The EM-4 Under Implicit Parallelism

Lubomir Bic and Mayez Al-Mouhamed

Department of Information and Computer Science
University of California Irvine,
California 92717, USA.

Abstract: The EM-4 is a supercomputer that offers very fast inter processor communication and
support for multi threading. In this paper we demonstrate that the EM-4, Together with an automatic
parallelization technique referred to as data distributed execution (DDE), offers a computing
environment in which large portions of scientific code can be executed without the need for any explicit
parallelism. DDE exploits iteration level parallelism in loops operating over arrays. A performs data
dependency analysis based on which arrays are distributed over the different local memories. The code
is then transformed to "follow" the data distribution by spawning each loop on all PEs concurrently but
modifying its boundary conditions so that each operates mostly on the local sub-ranges of the data, just
reducing remote access to a minimum. The approach has been tested on the EM-4 by maintaining
several benchmark programs representative common scientific applications. The experiments show that
high speed up is achievable by automatic parallelization of conventional FORTRAN like programs.

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 19, 255-261 (1993)

The EM-4 under |

mplicit Parallelism

LuBoMIR Bic AND MAYEZ AL-MOUHAMED

Department of Information and Computer Science,

The EM-4 is a supercomputer that offers very fast interproces-
sor communication and support for multithreading. In this paper
we demonstrate that the EM-4, together with an automatic paral-
lelization technique referred to as Data-Distributed Execution
(DDE), offers a computing environment in which large portions of
scientific code can be executed without the need for any explicit
parallelism. DDE exploits iteration-level parallelism in loops op-
erating over arrays. It performs data-dependency analysis, based
on which arrays are distributed over the different local memories.
The code is then transformed to “follow” the data distribution by
spawning each loop on all PEs concurrently but modifying its
boundary conditions so that each operates mostly on the local
subranges of the data, thus reducing remote accesses to a mini-
mum. The approach has been tested on the EM-4 by implement-
ing several benchmark programs representative of common scien-
tific applications. The experiments show that high speedup is
achievable by automatic parallelization of conventional Fortran-

like programs. © 1993 Academic Press, Tne.

1. INTRODUCTION

Distributed memory MIMD computers are among the
most difficult to program, since independent processes or
threads operating on their own memories and communi-
cating with other processes through message or remote
memory access must be managed efficiently. While a
number of such machines have been built to date, their
software development lags far behind due to the lack of
anderstanding of and the consequent lack of program-
ming support for such machines. The most common
approach is to extend existing languages with various
primitives for process control, synchronization, and
communication and to leave it up to the programmer to
develop parallel algorithms using explicit parallelism.

While these approaches may be justified when devel-
oping algorithms or programs that are difficult to parallel-
ize, they are unnecessary in cases where the problems
are highly regular and parallelism is abundant. For such
programs, automatic parallelization is just as effective,
provided the underlying architecture offers adequate fa-
cilities to support the derived parallel code.

The objective of this paper is to demonstrate that the
EM-4 multiprocessor [1, 2], together with an automatic
parallelization technique referred to as DDE (Data-Dis-
tributed Execution), which has originally been developed

University of California, Irvine, California 92717

in the context of coarse-grain dataflow [3, 4], offer a com-
puting environment in which large portions of scientific
code can be executed without the need for any explicit
parallelism to be specified by the programmer.

This paper is organized as follows. The EM-4 architec-
ture and its most important characteristics are described
in Section 2. Section 3 presents the principle of DDE and
the actual transformations applied to programs to extract
parallelism. Section 4 presents the results of the bench-
marks executed on the EM-4 and Section 5 concludes
about this work.

2. THE EM-4

The EM-4 is a distributed memory MIMD supercom-
puter [1, 2, 5] with 80 PEs but may be expanded to over
1000 processors. Its most important features towards
promoting implicit parallelism are the fast interprocessor
communication and the support for multithreading. Let
us address these in turn.

The 80 PEs of the EM-4 are interconnected through an
Omega network by using a direct connect topology. This
topology configures the 80 PEs into 16 groups of 5 PEs
each. Within each group, a message must traverse at
most 4 links to go from any PE to any other. Across
clusters, the average number of hops [2] is proportional
to log(npe), where npe is the number of processors. This
approach provides for fast communication in addition to
dynamic load distribution at each node.

