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Abstract: The paper deals with the design and implementation of a multiprocessor, MRTA, having
multiple module architecture. Each module consists of a tightly coupled set of processors connected
to a shared resource by means of a multiport bus. A shared resource consists of memory, interrupt
routing, and 1/0 for process control. The modules are connected through some of the member
processors. With its modular architecture, MRTA is reconfigurable and expandable. Reconfiguration
appears at two levels: the module interconnection topology and the type of interfacing of each shared
resource. This architectures is suitable for multiple (parallel and sequential) and hierarchical
formulations of real-time controllers, especially in the area of robotics. MRTA uses an efficient
scheduling strategy to deal with large-scale problems such as robot dynamics. Perfor4dmance
evaluation was carried out to address the issues of scheduling, process monitoring, and
synchronization. The variation in task execution time, which causes loss of synchronization, was
studied together with its implication on the process finish times. It is shown, using and example that
the resulting loss of synchronization has a reduced effect on overall performance when transfer time
is moderate compared with execution time.



Multiprocessor system for
realtime robotics applications

Hardware expandability and reconfigurability are key factors in the
evolution of robot control systems. Mayez Al-Mouhamed presents
a modular multiprocessor architecture, with each module based on a
tightly-coupled 8086-8087 pair

The paper presents the design and implementation of a
multiprocessor, MRTA, having a multiple module architec-
ture. Each module consists of a tightly-coupled set of
processors connected to a shared resource by means of a
mutltiport bus. A shared resource consists of memory,
interrupt routing, and I/O for process control. The modules
are connecled through some of the member processors.
With its modular architecture, MRTA is reconfigurable and
expandable. Reconfiguration appears at two levels: the
module interconnection topology and the type and
interfacing of each shared resource. This architecture is
suitable for multiple (parallel and sequential) and hier-
archical formulations of realtime controllers, especially in
the area of robotics. MRTA was built to enable perfor-
mance evaluation of realtime controllers. The system
software was developed to allow inputting of the control
problem, i.e. a set of tightly-coupled equations, and the
generation of the parallel algorithm and codes for mapping
within MRTA modules. The system uses an efficient
scheduling strategy to deal with large-scale problems such
as robot dynamics. To demonstrate the performance of the
system, a typical problem of robot control has been
investigated. Performance evaluation was carried out to
address the issues of scheduling, process monitoring and
synchronization. The variation in task execution time,
which causes loss of synchronization, was studied together
with its implication on the processor finish times. It is
shown, using an example, that the resulting loss in
synchronization has a reduced effect on overall perfor-
mance when the transfer time is moderate compared with
the execution time.

multiprocessors  realtime systems  robotics  scheduling

The design of robot controllers includes both low-level
control of the dynamics as well as higher-level intelligent
decision-making, object understanding and three-

Department of Computer Engineering, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
Paper received: 3 February 1989, Revised: 31 August 1989.

dimensional trajectory generation. The organization of
the robot controller as a hierarchy of processing modules
(Figure 1) has been investigated at different levels'™,

® The robot task is described in terms of its final state
(objective level).

@ The robottaskis aset of object transformations (object
level).

@ Therobottask is aset of robot actions (effector level).

@ Conversion between desired attributes and process
attributes (physical level).

e Elementary requirements of the process (signal level).

@ Devices to act on and to sense the environment
(machine level).

Lower levels usually perform regular calculations with
intensive interaction (short cycle) with the robot and its
environment, while higher levels evaluate refined global
decisions with relatively slower interaction (long cycle). At
all levels, parallelism can be useful to speed up process
control to different degrees.

Minicomputers can be dedicated to the control of
robot systems, but are expensive. Multimicroprocessors
have the advantage of reliability, i.e. failure in one
processor can be handled by software reconfiguration
and the system continues to perform, although there is
some degradation in performance.

A flexible interconnection structure would be of great
advantage in robotics where hardware continues to
evolve. Hardware expandability and reconfigurability are
the key factors in research and development of complete
robot systems. Investigations have been made of various
functional levels in robotics, such as control, motion
coordination, trajectory generation and intelligent levels.
Eachlevel can be seen as a compact system consisting of a
small multiprocessor with high data connectivity and
means of communication with other functional levels.
Highly sequential structures with the most efficient
formulation of kinematics and dynamics of articulated
systems have been recognized. Most of these functions
are iterative in nature and require the development of
special software to identify their possible parallelism®.
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On the hardware side, portability, fault tolerance,
power consumption and cost are otherimportant aspects
of robotics. Powerful VLS| chips, such as CPUs and
numeric data processors, are required to simplify design
and to improve processing capability and reliability.
Special memory management software is required to
reduce the overheads of executing the various functions
concurrently, The extra cost of using fast VLS| devices is
more than offset by the hardware simplification and
increased system reliability.

Processor interconnections are of prime importance in
designing multiprocessor systems. Loosely-coupled
multiprocessors can be designed using network architec-
tures. With multistage networks® and transputers®, a
processor interfaces with many other processors by
means of datapaths. A datapath can either connect the
1/0 ports of many processors or be a common bus that
routes many processors to a common memory. Generally,
networks have great expansion capability and are
consequently suitable for configurations involving a large
number of processors.

Tightly-coupled multiprocessors are mainly shared
memory multiprocessors (SMM), which are organized so
that a processor may access the shared memory by means
of a single’ or multiple bus®. In the case of multiple-bus
architectures, each processor-memory pair is nomally
linked by several redundant paths, implying greater fault
tolerance. Thus an SMM generally has a limited neigh-
bourhood but greater interprocessor data connectivity.

With regard to software development, most concurrent
operaling systems use the concept of variable sharing” to
implement interprocessor communication and this can
be directly applied to SMM systems. Variable sharing is
more suitable for processors where high data connectivity
is desired, i.e. processors at the same functional level of a
robot system. The computation of dynamics on an SMM
system involves hundreds or thousands of tasks having
precedence relationships. The variable sharing concept
offers an altemnative to be investigated in synchronizing? '
the computation of these tasks.

Multiprocessors with backplane buses'’ have a
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distributed common memory and a restricted interrupt-
routing ability”. They are difficult to expand because of
their restricted bus capacity and are less practical where
one processor is to be interfaced to several buses.

