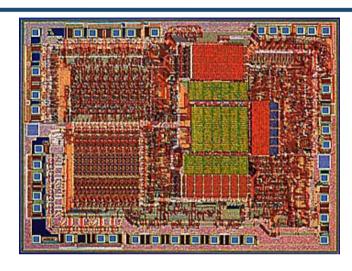

- Primarily Crystalline Silicon
- 1mm 25mm on a side
- 2009 feature size ~ 45 nm = 45 x 10⁻⁹ m (then 32, 22, and 16 [by yr 2013])
- 100 1000M transistors
- (25 100M "logic gates")
- 3 10 conductive layers
- "CMOS" (complementary metal oxide semiconductor) - most common.

Chip in Package

- Package provides:
 - spreading of chip-level signal paths to boardlevel
 - heat dissipation.
- Ceramic or plastic with gold wires.


Printed Circuit Boards

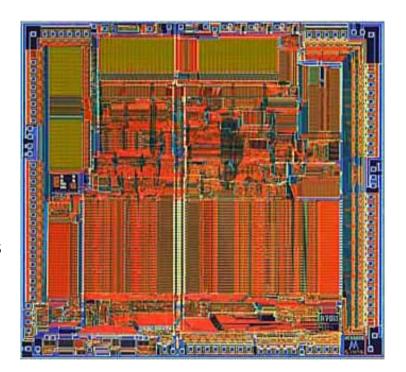
How did all that start?
The *Microprocessor*


Microprocessors: The Intel 4004

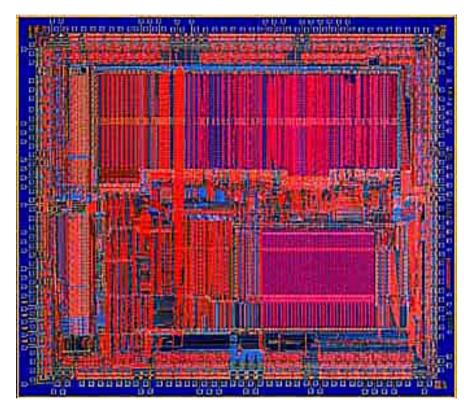
- Intel introduced the world's first general purpose, single-chip microprocessor in 1971.
- 8-bit architecture, 4-bit implementation
- 2,300 transistors
- All transistors were hand-crafted on the die.
- Performance < 0.1 MIPS (Million Instructions Per Second)
- Intel 8008: 8-bit implementation in 1972
 - 3,500 transistors
 - First microprocessor-based computer (Micral)
 - Targeted at laboratory instrumentation
 - Mostly sold in Europe
- Also, 1971 featured the introduction of the first integrated memory chip (4-Kbit) using MOS.

Intel 80x86 ISAs and Microprocessors

- Introduced 8086 in 1978.
 - Performance < 0.5 MIPS
- New 16-bit architecture
 - "Assembly language" compatible with 8080
 - 29,000 transistors
 - Includes memory protection, support for Floating Point coprocessor
- In 1981, IBM introduces PC
 - Based on 8088--8-bit bus version of 8086
- Intel processor family:
 - 80286 (1982)
 - 80386 (1985)
 - **-** 80486 (1989)
 - Pentium (1992)
 - Pentium Pro (1995)
 - Pentium II (1997)
 - Pentium III (1999)
 - Pentium IV (2000)
 - Intel Core (2006)
- Each release featured an expansion of the 8086 ISA
- •All future processors are backward compatible