To allow efficient multithreading, it is necessary to cre-
ate threads and quickly switch among them. Originally,
the EM-4 was conceived as a dataflow/von Neumann
hybrid; it is capable of executing sequential code as well
as performing the matching of operands required by da-
taflow [6]. This is achieved by using a 4-state pipeline so
that the first two stages can be bypassed in case of se-
quential code. A simplified block-diagram of the pipeline
is shown on Fig. 1. This, in fact, results in a nested pipe-
line, where the outer four stages are used for the dataflow
mode and the inner two stages are used in sequential
mode.

The first two stages perform what has been termed
direct matching [5]. Whenever a function is invoked, an
operand segment is created such that there is one entry in
the operand segment for each dyadic instruction in the

255
0743-7315/93 55.00

Copyright © 1993 by Academic Press. Inc.
All rights of reproduction in any form reserved.

BIC AND AL-MOUHAMED

stage 1 stage 2

stage 3 stage 4

packet in ; packet out
r
code segm # matching instr. felch execulion
fetch and decode
FIG. 1. EM-4 pipeline.

code segment. A pointer from the operand to the code
segment is also created, since potentially distinct oper-
and segments (one for each invocation) could be simulta-
neously pointing at the same code segment.

Whenever a data packet arrives at stage 1 of the pipe-
line, the code segment number is fetched from the corre-
sponding operand segment. The location addressed by
the packet is examined in stage 2. If it is empty, the
packet is stored in that location and no further action is
taken by the subsequent stages. If, on the other hand, it
already contains an operand, it is marked empty and both
operands are passed to the third stage, that performs the
fetch and decoding of the corresponding instruction. Fi-
nally, the execution is performed by the fourth stage.

The above cycle is repeated until an instruction,
through a special bit, indicates that sequential execution
is to commence. At that time, no new packets are ac-
cepted by stage 1. Instead, stage 3 continues fetching
subsequent instructions and passing them to stage 4 for
execution in a normal von Neumann style using registers.
This mode continues until it is explicitly terminated by an
instruction. Hence the EM-4 is capable of switching be-
tween data-driven and control-driven execution very effi-
ciently.

The above direct matching mechanism may be viewed
as a mechanisms for thread management [9] because it
provides efficient means to: (1) execute sequences of
control-driven instructions (threads) until termination or
a remole memory request is encountered, and (2) quickly
switch to a new thread by using direct matching. Sus-
pended threads are then resumed when the remote data
becomes available. This approach is very useful to hide
memory latency and has been identified as one of the
major requirement in multiprocessing [7].

Barrier synchronization has been provided through a
library and, due to the fast interconnection network of
the EM-4, performs very efficiently. For example, a re-
duce/add over 80 PEs takes 16 us.

I-structures [8] and other memory synchronizing data
structures are supported only through software and, con-
sequently, are not very efficient,

The EM-4 can be programmed using three distinct ap-
proaches. The original design was intended for the execu-
tion of functional languages. A functional program is
compiled into dataflow graphs, where components, re-
ferred to as strongly connected blocks do not require any

external inputs other than the operands of the first in-
struction; i.e., operands of other instructions are gener-
ated within the block. This enables the block to execute
in an uninterrupted control-driven manner. The remain-
ing instructions are executed in a data-driven style using
operand matching.

The second type of programming [9] consists of using a
thread library. In this case, the programmer: (1) designs
threads and specifies their mapping, and (2) explicitly
handles the distribution of data structures.

The third style of programming, which is discussed in
this paper, attempts to exploit implicit parallelism using
conventional languages. This approach will be presented
in the next section.

3. DATA-DISTRIBUTED EXECUTION

The approach described in this paper focuses on data
parallelism, specifically, parallelism at the iteration level
of loops operating on arrays. We consider programs writ-
ten in a conventional language, such as Fortran or For-
tran-like c. The main reason is that DDE, in its present
form, provides transformations for only loops iterating
over arrays. Fortunately, there is a vast body of scientific
programs that fit that description.