Multiprocessors with multiport memories'> ' are easy
to expand and to reconfigure. Their design greatly
simplifies interfacing between the processors and common
memories. On the other hand, they have no means of
sharing the 1/0 and routing interrupts which are required
for control problems. In realtime applications, the
implementation of task concurrency is of prime import-
ance. Task scheduling and synchronization require a
detailed study of processor allocation and means of
communication in a context where the tasks have variable
execution times and strong precedence relationships.
The use of commercial operating systems is not always
possible if maximum benefit from the particular structure
of the physical problem is desired. The initial decompo-
sition of the problem into connective tasks depends on
the scheduling method and the amount of transfer time.
Both simulation and analytical results reveal that task size
plays an important role in overall response time'*,
Communication between the various processors of a
highly data-connective block can be designed using
several methods, such as receiver polling or individual
processor interrupts. The resulting overall performance is
closely dependent on the nature of the tasks and the way
they are synchronized. Therefore, the predefined com-
munication tools that are commercially available do not
necessarily lead to the best performance,

The implementation of parallel algorithms on multi-
processor systems requires scheduling software'® to
decompose the original control problem into a set of
cooperating sequential processes that run concurrently
on the available processors. The scheduling problem can
be formulated as follows: a set of tasks with their
constraints are to be scheduled on a given number of
processors so that the overall execution time is mini-
mized. This problem has been studied primarily as an
optimization process for constructing optimal schedules'®.
The design of optimization algorithms has proven to be
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very dnfhcult as most scheduling problems are NP-
complete'’,

The use of search algorithms as an optimization
method* for the scheduling problem allows the generation
of optimum schedules but requires the problem size to
be small in terms of the number of tasks due to
computational complexity. For most scheduling problems
there exist heuristics, called approximation algorithms,
which allow near optimum schedules to be found.
Coffman and Graham'’ proposed methods of list
scheduling which can be applied to graph-structured
tasks, non-identical task execution time and an arbitrary
number of processors. By using deterministic and
stochastic problems, Thomas et al'® compared the
performance of several list-scheduling algorithms. In
particular, the critical-path or highest-level-first-with-
estimated-times method (CP-HLFET) was near optimum
in all the cases studied'®. Generally, the optimization
methods result in a small percentage saving in the total
program execution time compared with approximation
methods. The effectiveness of CP-HLFET and its poly-
nomial complexity makes it one of the most effective
methods to design parallel algorithms for large-scale
problems.

This paper describes the design of a multiprocessor
having a multiple module architecture for realtime
applications, MRTA, together with hardware and software
for the performance evaluation of robot systems. The
modular architecture of MRTA and its basic components
are described: processors, multiport buses and shared
resources. The study discusses and compares the
important steps in the hardware design and implemen-
tation, such as the generation of fast processorrequests to
the shared resource, decentralized arbiters and interrupt
routing. These features have a significant impact on the
multiport bus bandwidth. A system software module is
outlined for scheduling large-scale problems in the
context of precedence relationships and non-identical
task execution times. The software allows high-level
formulation of control problems, performs task generation,
executes list scheduling and generates executable
processor assignments. To demonstrate the system
capability and resources in investigating the implemen-
tation of parallel algorithms, a typical robot control
example is presented, Performance of MRTA software is
first compared with other systems and then the effect is
presented of variations in the task execution times on
processor synchronization and overall system perfor-
mance.

SYSTEM ARCHITECTURE

MRTA is a multiprocessor having a multiple module
architecture (Figure 2). A module is a smaller multi-
processor  with  restricted neighbourhood inter-
connection. It consists of eight tightly coupled processors
that are connected to a shared resource by means of a
multiport bus. The modules are loosely connected
through some of the member processors. MRTA consists
of P processors linked by means of B multiport buses to R
shared resources. Figure 2 shows one possible construction
of MRTA.
A module has three basic components.

1 Asynchronous processors with private resource and
bus extensions for interfacing with at most two
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Figure 2. Examples of building blocks within MRTA.
P, processor; PC, personal computer; SR, shared resource,
including memory for local processor communication,
/O devices to allow processor sharing of the control of
realtime processes and interrupts for intermodule com-
munication; MB, mulliport bus

multiport buses. To reduce bus contention, programs
and private data are stored in the private memory of
each processor. Synchronization of the process running
on the processors can only be achieved with software.

2 Multiport buses. Each has an 8-to-1 interconnection
network that allows a member processor of that
multiport bus to access the shared resource with no
bus contentions. The architecture of a multiport bus
switch consists of a set of eight access ports (40 lines
each) that is controlled by fast decentralized arbiters
using a rotative priority scheme. The design of
multiport buses improves the fault tolerance of the
system with regard to processor failure.

3 Shared resource with a tailored configuration including
memories and I/O. The memory is used for communi-
cation between the processors, i.e. software synchron-
ization, The I/O devices allow the processors to share
the control and the sensing of external processes and
provide an interrupt-routing mechanism for exception
handling and communication between the processors
of different modules.

AL most, eight asynchronous processors can be tightly
connected to a shared resource using one multiport bus
switch. This construct defines one module. A processor
can be a member of at most two modules, thus allowing
modules to be loosely interconnected by means of
processors. Two modules can be interconnected by
means of two common processors. Depending on the
amount of data transfer, a common processor may be
either totally or partially dedicated to intermodule
communication. Due to its modular architecture, MRTA is
a reconfigurable and expandable system. This appears at
two levels: the module interconnection topology and the
architecture of the shared resource and its interface to the
physical process. MRTA architecture is suitable for
multiple, parallel and sequential, and hierarchical
formulations of realtime controllers especially in the area
of robotics. Direct mapping of a hierarchy of robotic
functional modules, at lower and higher levels, to the
multiple computing/controlling modules of MRTA can be
achieved.

Microprocessors and Microsystems




Processor resource

Each processoris made up of an Intel 8086-2 CPU (16-bit)
and an 8087 numeric data processor (NDP) which run at
8 MHz (Figure 3a). This CPU has been successfully used
for designing multiprocessor systems, such as DIRMU™
and SHAMP’. One interesting feature of this CPU is that
software development can be undertaken using |BM-
Loml,gatible personal computers. Its cost performance
ratio” "2 " justifies its use for research purposes.