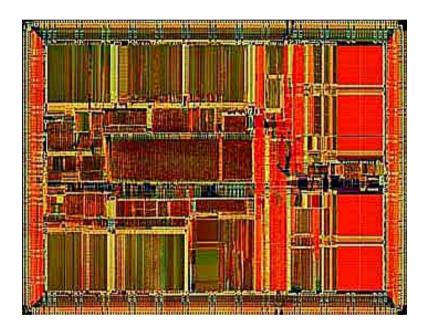


Pentium IV: 42M transistors


Motorola 68000 Family

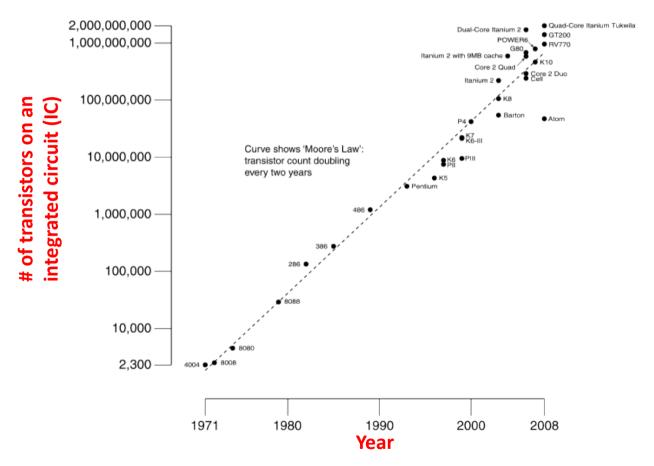
- Major architectural step in microprocessors:
 - First 32-bit architecture
 - initial 16-bit implementation
 - First flat 32-bit address
- First implementation in 1979
 - 68,000 transistors
 - < 1 MIPS
 - Used in
 - Apple Mac
 - Sun, Silicon Graphics, & Apollo workstations
- Motorola 680X0 processors
 - 68000
 - 68020
 - 68030
 - 68040
 - 68050
 - 68060
 - ColdFire

MIPS Processors


- The MIPS project was started at Stanford University in 1981 by Hennessy with a handful of grad students.
- MIPS stands for Microprocessor without Interlocked Pipe-Stages
- In 1984 he co-founded MIPS computer systems (merged with Silicon Graphics).
- Several firsts:
 - First (commercial) RISC microprocessor
 - First microprocessor to provide integrated support for instruction & data cache
 - First pipelined microprocessor (sustains 1 instruction/clock)
- Implemented in 1985
 - 125,000 transistors
 - Sustained 5-8 MIPS (millions of instructions per second)

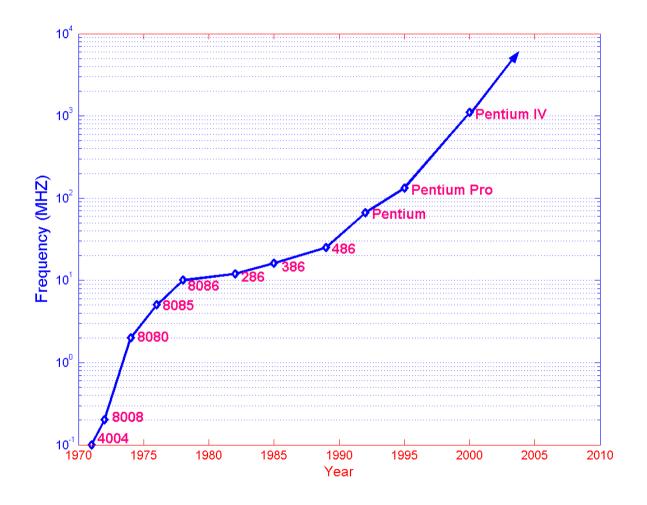
MIPS R2000

MIPS R4000: 64-Bit Processor

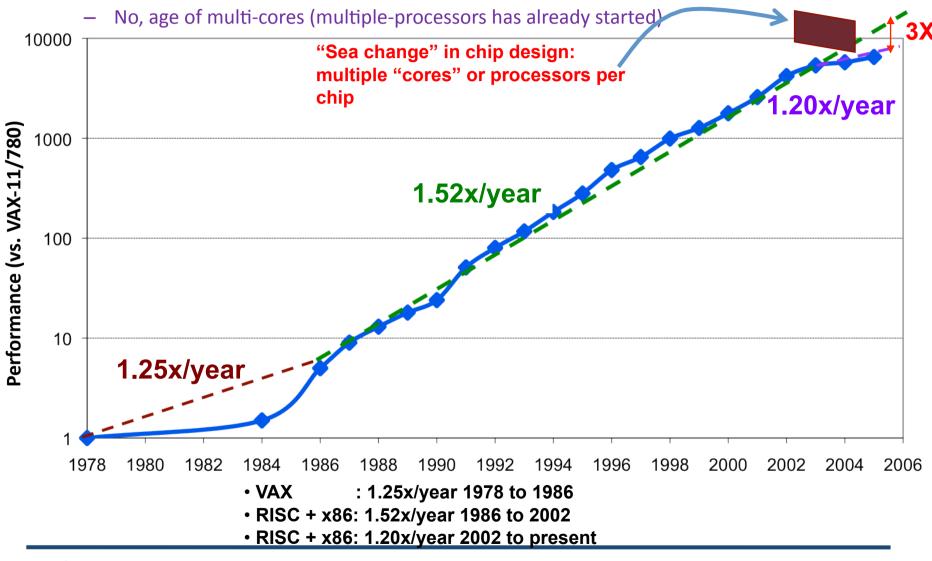

- First 64-bit architecture
- Integrated caches
 - On-chip
 - Support for off-chip, secondary cache
- Integrated floating point
- Implemented in 1991:
 - Deep pipeline
 - 1.4M transistors
 - Initially 100MHz
 - > 50 MIPS