The basic philosophy of DDE is to distribute the arrays
over the PEs to minimize the amount of remote data
transfer required during the execution of concurrent
threads. At run time, each parallel loop is associated with
two families of threads: (1) global threads (GT) are cre-
ated by subdividing the range of the parallel iterator, and
(2) uniformly partitioning each GT into local threads
(LT). While GTs promote inherent parallelism, the LTs
provide each PE the opportunity to hide remote memory
access (RMA) by performing context switching to ready
LTs. The efficiency of this approach depends on the dis-
tribution of arrays so that a given GT is mapped to the PE
whose local memory contains most of the array refer-
ences that are used by that GT. While a perfect data and
code alignment is not always possible due to imperfec-
tions in the analysis and other factors, the number of
RMAs is kept to a minimum.

3.1. Analysis and Restructuring

Dependence analysis [14, 15] is used to determine the
chronology of operations such that data dependencies are

EM-4 UNDER IMPLICIT PARALLELISM

preserved. Loop-carried-dependencies (LCD) inhibit
parallelization of the loop and lead to generation of a
single thread. Global threads will be created for loops
having only loop-independent-dependencies (LID) that
are free of LCDs. To reduce the granule size of LCD
loops, we use traditional methods to remove paralleliza-
ble code fragments from LCD loops using loop distribu-
tion and partial parallelization. Next, we attempt insert-
ing these fragments closer to their data producer or
consumer expressions that belong to LID loops with the
same loop headers. This identifies all the LID loops that
can be used for generating the global threads.

In some cases, local inbalance may occur among the
PEs because the parallel iterator loop count is small com-
pared to npe. To load balance the PEs, a number of paral-
lel outer loops are combined such that the number of their
instances, that is the number of GTs, becomes the closest
to npe.

Renaming [10] multiple write operations to the same

-ariable is performed in order to make the code obey the

single assignment principle, which allows a value to be
written only once. This eliminates possible race condi-
tions [11] and produces the correct result regardless of
loop scheduling.

The above loop restructuring places data producers
closer to their data consumers, thus, causing more imme-
diate references to become subject to identical loop con-
straints. Because each instance of a parallel loop is used
to generate a GT that is mapped to one PE, the domain of
each array that is indexed by the parallel iterator index is
implicitly distributed across the PEs to yield the least
number of remote memory accesses. This enables finding
different array distributions over the PEs depending on
the way cach array is referenced in different loops. A
voting technique allows finding the most frequently used
array distribution that becomes the global distribution.

3.2. Transformations for Parallelism

We will use the generic program example in Fig. 2 to
illustrate the creation of global and local threads. The
first step is to replace all array definitions (line 1) by a call
to an allocate() function, which, at run time, performs a
distributed allocation of the array by sending requests to
all PEs to allocate their own local subranges (lines 5-6).
The type of distribution is determined, for each array,
based on the preceding program analysis. Without loss of
generality, we consider 2-D arrays and their column-ma-
jor and row-major distributions but the approach can cas-
ily be extended to arbitrarily dimensioned arrays. The
heuristic operates as follows:

« Given an array, A, consider each access A[i, j] within
a loop. If this is a singly nested i loop, or a nested lcop
with [as inner index, then mark the access as a column
dACCEeSS.

2
n
~1

Sequential Code:

1 int 400D, 010D

2 for (i =0; i <€ ni; i++)

3 for (j = 0; j < n2; j++)

4 ali] [j1=some.comp(BLil[j1,..);

Transformed Code:

5 A = allocate(ROW,...);

& B = allocate(ROW,...);

7 for (p = 0; p < NOPEs; p++)}

3 fork(pelpl, idoop, ...);

] void iloop(...) {

10 1b = max(0, getmy start i(A});

11 ub = min(nl, getmy_ end i(A)};
13 for (i = 1b; i < ub; i++) {

13 for (j = 0; j < n2; j++) {

14 fork(self pe, jloop,...);

15)

18 void jloop(...) {

17: value=some comp(read.array(B,i,j),..):
18 write array(d,i,j,valoe};

19}

FIG. 2. Program transformation.

« Ifitis a singly nested j loop, or a nested loop with j as
inner index, then mark the access as a row access.

= Count the number of loops with row access versus
column access. Depending on which is more frequent,
choose row or column distribution for the matrix.

In Fig. 2, the parameter ROW indicates that the arrays
are to be distributed row-major, that is, each PE will be
responsible for a certain subrange of the index i.