The processor resources include 32 kbyte of read/
write memory based on CMOS-6264 chips, 128 kbyte of
EPROM memory based on 27 256 chips, a USART-8251,
an interrupt controller PIC-8259 and a timer 8253. No
wail-state option is required as all the components are
accessible within 150 ns. Select logic is designed using
three decoders 745138, i.e. two decoders are used to
generate memory chip-selects for even and odd addresses,
respectively and one is used for I/O devices. Partial
decoding is used also to optimize the number of on-
board gate-level components. The processorarchitecture
is organized around a private bus and two multiport bus
interfaces. Optimum processor performance is achieved
because no activity interference can occur between the

<—> NUMERIC
CPU DATA
PROCESSOR
o= 2
1/0 MEMORY
S =

PROCESSOR INTERFACE
TO MULTIPORT BUSES

private bus and the rest of the system. The multiport bus
interface is used to connect that processor to two shared
resources through multiport buses. This can be achieved
by duplicating the processor’s private bus interface overa
number of 50 pin, 30 cm ribbon cables.

Processor request to shared resource

The CPU has two units: the execution unit (EU) and the
bus interface unit (BIU). The EU executes instructions and
the BIU fetches instructions, reads operands and writes
results. The FU and BIU operate independently and are
able, under most circumstances, to overlap extensively
instruction fetch with execution. When no more fetches
are required, the address available on the extemal bus is
maintained for an extended time until completion of the
current instruction by either the EU or the NDP. If simple
decoding of the addresses is used to generate the
processor request to the shared resource, then a processor
may monopolize the multiport bus switch for a time
which far exceeds that required to read or write data. To
save this extra time, the chip select of a memory or /O
address within the shared resource is designed to become
active, starting with a valid shared resource address, for
four clock cycles. As all peripheral control signals complete
their active phase within four cycles, this time (0.5 us) is
then sufficient to complete any read/write operation of a
word (16 bit) from the shared resource.

Using this design, Figure 3b shows the timing of the
chip select to shared resource (memory or I/Q) when the
CPU-NDP is executing the following program for loading
three 32-bit real numbers from the shared resource to the
stack of the NDP:

FWAIT FLD DW [ADDRO]
FWAIT FLD DW [ADDR1]
FWAIT FLD DW [ADDR2]

In Figure 3b CPU-ALE indicates that the CPU is setting a
new address. SRA is the shared resource address, a low
value of SRA indicates that a valid shared resource address
is available on the processor bus. This address could be
generated by either the CPU or NDP. RD is the CPU-NDP

a
CPU-ALE ” ” M ‘ H “ ” ||” || H | || H H
| ! )
i i |
SRA ;’AClB :“ACB 1 |alels
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: | l
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? ! |
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' I 1
Cs i ‘ ‘ ’ \— — ‘ \ I——-E—-: | | R D —
L} ] (]
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b o 1 2 3 4 5 6 7 8,9 10 11 1213 14 15
Figure 3.  a, processor resource and interfacing: b, timing of loading three 32-bit data words from shared memory (see text

for description)
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read signal, CS is the chip select of a memory or 1/O
address within shared resource. Chip select is active from
valid addresses (SRA is low) for four clock cycles, Chip
select is used to generate the processor request for
accessing shared resource through the multiport bus
switch. The instants t1,t2 and t3 indicate the approximate
starting times of the first, second and third instructions,
respectively. The timing is labelled by using the following
states.

@ State A: the CPU is executing a dummy read of the low-
order 16-bit word from the shared resource. These data
are read by the NDP during its transfer on the data bus.
State B: the NDP is executing a read of the high-order
16-bit word from the shared resource; the CPU is then
waiting.

State C: the CPU-BIU is executing a fetch from private
memory while the NDP is storing the low-order 16-bit
data onto the stack,

State D: the CPU-BIU is fetching three words from
private memory while the NDP is busy in state E.
State E: the NDP is busy converting data (32-bit) to
temporary-real format.

Following the first B state, the SRA is still active because no
more fetch operations are required. According to the
proposed design, chip select is only active (state B) for
0.5 ps, which is the minimum requirement with this CPU
to accomplish the transfer. The sequence of states A-C-B
indicates that overlapped fetch and execute operations
are performed concurrently and, therefore, locked access
to the shared resource may lead to extended access time
because of interleaved fetches.

Execution of the shared resource statements causes
the CPU-NDP to push the stack (NDP) and load from the
shared resource the double words whose addresses are
ADDRO, ADDR1 and ADDR2, respectively. Since each
chip-select pulse has a duration of 0.5 s, the effective bus
time is the sum of these times, i.e. a duration of 3 ys if no
bus contention is there. Note that the same load timing
will be effective if the three operands were read from a
private resource. With MRTA the request formulation to
either a private or shared resource is identical and this
process is transparent to the CPU-NDP; no extra over-
head is required other than that of the standard CPU
hardware. The only difference in loading/storing between
private and shared resource is the potential effect of

contentions in the latter case. The shared resource
module behaves as a private resource with variable access
time. As transfer of a 16-bit data word requires 0.5 us
between a processor and the SR, then the multiport bus
allows data transfer with a bandwidth of 2 MW s~ '

Multiport buses

A multiport bus provides a physical means of interfacing a
number of processors to a shared resource with no
contention. Transfers can be synchronous with one
control, asynchronous with two controls, split-cycle
synchronous, orsplit-cycle asynchronous. Split techniques
give larger bus bandwidths and are complex to implement
on today's microprocessors. Asynchronous transfers are
more flexible but slower and should adapt for bus timing.
In most cases, an arbitration logic is mandatory,

One exception to this rule is the ‘memory offer
addresses’ (MOA) multiprocessor'®, which has no arbi-
tration logic because the memory offers a sequence of
addresses to the processors, Arbiters instantaneously
solve the problem of selecting only one processor request
by setting priorities. Depending on their architecture,
arbiters can be either centralized or decentralized. A
centralized arbiter treats all requests simultaneously, for
example, a fixed-priority scheme that implements a
parallel resolution using a priority encoder-decoder
arrangement. However, if the priority should change
depending on the requests, costly hardware is required to
design the dynamic priority arbiter. Decentralized arbiters
(DAs) are individually assigned to each access port to
allow hardware polling of the requests. Serial or rotative
resolution schemes can be designed by daisy-chaining
the requests. Generally, these systems are not fault
tolerant because they intercommunicate signals about
bus availability by handshaking. Failure in one DA may
cause shutdown of the whaole system. On the other hand,
delays in polling the requests limit the number of
processors that can be connected to the multiport bus.
Rotative priority is interesting because it gives each
processor an equal chance to access. The lowest and
highest priorities are assigned to the currently-accessing
processor and next processor, respectively.