Technology Trends: Microprocessor Complexity

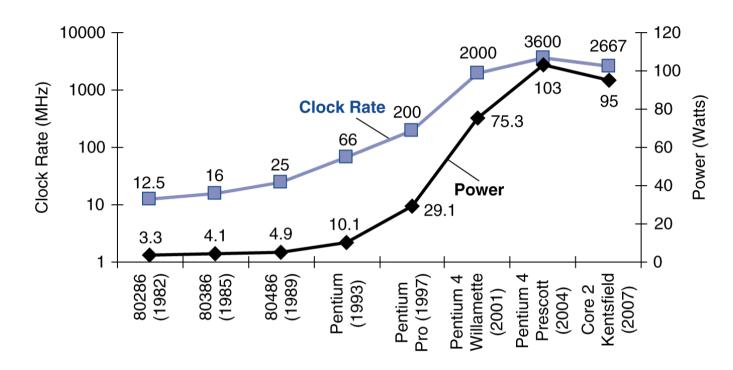
Moore's Law: Transistors per chip double every 18 to 24 months


Predicts: 2X Transistors / chip every 2 years

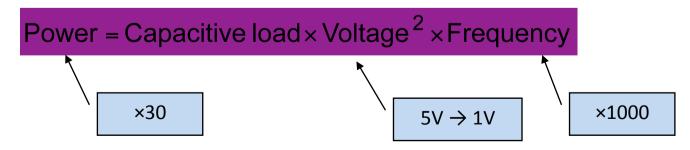
en.wikipedia.org/wiki/Moore's_law


Technology Trends: Microprocessor Performance (Frequency)

Processor frequency performance doubles every two years (since 1990's)



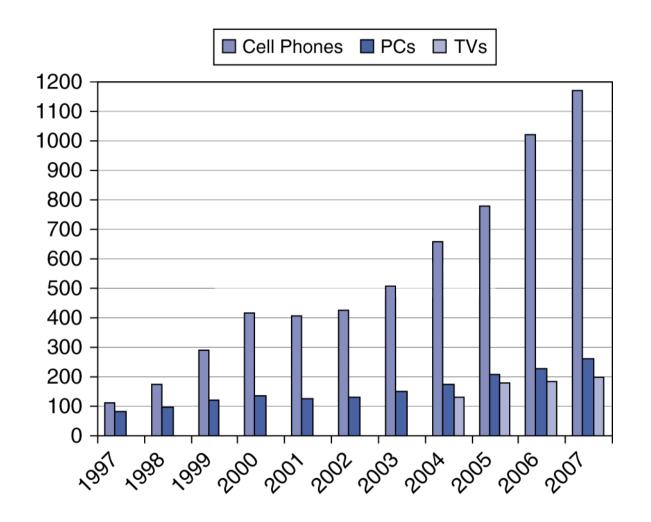
Technology Trends: Uniprocessor Performance on Benchmarks


Is one processor enough?

Power Trends

In CMOS IC technology:

Dramatic Changes in Computer Technology


- Processor
 - Speed 2x / 1.5 years (since '85) (now slowing down!)
 - 100X performance in last decade.
 - Prediction: When you graduate: 4 GHz, 32 Cores
- Memory
 - DRAM capacity: 2x / 2 years (since '96)
 - 64x size improvement in last decade.
 - Prediction: When you graduate: 128 GibiBytes
- Disk
 - Capacity: 2x / 1 year (since '97)
 - 250X size in last decade.
 - Prediction: When you graduate: 8 TeraBytes

<u>Ki</u> lo (10 ³)	<u>Ki</u> bi (2 ¹⁰)	Ki
Mega (10 ⁶)	<u>Me</u> bi (2 ²⁰)	Mi
<u>Gi</u> ga (10 ⁹)	<u>Gi</u> bi (2 ³⁰)	Gi
<u>Te</u> ra (10 ¹²)	<u>Te</u> bi (2 ⁴⁰)	Ti
<u>Pe</u> ta (10 ¹⁵)	<u>Pe</u> bi (2 ⁵⁰)	Pi
<u>Ex</u> a (10 ¹⁸)	<u>Ex</u> bi (2 ⁶⁰)	Ei
<u>Ze</u> tta (10 ²¹)	<u>Ze</u> bi (2 ⁷⁰)	Zi
<u>Yo</u> tta (10 ²⁴)	<u>Yo</u> bi (2 ⁸⁰)	Yi

New units

http://en.wikipedia.org/wiki/Binary_prefix

The Processor Market