To implement DDE, i.e., to make the code follow the
data distribution, the following basic approach is used.
Each loop is started on all PEs concurrently. The loop
code, however, is augmented so that each PE operates on
a different subrange of the original loop. For nested loops
it is first necessary to determine the loop nest that con-
trols the array distribution. This is based on the distribu-
tion of the arrays operated on by the loop. In most cases,
all arrays accessed within a given loop will have been
distributed along the same dimension. In this case, the
index along which the arrays were distributed determines
the loop level to be distributed. In the rare cases where
not all arrays accessed within a given loop have been
distributed along the same dimension, we count the num-
ber of array accesses along each dimension and select the
most frequently used one to determine the loop level to
be distributed.

Once a level is chosen, the corresponding for-loop con-
struct is transformed into a function and the necessary
code is inserted to fork the GTs over all PEs. In Figure 2,
both arrays were distributed row-major and hence the

258

i_loop (line 2) was chosen for distribution. It has been
transformed into the function called i_loop() (line 9) and
is spawned on all PEs using the loop shown on lines 7-8.
This loop executes on PE; that is the master PE. It uses
the fork primitive of the EM-4 thread library, which spec-
ifies the target PE, the function to be called, and any
arguments to be passed to that function.

To make each PE operate on a different subrange, the
code to compute the local lower and upper bounds (lb,
ub) for the distributed loop is inserted (lines 10-11). This
code, referred to as the Range filter, accesses the header
of the array the loop operates on and, from the recorded
distribution information, computes the local subrange.
The functions get_my_start_i() and get_my_end_i() rep-
resent the retrieval of the starting and ending i_indices,
which are different for each PE. These are then combined
using the max and min functions with the boundaries of
the original loop, in this case, the values 0 and n1, respec-
tively.

The transformations performed so far resulted in the
creation of a GT on each PE. To mask memory latency
resulting from remote memory accesses, it is necessary
to increase the level of parallelism within each PE. This is
achieved by locally spawning the iterations of the next
lower nest of the distributed loop as separate LTs. This is
analogous to the previous transformation except that the
PE specified by the fork() primitive is the local PE. In
Figure 2, the j_loop becomes a separate function (lines
16-19) and is spawned for each j on the PE as a local
thread (line 14). For more deeply nested loops this trans-
formation can be repeated at yet lower levels until a suffi-
cient level of parallelism is achieved.

The final transformation is to replace each reference to
an array element by a call to the read_array() or write-
array() function, which determines the location of the
given element (local or remote) and performs the access.
The implementation of these functions depends on the
specific array mapping algorithm. For the programs pre-
sented in this paper, we have implemented the following
mapping strategy. Given an array A[n;, n,, ...], assume
that the array is to be distributed along a given dimension
ny. We interpret n, as a binary number and use the lead-
ing k bits as the PE number and the remaining bits as the
local index, as illustrated in Fig. 3. The number k is deter-
mined by right-shifting n, until the result is smaller than
the total number of PEs. The number £ is then stored in
the array header and used by the access functions as
follows. Assume we are given an element A[i, iz, ...] to
be accessed. The read function performs the following
computations:

pe = nd = k;
loc_indx = mask[k] & k:
global_read(pe, address(A, loc_indx, j));

BIC AND AL-MOUHAMED

e— x —d

n PE #

local index

FIG. 3. Array mapping using dimension ny.

The first instruction right-shifts ny by k bits to obtain
the PE number. The second instruction masks out the
leading k bits (using an array of predefined masks) to get
the local index. The third operation then performs the
actual memory read by computing the local address of
the element and retrieving the value from the given
PE.

Since the address calculation is essentially the same as
for accessing an array element in a sequential system, the
additional overhead are the two binary operations and
the initiation of the global access. The main disadvantage
of this scheme is that it requires both the number of PEs
and the array size to be powers of two. The former is
quite common in most multiprocessors but the latter
must be enforced by rounding up the given array size to
the nearest power of two, thus introducing some load
imbalance. This drawback, however, is much less severe
than the overhead of other mapping schemes, which re-
quire multiplication or division operations to be per-
formed each time the address of an array element is to be
computed. The main advantage of the scheme is that it is
dynamic in that the mapping is determined at run time,
based on the array size. Hence it is applicable even when
the array bounds are unknown at compile time.