In the case of MRTA, an asynchronous scheme with a
two-level arbiter was designed (Figure 4). Eight processor

SHARED RESOURCE BUS CLOCK GEMERATOR
R/W _AND T/O
Bus BUS
Ready CLOCK
P INHIBIT
e COUNTER CLOCK
(BRG)
o TonT PORT DECODER
1L r 2 A S
L BRDY
| DECENTRALIZED INH
GRANT ARBITER
5o RQ
i RDY

CESSOR lg

MULTIFORT BUS

Figure 4.
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Block diagram of a multiport bus and its interfaces
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access ports are available within each multiport bus. Each
access port has a DA which synchronizes the request and
sets the processor when it is requesting access into either
state: accessing or waiting, The bus ready generator (BRG)
uses a rotative priority scheme in polling (BRDY), the
processor request RQ within each arbiter, The processor-
portinterface consists of 16-bit data, 16-bit addresses and
eight controls.

In the first level the BRG uses a 32 MHz clock
frequency with a counter-decoder arrangement to
generate N bus ready outputs. For example, BRDY(/)
indicates, at a given time, the bus availability from port /.
To keep BRDY(/) active as long as request RQ(/) is holding,
an inhibit line is used to inhibit the bus clock.

The second level consists of N DAs which are
distributed among the access ports. A DA receives two
asynchronous signals: the processor recuest RQ(/) and
BRDY()) from BRC. It generates three signals: bus grant
G(1) to enable port I, processor ready RDY(!) and clock
inhibit INH(/). To perform a transfer, a processor submits a
request, RQ; the DA then responds by setting RDY
according to bus availability. The signal RDY is connected
to the ready input of the CPU, i.e. it allows the insertion of
wait states into the processor timing whenevera request is
holding and the bus is not available. Access grant G{I) is
active whenever RQ(/) is holding and the bus is becoming
available. The required DA equations are:

INH (t + 1) = RQ(0) . (BRDY(t) + INH(1) 1)
G(f) = RQ(t) . BRDY(?) 2)
RDY(t) = RQ()' + BRDY(H) (3)

The timing of a typical transaction with a shared resource
is shown in Figure 5. Another problem may arise when a
processor monopolizes the multiport bus by making
persistent requests, such as polling a parameter and
consequently prevents access by other 1pror:(essors. This
problem was studied by Nelson and Refai*” who proposed
a decentralized arbiter that allows only one bus trans-
action at a time with a shared resource. In this design, the
method used to remove this undesirable feature is to
anticipate the disabling of RQ when the CPU address is
changing (Figure 5). To do this, the CPU-ALE pulse, which

CPU-ALE

ME-CLOCK

BUS CLOCE

T1 ! T2
Figure 5. Decentralized arbiter timing (see text for
description)
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is 80 ns wide, is used to disable RQ, thus no processor can
monopolize the multiport bus switch in case of persistent
requests. The multiport bus clockis 32 MHz (T = 31.25 ns).
The bus clock (BC)-to-bus ready (BRDY) delay is 16 ns
maximum. RQD is the synchronized processor request.
INH is used to inhibit the bus clock and enable the
corresponding port. The processor ready (RDY) is an
open-collector output which ensures compatibility when
one processor is interfaced to more than one multiport
bus. Wait states are only inserted in the processor timing
when T1 > 240 ns.

The ALE duration is wide enough to allow the BRG to
detect ‘end of request’ on the current RQ(!) and to start
enabling the next BRDY (I + 1). In this case, at worst 62 ns
are required to enable the hardware polling over the other
bus ports. Thus a processor would only perform one bus
transaction at atime when the LOCK logic is not used. The
time from a valid bus request to the CPU'’s sampling of its
ready input is T1 = 142 ns. However, the BRG cycle for
polling the same port is T2 = 250 ns provided there is no
other request. If only one processor is requesting the use
of the bus, only one wait state (125 ns) will be added to
the bus timing. This design preserves all the desired
features pointed out by Nelson and Refai” and also
avoids handshaking between the arbiters.

With this design, the CPU and NDP can access the
shared resource and this requires at most eight cycles
(1 us) of multiport bus time to transfer a 32-bit data word
(see above). The NDP internally requires additional time
to convert the data to a temporary-real format, but this
time does not increase the bus time of the MRTA design
(Figure 3b), since both the CPU and the NDP require the
same amount of time when transferring data with either
private or shared memory in the case of no bus
contentions.

On the other hand, a significant simplification of the
interface is realized with this design as the processor
reference with a shared resource is identical with that of a
simple memory reference. This helps to minimize the
processor-multiport interconnections, requiring only 40
interfacing lines for a shared resource, including 64 kbyte
of memory and 1/0,

Interrupt system

A multiport bus is capable of routing interrupts between
any pair of member processors using a single 8-bit
interrupt register (IR). All the member processors can write
to and read from that register. Each output bit, 1(1), of IR is
directly connected, through port I, to the PIC input of
processor /. To send an interrupt to processor J, processor
| proceeds in accordance with the following interrupt
program,

1 Request access to shared resource.

2 Read IR and test bit IR(/). If IR()) is set, i.e. if an interrupt
is pending, then exit from the shared resource and try
again.

3 Access memory IP, write interrupt parameters, set bit
IR{}), write the result to IR, and exit.

This method reduces processor overheads compared
with other designs that either have limited interrupt
routing'" or require the processor to control the timing of
the interrupt request’. The sending of interrupts requires
several transactions with /O and R/W memory within the
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common resource. The arbiter described above treats
processor requests on an individual basis, i.e. only one
request can be honoured during each bus allocation. This
presents a data coherency problem when dealing with
interrupts, because the multiport bus should be locked
throughout the interrupt sequence.

The 8086 has a LOCK signal which remains active
throughout the execution of the instruction following a
LOCK prefix. The LOCK signal can be used to coordinate
accessing to the shared resource. However, if two or more
instructions are each preceded by a LOCK prefix, there
will still be an unlocked period between these instructions,
To avoid this shortcoming, the circuit (Figure 6a) was
designed to generate the processor request, RQ. The
processor request RQ is a single line that combines a
memory of 1/O reference with the CPU-LOCK. Thus, a
processor references a private or shared memory using
the same instructions and timing in case of no bus
contentions. Initially, the flip-flop output (Q) is reset
following a hardware reset. When this flip-flop is in the
reset state, the circuit output (RQ) is identical with chip
select. In this case, the arbiter treats RQ on a one-request-
per-bus-allocation basis. To execute the IR program, only
the first and last references to the shared resource should
be preceded by the LOCK prefix, thus setting the flip-flop
and holding RQ until the occurrence of the last reference
which should also be preceded by a LOCK prefix. As a
result, the IR (Figure 6b) program obtains full allocation
from the DA arbiter during its critical part.

1 The multiport bus is locked: a sequence of instructions,
the first and last of which are preceded by the LOCK
prefix. RQ is then active for the duration of the
sequence.

2 Single reference to the shared resource with no lock.

This ensures proper routing of interrupts between any pair
of processors sharing the same multiport bus. On the
other hand, processors that are members of more than
one multiport bus have special interrupt service routines
to propagate the interrupt from one shared resource to
another. Interrupts can thus be routed indirectly across
the whole system.

Interprocessor communication

A command in a rebot system involves several functions
such as the calculation of dynamic torques, motion
coordination, trajectory generation and vision processing.
The processing of each of these functions can be seen asa
set of closely connected terms with precedence relation-
ships. Decomposition of the problem involves assigning
each function to a highly connective multiprocessor, i.e. a
set of processors that share the same multiport bus. One
problem for the operating system is to find the best
schedule including processor allocation, timing and
synchronization. In most cases, the generated code, i.e.
the processor assignment, is resident in the private
memory of the processors.

A multiprocessor should provide means of intra- and
inter-function communication. The common memory
available in a shared resource has three sections for
storing shared variables (SV), message routing (MS) and
interrupt parameters (IP).

The way in which the communication paths are
implemented is of prime importance. In the case of
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intrafunction, the problem of communicating the value of
a term to some other processors of the same multiport
bus is simply the problem of one writer and several
readers. The memory residing in the shared resource is
adequate to support task communication for realtime
problems requiring high data connectivity among the
processors. Variable sharing, which naturally resides in the
shared memory, is used for passing parameters among the
processors, A task, the result of which is required to start
other tasks, should have its value written to the shared
memory and to ensure data consistency aversion number
is used. To avoid overwriting a value before it is acquired
by the readers, the writer transfers the data and version
number to a subsequent memory location every time it
finds that not all the readers have read the data. Here, the
tasks are known a priori and the number of readers is the
same as the number of successors for that task.

Interfunction communication is less frequent but may
involve more data. Message-oriented communicatic
can be used between several multiprocessor sub
structures. Messages are stored in a rotative FIFO buffer
residing in the shared memory of each substructure. The
message structure includes such information as sender
and receiver IDs, function required and associated data.
To simplify local message monitoring, two pointers are
used to indicate the beginning of message storage and the
first free location of the buffer, To transfer the message
from one shared memory to another, at least one
processor has to be a member of two multiport buses. In
addition to computation tasks, this processor can
administer message routing. Local message routing is
performed using interrupts, ie. once a processor
completes storing a message in the shared memory, it
interrupts the destination processors one after another.
Member processors can then read the message with no
software polling. Given the interrupt latency and its
sequential nature, this message routing scheme would
seriously limit the speed of the processor in the case of
frequent operations. Therefore, its use is limited to-
operations involving massive data (downloading codes),
starting of programs and emergency stop.
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These communication tools represent the basis for
synchronizing the processors in the context of tasks
having precedence relations. This means that the
computation of task T(!) assigned to processor K can start
when its predecessor tasks have already been completed
and their results acquired by processor K. The task data
should also be moved from processor K to those
processors assigned the successor tasks of T(/). In all
cases, if at least one predecessor orsuccessor is assigned a
processor other than K, then data transfer is achieved
through the shared memory. One function of the software
is to add to task programs the communication routines
and addresses that will all be determined by the end of
the scheduling phase (see below).

SOFTWARE DEVELOPMENT

The design of robot controllers using a multimicro-
processor system allows an increase in both system
throughput and in the sampling frequency of the process.
Faster and more stable motion can thus be achieved by
the mechanical system. In the field of articulated systems,
pehavioural model-based controllers can be described by
means of iterative system equations defined over three-
dimensional space. The Newton-Euler® and Lagrangian?'
formulations of dynamics become relatively efficient in
terms of computation time when expressed according to
their iterative form. These and other formulations are
sequential at the equation level which poses a problem
for their realtime computation. For example, the calcu-
lation of dynamics using the Newton-Euler formulation
for systems with six degrees of freedom requires about 2
MFLOPS if areasonable sampling frequency is desired??.
The decomposition of those sequential equations
leads to generation of a set of tasks with some precedence
constraints. One important operation is to find a parallel
algorithm for computing the tasks in minimum time. The
process of scheduling the parallel computation of these
equations depends on the architecture of the individual
mechanical system. An investigation of the design of
controllers for any mechanical system therefore requires
the design of ascheduler to take advantage of the iterative
ructure, such as the generation of tasks which can be
evaluated in parallel. The goal of such software is to
identify the parallelism inherent in that mechanical
structure and to generate the corresponding object code
for multiprocessor implementation. The next section
describes scheduling software which has been designed
to generate efficient schedules for the computation of
any iterative system equations defined over three-
dimensional space within the area of robotics.