Before the program is submitted for execution, a num-
ber of optimizations are performed. The most significant
ones are the inlining of the inserted functions, notably the
read_array and write_array functions, and moving of all
invariant code outside of the loops. The program sched-
ule, resulting from the insertion of the various fork and
barrier primitives, is also improved by moving loops that
do not need to wait for a particular barrier in front of that
barrier. Hence a form of a greedy schedule is imple-
mented. The above transformations have been applied
manually. However, they follow well-defined algorithms
and thus could easily be applied automatically.

4. RESULTS

This section presents the results of applying the pro-
posed DDE approach to (1) the Livermore loop 3, (2) the
conduction loop of the SIMPLE benchmark, and (3) the
matrix mulitply. These programs have been run on the
EM-4.

EM-4 UNDER IMPLICIT PARALLELISM

4.1. Livermore Loop 3

The Livermore Loop 3 [13] consists of a reduction/
multiply over two vectors z and x with size n. The loop is
repeated a constant number of times in order to accu-
rately measure the execution time on the EM-4.

Analysis reveals no recurrence and hence both arrays
x and z are distributed by allocating a subrange of [n/npe]
elements to each PE, where npe = 64 in this experiment.
The accumulation of partial results was performed using
a barrier add operation.

To measure the speedup, the execution time of the
sequential version was obtained by compiling the pro-
gram using a commercial ¢ compiler and running it on one
node of the EM-4. By varying the size of the vectors from
1000 to 10,000 and 20,000, the resulting speedups were
10.5, 42.5, and 51, respectively. The average idle time for
each PE was 56%, 21%, and 13%, for each of the above
vector sizes.

This demonstrates that the EM-4 is capable of perform-
_ag reduction quite efficiently. Due to its fast communica-
tion network, the grain size may be fairly small. Even for
a vector size of 1000 elements where each GT consists of
only 15 multiplications, a 10-fold speedup is achieved by
using 64 PEs. Increasing the granule size of the GT signifi-
cantly improves performance, such as the 51-fold
speedup for 20K vectors.

4.2. SIMPLE

SIMPLE is a well-known benchmark program [12] that
performs a hydrodynamics and heat conduction simula-
tion and is indicative of large-scale scientific code that is
executed on today’s supercomputers. It simulates the be-
havior of a fluid in a sphere, using the Lagrangian Formu-
lation.

In this experiment, we have considered the conduction
function which is the main portion of SIMPLE and the

most difficult to parallelize compared to its other rou-
.nes. The code consists of a number of singly and multi-
ply nested loops iterating over several 2-D arrays.

After a simple transliteration from Fortran into ¢, the
code was analyzed for recurrences. Since there were no
simple intraloop dependencies to be removed, only barri-
ers were inserted as necessary. The code was then trans-
lated automatically according to the steps of Section 3.2.
After optimization, the code was executed such that PE,
performs the allocate() and work distribution functions
and the remaining 79 PEs executed the actual computa-
tion.

The resulting parallelism profile is shown in Fig. 4. The
measured speedup was 65 and the average idle time was
9.09%. The extracted parallelism was nearly 77 during
most of the computation time. This parallelism profile is

259

30.00

73.00

7000 —

65.00 —

45.00

33.00 -

15.00

10,00 — =1 =

.00 —

0.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

FIG. 4. Parallelism profile of condunction loop.

excellent, given that PE, and two other PEs, those hold-
ing the boundary rows, were idle during most of the com-
putation time.

The drops in parallelism, resulting from barriers that
could not be masked by other work, were steep, narrow,
and few in number. The shape of the drops is a clear
indication of the EM-4’s superior communication net-
work. It allows workload to be distributed throughout the
machine and results to be rapidly collected in a central
place, thus keeping the idle time due to barriers to a
minimum.

The small number of the drops and the fact that they do
not extend all the way down to a single PE is an indica-
tion of the available parallelism in a typical scientific ap-
plication. Even though we have used only a rudimentary
scheduling technique (move loops in front of barriers if
possible), there were sufficient numbers of independent
loops that could be run concurrently and thus mask the
effect of much of the idle time resulting form barriers.