Task generation

The software admits a high-level input formulation of
iterative equations including initialization, control and
iterative sections. This organization allows the definition
of the original problem in terms of starting conditions of
the iterations, the operators and processors, and the
iterative system equations, respectively. Generally, an
equation consists of a number of fundamental vectors
and matrix operations, the evaluation of which involves
loading the operands, performing floating-point arithmetic
and storing the results to memory. Shared memory is used
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to transfer data from the processor where the task is being
evaluated to the shared memory, allowing other
processors to read it and thus initiate the next tasks. Thus
transfer of data to the shared memory only occurs for tasks
with precedence relationships and different processor
assignments. Concurrent requests to the shared memory
are resolved by selecting one processor at a time and
making the others wait. Frequent concurrent requests to
the shared memory may lead to performance degradation
of the overall execution time, i.e. a task synchronization
problem.

Given the original set of equations, the task generation
process consists of finding a criterium by which to
decompose these equations into tasks that can be
arbitrarily assigned to processors. There is no general
criterium for partitioning a set of equations into tasks; this
process depends to a large extent on the scheduling
method. When search-based methods® are used for
scheduling, the task generation process consists of a
decomposition that satisfies minimum parallel-processing
time within the limit of a reasonable scheduling time. In
this case® 1% 22, the number of tasks and their sizes should
be neither too small nor too large.

Adifferent approach can be used when the scheduling
method is applied to large-scale problems, i.e. constraint-
free regarding the number of tasks and their sizes. In this
case, task generation will be enabled to generate a larger
number of tasks, provided that the time delay, caused by
inter-task communication, is still reasonable. Assume a
problem (see below) for which the software generates
140 vector operations and let each operation be defined
as aseparate task. In the worst case, the two predecessors
and the successor tasks of each task T will all be assigned
to other processors than T. In this case, T requires polling
the version number of two operands, loading two vectors
(predecessors) and storing one vector (successor). All
vectors are defined in three-dimensional space. Then T
requires the transfer of nine 32-bit operands and two 16-
bit data words (version numbers) through the shared
resource. Now, assume a minimum completion time of
5 ms for all the tasks (see below). Then a total of 2800
transfers of 16-bit data words will be needed. The
required effective bandwidth will be 0.56 MW s, in the
worst case, which is only 28% of the available bandwidth
(2 MW s™"). The time spent computing a single vector
operation using floating-point arithmetic is generally large
compared with the transfer time of the operands through
the shared memory. Table 1 shows the list of the
fundamental vector operators in three-dimensional space.
The columns of Table 1 list the operators, the compu-
tational complexity, operator time, loading and converting
time, converting and storing time, overhead time, multi-
port bus time to transfer the operands and the result, the
total time, and the ratio (R) of the multiport bus time over
the total time, respectively. Note that the loading and
converting time is the same when the data are loaded
from either private or shared memory. The loading and
storing times include the transfer time through the
multiport bus switch. Here, we assume for each operator
that the two operands are loaded from the shared
resource and the result is also stored in the shared
resource, i.e. the worst case, Table 1 shows that the
vector-operator computation time is large compared
with the transfer time through the shared resource as the
ratio R ranges from 6.4% to 12%.

These factors encourage the decomposition of an
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Table 1.

Execution time of the vector-operators

Vector Operations ~ Operator  Loading  Storing Overhead  Multiport-bus ~ Total Multiport-bus
operators  M: Multiply  time time time time time time time/total
A: Addition  (us) (us) (us) (us) (us) (us) time
VXV (6M, 3A) 104.625 2235 28925 2 10 157.25 0.064
MV (9M, 6A) 172.875 37.5 28125 2 16 2385 0.067
ATAYS (3M, 24) 57.625 225 28.125 2 10 110.25 0.09
V+V (OM, 3A) 31.875 225 28.125 2 10 84.5 012

equation to fundamental vector-matrix operators and the
creation of tasks with only one vector or matrix operation
over two operands. Thus a generated task has two
predecessors and an arbitrary number of successors.
The system proceeds by converting an equation to
Polish notation and creating a number of new tasks to
generate the original term. A new task is associated with
every pair of terms combined by means of an operator.
The operator is defined in accordance with the structure
of the operands so that no operations containing zeros
and ones will be generated in the object code of the latter
stage. This optimization occurs whenever the structure of
at least one operand is known in advance. Thus a
generated task is defined completely by identifying its
predecessors, operator, execution time and successors.
The collection of these tasks and their precedence
relationships allows a task graph to be defined.

Scheduling

The problem is to find a non-preemptive schedule for M
identical processors which minimizes the processor finish
times. Under these conditions, the scheduling problem is
NP-hard in the strong sense'®. No algorithm is available to
generate an optimum solution for all cases.

Dynamic programming (DP) formulations of the task
scheduling generate optimum schedules, but they require
the problem size to be small with regard to the number of
tasks, due to computational complexity. Luh and Lin*
used a ‘variable branch-and-bound’ method for sched-
uling. They decomposed a system equation into a set of
88 tasks and divided that set into two subproblems
because the number of tasks was too large to schedule.
They applied the method to the computation of dynamics
using Newton-Euler formulation and obtained a finish
time of 9.67 ms for six processors; while 24.8 ms was
required with one processor.

Kassahara and Narita'® proposed a depth-first/implicit-
heuristic-search (DF/IHS) algorithm for scheduling. To
reduce the search process, DF/IHS allows the following
setting for the upper bound of the acceptable relative
error (E) of the solution (U) to the optimum solution (Tp):

(U= Top) Top <E (4)

At each branching, the heuristic used consists of selecting
the ready tasks in the listing order of the critical path (CP)
priority list'?. Depending on the value of £, the method
may generally produce approximate or optimal solutions.
The behaviour of the algorithm becomes enumerative if
the desired solution is to have significantly shorter
execution time than that of the CP method, i.e. at least
59%. Using Luh’s and Lin’s equations, Kasahara and Narita
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obtained the optimum solution for seven processors
while the processing power was 4.3b4.

With these methods the problem of task generation is
controlled by the upper limit on the number of tasks with
which the enumerative methods (EMs) can deal. Given
the constraints on the number of tasks, the optimum
solution obtained by using EM an a small number of large
tasks does not necessarily correspond to the smallest
execution time, particularly when the transfer time
through the shared memory is small compared with the
execution time. Performance could be improved if the
original problem was decomposed into a larger number of
tasks. The use of a larger number of tasks leads to an
increased transfer time between the processors. Given a
particular problem, the minimum computation time
closely depends on the number of tasks, length of transfer
time through the shared resource, amount of bus
contention and the scheduling method. To investigate
the computation time performance with a larger number
of tasks than the EM can deal with, a near-optimum
approximation algorithm (CP-HLFET) was used for
scheduling tasks with precedence relationships and
non-identical task times.

Critical path method

The critical path (CP-HLFET) method is an approximation
algorithm consisting of the highest-level-first-with-
estimated-times (HLFET) (see above). Coffman and
Graham'? evaluated the lower bound of performance for
the CP method, i.e. finish time (T) in the worst cas
compared with the optimum finish time (Toy) and the
number of processors (M):

T<(2—1/MTop (5)

This worst case bound does not show the true perfor-
mance in an average case. As no formal proofs are
available, Thomas et al.'® compared several list scheduling
methods using deterministic and stochastic problems and
showed that the CP-HLFET is the most efficient approxi-
mation. The CP-HLFET was near optimum in all cases as it
was not more than 4.4% away from the optimum solution.
Application of CP-HLFET to a control problem involves
the following steps.

1 Given the original system equations, the system creates
the set of tasks by decomposing an equation into
fundamental vector-matrix operations and generates
tasks with precedence relationships,

2 Constructs the task graph (TG) and finds the number of
successors S(T) for each task T. :

3 Finds the task priorities orlevels. The priority of a task is
the longest path from any exit node to that task. The
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search starts with the exit nodes or system outputs and
progresses up to entry nodes. Whenever a task is
allocated a priority its child nodes are expanded and
the number of successors to these nodes is decreased
by one. When exhausting S(T) for a task T, all
occurrences of T in TG are then known and the
selected path is the longest one. The priority is found
for all the tasks if the original problem is well
formulated, i.e. no loops. The system constructs the
priority list in decreasing order.

4 Using the priority list, list scheduling is performed as
follows: whenever a processor becomes free, the task
with the highest priority among those not yet assigned
is assighed to that processor.

PERFORMANCE EVALUATION

The objective of this section is to evaluate the effective-
ness of the hardware and software systems in developing
a parallel algorithm. To demonstrate this, a complex
control problem was studied,

The controllers studied have large computational
requirements, non-identical task execution times and
strong precedence relationships, For scheduling, the task
synchronization is based on the expected execution
time. Indeed, the execution time of a task varies with the
operands’ values and the numeric data processor. In the
case of the 8087 NDP, the varation'! in the execution
time forthe arithmetic operators is of the order of 8%. The
result is a loss in synchronization between the processors
due to variation in the task execution time. In the
following sections the performance of the scheduling
method is compared with other methods, the perfor-
mance of the generated schedules using a full implemen-
tation on MRTA is examined, and the impact of the loss of
synchronization caused by the variations on the inter-
mediate finish times is studied.

Comparison with previous scheduling methods

A typical control problem is used to investigate the

rformance of the proposed scheduling algorithm, CP-
nLFET. The Newton-Euler formulation of dynamics for
the Stanford Manipulator has been used by Luh and Lin*
and Kassahara and Narita'®. The objective of calculating
the dynamics is to determine the driving force and torque
at each joint of the manipulator. (The Newton-Euler
equations can be found in Reference 4.) The scheduling
software used allows the generation of the parallel
algorithm, or task assignment for the processing units, for
evaluating the Newton-Euler equations. To generate
primary schedules, both groups of researchers™ '” assumed
that the execution time for a multiplication is 50 us, that
foran addition is 40 s, and the time for loading the datais
assumed to be negligible. These times were input into the
scheduling algorithm to determine the task size. Since
each task is a combination of fundamental operations, its
processing time may be determined as their sum. In the
following, the same example and the same timings for the
fundamental operations are used to generate the parallel
algorithm based on the scheduling method described
above. For this example, the scheduling software generates
139 tasks with precedence relationships. The number of
processors M is an input to the system which partitions
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the tasks into aset of M programs called a schedule (S(M)).
The scheduling operation is repeated for M =1,.., 10
processors,

Each schedule S(M) consists of a division of the
problem under study into M programs. Given the set of
tasks and their computational complexity, let FT(), | = 1,
... M, be the estimated execution time of each of these
programs and let LFT(M) denote the largest among them.
Thus LFT(M) provides the estimated longest finish time
for the schedule S(M). The performance criteria is LFT (M).
Amang all the schedules (S(M)), let LFT;;, be the shortest
execution time.

To compare this approach with previous studies,
Table 2 lists the schedules obtained by Luh and Lin®,
Kassaharaand Narita'®, and this approach. LFT (M) and the
processing power (PP(l) = LFT1/LFT(/)) are listed in this
Table. This method gives LFT3 = 8.31 ms, while Luh and
Lin obtained LFT6 = 9.67 ms, With 139 tasks, this method
converges to the critical path solution for LFT6 = 4,85 ms,
while with 88 tasks Kasahara and Narita obtained the
optimum solution for LFT7 = 5.69 ms. PP6 is 5.113 in this
method and 4.333 using Kasahara's and Narita's method.

Table 3 lists the schedules of the dynamics when six
processors are used. This table shows how the 139 tasks
are assigned to the processors and indicates that the
longest finish time is obtained for processor 2. Table 4 lists
the iterative tasks and their precedence relationships.
These tasks result from decomposition of the original
control problem into modular tasks to énable construction
of the task graph. Table 5 lists the tasks of the critical path.
The full implementation of the dynamics will be described
in the next section,

Mapping of the schedules to MRTA

As shown in Figure 1, the design of the lowest control level
of arobot arm requires the implementation of the system
dynamics to generate the torques and N digital servos to
regulate the motion of N robot-links.