4.3. Matrix Multiply

Matrix multiply, while very simple to formulate, is a
very difficult problem to parallelize efficiently, since to
produce each row (or column) of the resulting array re-
quires access to all elements of one of the input matrices.
Using the DDE approach, we have parallelized the sim-
ple triply-nested loop of the matrix multiply. Three ex-

260

80,00 —f—- -

75.00 — = |
)
70.00

65.00 - -

60,00 —f-—-

55.00 —1—

50,00 -
: LY

43500 ——}—-— e ———enres e O

BT I e — ‘

35.00

L e e

20,00 —{— —= - \

15.00 ‘

10.00

O S \
S.UU~—l 3 l

0.00 ——

0.00 100.00 200.00 300.00 400.00 500,00

FIG. 5. Parallelism profile of matrix multiply.

periments were carried out for matrix sizes (multiples of
79) of 792, 1582, and 316°, respectively. The parallelism
profile for the second experiment (Fig. 5) is representa-
tive of those of the other experiments. The obtained
speedups were 7.5, 8.6, and 9.1 for each of the above
matrix sizes, respectively.

The resulting speedup is quite modest, even when the
matrix size is large. We note, however, that the same
algorithm, when carefully parallelized by hand, did not
achieve a much better speedup than that achieved
through our automatic translations. Hence the result,
while not exciting in absolute terms, indicates that, for a
given algorithm, the automatic parallelization approach
performs well. The choice of a good algorithms, of
course, is the responsibility of the programmer.

The parallelism profile of the matrix multiply algorithm
(Fig. 5) show a pronounced trailing edge, indicating that
some PEs finish early while some take much longer to
complete. This load imbalance was quite surprising,
given the regularity of the problem, the distribution, and
the architecture. The trailing edge in Fig. 5 takes up on
the order of 20% of the total computation and accounts
for most of the idle time (11.7%) measured for this prob-
fem. This idle time could be eliminated if memory syn-
chronization (e.g., I-structures) were used. In this case,
the subsequent computation that consumes the resulting
matrix could partially overlap the matrix multiple compu-
tation and start consuming the values as soon as they

BIC AND AL-MOUHAMED

became available. Unfortunately, the EM-4 does not sup-
port memory synchronization in hardware. which we
consider a significant shortcoming in its design. Without
memory synchronization, some form of barrier must be
used to delay the subsequent computation. In this case,
the idle time could only be masked by some other compu-
tation that does not depend on the resulting matrix and
thus could be scheduled concurrently.

5. CONCLUSIONS

In this paper we have investigated an approach to par-
allel programming using transformations applied at the
source level of sequential programs. The approach was
investigated for the EM-4 multiprocessor in order to eval-
uate its performance under implicit parallelism. The pri-
mary conclusion we draw from our experiments is that
there are many real world applications that a hybrid ma-
chine like the EM-4 could exploit without requiring the
labor-intensive and error-prone task of manual parallel-
ization. It has been shown that significant speedup is
achievable on regular Fortran-like programs that iterate
over large data structures, such as the SIMPLE bench-
mark. Primarily, this is attributed to the EM-4’s fast com-
munication network and its support for multithreading.
The main shortcoming in the EM-4 design is the lack of
support for memory synchronization. The consequent
use of barriers results in parallelism drops which cannot
always be masked by other computation due to the diffi-
culty in finding efficient schedules and/or the lack of in-
herent parallelism.

We recognize that automatic parallelization will not
eliminate the need for the human programmer’s involve-
ment. As we have shown with the matrix multiply exam-
ple, automatic parallelization of a well-known algorithm
yielded only marginal speedup. To solve this problem
more efficiently, a different algorithm must be developed,
which cannot be done without human intelligence. Hence
we view automatic parallelization as only one component
of a parallel programming environment, which must take
into consideration many components, including the pro-
grammer, the language, the compiler, the machine archi-
tecture, and the various development tools. The pro-
grammer’s involvement is essential for algorithm
development, as already suggested, and for parallelizing
complex structures and intricate programs. The structure
of most real world programs, however, is quite simple
and very regular, and offers an abundance of parallelism.
Thus it is a waste of the most precious resource when
programmers are required to analyze such programs by
hand and to explicitly insert parallelizing and synchroniz-
ing primitives when automatic parallelization techniques
would perform equally well, as long as the architecture
provides the necessary communication, multithreading,
and synchronization support.

EM-4 UNDER IMPLICIT PARALLELISM

REFERENCES

I. Sakai, S., Yamaguchi, Y., Hiraki, K., Kodama, Y., and Tuba, T.
An architecture of a dataflow chip processor. Proc. 16th Annual
Int'l Symp. on Computer Arch., Jerusalem, Jun. 1989,

. Yamaguchi, Y., Sakai, S., Hiraki, K., Kodama, Y., and Yuba, T.
An architectural design of a highly parallel dataflow machine. in G.
Ritter (Eds.), Information Processing 89. Elsevier North-Holland,
1989,

3. Bic, L. A process-oriented model for efficient execution of dataflow
programs. J. Parallel Distribured Compur. 8, (Jan 1990) 42-51.

4, Bic, L., Roy, J. M. A., and Nagel, M. Exploiting iteration-level
parallelism in dataflow program. [2th Int. Conf. on Distributed
Computing Systems. Yokohama, Japan, Jun. 1992,

5, Sakai, S., Hiraki, K., Yamaguchi, Y., Kodama, Y., and Yuba, T.
Pipeline optimization of a dataflow machine. (Advanced Topics in
Data-Flow Computing. Prentice-Hall, in J-L. Gaudiot and L. Bic
(Eds.). 1991.

6. Arvind, Bic, L., and Ungere, T. Evolution of data-flow computers.
in J-L. Gaudiot and L. Bic (Eds.) Advanced Topics in Data-Flow
Comput. Prentice-Hall, 1991.

7. Arvind, and Iannucei, R. A. Two fundamental issues in multi-
processing. Proc. DFLVR Conf. on Parallel Processing in Science
and Engineering, Bonn-Bad Godesberg, Germany, Jun. 1987.

8. Arvind, and Thomas, R. E. I-structures: An efficient data type for
functional languages. Computer Science Tech. Rep. TM-178, MIT,
Cambridge, MA, Sep. 1980.

9. Sato, M., Kodama, Y., Sakai, 5., Yamaguchi, Y., and Koumura,
Y. Thread-based programming for the EM-4 hybrd dataflow ma-
chine. Proc. 19th Annual Int. Symp. Computer Arch. Gold Coast,
Australia, May 1992/

10. Cytron, R., and Ferrante, J, "“*What's in a name? or The value of

renaming for parallelism detection and storage allocation’, Proc.
Int. Conf. on Parallel Processing. Aug. 1987, pp. 19-27.

(5]

Received December 1992; revised February 16, 1993 accepted May 4,
1993

261

11. Ackerman, W. B., Data flow languages. JEEE Comput. (Feb. 1982),
15-25.

12. W. P. Crowley, C. P. Henderson, and T. E. Rudy. The SIMPLE
code. UCID 17715 Lawrence Livermore Laboratory February
1978.

13. McMahon, F. H. The Livermore Fortran kernels: A computer test
of the numerical performance range. UCRL-53745, Lawrence
Livermore National Laboratory, Livermore, CA, Dec. 1986.

14. Padua, D. A., Kuck, D. J., and Lawrie, D. H. High-speed multipro-
cessors and compilation techniques. JEEE Trans. Comput. (Sep.
1980) 763-776.

15, Padua, D. A., and Wolfe, M. Advanced compiler organization.
Commun. ACM (Dec. 1989) 1184-1201.

LUBOMIR BIC received an M.S. degree in computer science from
the Technical University Darmstadt, West Germany, in 1976 and a
Fh.D. in computer science from the University of California, Irvine, in
1979. He is currently Professor of Information and Computer Science at
the University of California, Irvine. Lubomir Bic's primary research
interests lie in the areas of parallel processing and data engineering. He
leads several projects aimed at developing new models of computation
and tools for the programming of multiprocessor machines. He is also
involved in research on parallel database machines and advanced data-
base models for scientific and engineering applications.

MAYEZ AL-MOUHAMED received his B.S., M.5., and Ph.D. de-
grees in electrical engineering from the University of Paris, in 1975,
1977, and 1982, respectively. Since 1983 he has been a member of the
Computer Engineering Faculty at the King Fahd University of Petro-
leum and Minerals in Dhahran, Saudi Arabia. Mayez Al-Mouhamed’s
primary research interests lie in the areas of parallel computers and
parallel programming languages with applications to real-time process-
ing. The research problems he is currently working on include static and
dynamic scheduling, parallelizing of real-time applications, shared
memory multiprocessors, robotics, and robotic vision.