The architecture shown in Figure 7 has three modules:
M1, M2, and M3. The lowest level module is M1 which is
interfaced to the robot through shared resource (SR) 1 and
to module M2 by means of processors P3 and P4,
Outputting of the commands for the control of the robot
arm is achieved by using the I/O system within SR1. Six
processors labelled 51, ..,56 of M1 (S{l),1 =1, ..., 6)are
used as servo-processors. Each S processor computes an
independent proportional and derivative (PD) function??
based on the state of the rabot (I/O of SR1) and the

Table 2. Comparison with previous results
Processors Luh and Kasahara Proposed
Lin* and method
(LFT, PP) Narita'” (LFT, PP)
(LFT, PP)
1 24,80 1.000 24.83 1.000 24.80 1.000
2 — — 12.42 1,999 12.41 1.998
3 - = 8.43 2945 831 2984
4 — = 6.59 3.768 6.35 3.905
5 TR 586 4.237 5.28 4.696
6 9.67 2.565 5.73 4333 4.85 5.113
7 TEHE 5.69 4364 4.85 5113
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Table 3. Scheduling the dynamics for the Stanford Manipulator

P Terms T(I,J,K)

1 VO(4,4,0) T1(4,32,0) VO(5,36,0) T1(5,64,0) VO(6,68,0)
T1(6,96,0) V51(6,138,0) V5(6,180,0) T42(6,188,0) T4(6,211,0)
V14(6,253,0) T71(6,261,0) T7(6,265,0) V13(5,273,0) V10(5,293,0)
T7(5,309,0) V13(4,317.0) vV10(4,337,0) T7(4,353,0) WV13(3,365,0)
v10(3,389,0) T71(1,409,8) T8(2,433,20)

2 V1(4,10,0) V11(4,14,0) Vv12(4,22,0) T2(4,50,0) V12(5,58,0)
T2(5,86,0) V12(6,94,0) T2(6,122,0) V6(6,164,0) T41(6,172,0)
v7(5,187,0) T41(4,195,0) T5(5,207,0) T61(4,235,0) V14(4,259,0)
v6(2.283,0) T4(3,306,0) Vv7(3,321,0) V14(3,331,0) V7(2,346,0)
T5(2,358,0) V2(5,401,0) V10(2,413,8) T8(1,485,68)

3 T2(3,10,0) V1(2,15,0) V11(2,19,0) V51(3,38,0) V51(4,71,0)
y81(5,99,0) V3(6,137,0) V4(6,147,0) T31(6,155,0) T3(6,163,0)
v8(5,192,0) T6(5,204,0) T42(4,212,0) T4(4,235,0) T6(4,247,0)
va(2.257,0) T41(3,265,0) v9(3,303,0) T41(2,311,0) T42(2,319,0)
r4(2,342,0) V14(2,366,0) T71(2,378,0) T8(5,382,0) T8(6,386,0)
T7(3,405,3) T7(2,429,8)

4 V2(6,28,0) v3(2,66,0) V1i(6,76,0) V11l(6,80,0)y VE(4,104,0)
v5(5,137,0) T32(6,145,0) T41(5,6153,0) T42(5,161,0) T4(5,184,0)
v14(5,208,0) T71(5,220,0) V7(4,235,0) V5(3,254,0) T5(4,266,0)
T42(3.274,0) T31(2,282,0) T61(3,310,0) T6(3,322,0) T61(2,350,0)
T6(2,362,0) V9(1,386,0) T6(1,405,7) V13(1,441,24)

5 Te1(5,28,0) WV12(2,32,0) VI1(5,42,0) v11(5,46,0) T2(2,66,0)
Vv51(5,99,0) VB1(6,150,0) V8(6,210,0) ve(4,239,0) WVB1(3,267,0)
T32(2.275,0) T71(4,287,0) T3(2,295,0) V8(3,324,0) T5(3,336,0)
T71(3,348,0) V6(1,353,0) V5(1,363,0) T42(1,368,0) T4(1,373,0)
v14(1,397,0) T8(3,409,8) V10(1,465,32)

6 T1(2,10,0) V51(2,43,0) VB1(4,71,0) V5(4,104,0) V6(5,128,0)
v7(6,224,0) T5(6,236,0) V6(3,246,0) V2(2,256,0) V5(2,289,0)
vel1(z2,317,0) V8(2,346,0) WV9(2,356,0) T41(1,361,0) TB(4,365,0)

T61(1,393,0)

v13(2,409,12) T7(1,481,56)

P: processor number; T: the task (1, , K); I: iteration index of task T; J; expected finish time of task T as per scheduling

(%10 us); K: idle time between task T and the previous task (x10us).

dynamic torques which are updated and stored in the
memory of the SR1. The dynamic torques result from the
computation of the dynamics on modules M2 and M3,
Processors P3 and P4, which interface M2 to M1, are
assigned computational tasks within M2 in addition to the
task of transferring the dynamic results (six 32-bit data
words) from SR2 to SR1. Processors P1, . ., P10 of modules
M2 and M3 (P(), ! =1, ..., 10) are used for testing the
implementation of the Newton-Euler dynamics using
schedules requiring one to ten processors. Processors P13
and P14 interface module M2 to M3 and are entirely
assigned communication tasks. Processor P12 is a personal
computer which is used as a software development tool
and for downloading of the processor assignments. Each
processor (of M1, M2 and M3) has a small monitor which
allows resetting, loading of programs from the shared
resource, sending system messages and synchronizing
programs.

To generate schedules and codes for MRTA, the task
times are evaluated according to the vector-operator
times listed in Table 1. These task times are then inputted
to the scheduling software and new schedules (S(M),
M=1,.., 10) are generated. A schedule S(M) = (A(l),
I=1,.., M) is a collection of M programs All) to be
assigned to M processors. The implementation of a
schedule S(M), M =1,.., 10 on the multiprocessor
shown in Figure 7 consists of mapping each program A(/)
of S(M) to a processor P(/).
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As modules M2 and M3 support a tightly-coupled
application, a message routing scheme (see above)
cannot be used because of its latency. Software synchron-
ization of the tasks is achieved by passing parameters
between the tasks and is subject to the following rule.
When a processor P(l), that is a member of a module
(M2 or M3), completes the computation of a task 1,
transfer of the parameters PR(T) will be subject to the
following conditions:

1 All the successor tasks of T are assigned to P(/), then
PR(T) is stored in private memory of P()),

2 At least one successor task of T is not assigned to
processor P(l); two cases arise:

@ All the processors that are assigned all the successors
of T are members of module M, then PR(T) is stored
in the shared memory of M.

@ At least one processor P', which is not a member of
module M, is assigned some successors of T, then
P()) interrupts the communication processor (P¢),
which is either P13 if M = M2 or P14 if M = M3, L
seconds earlier than the completion time of T and
communicates only the address of PR(T). The time L
is approximately equal to the interrupt latency of Pc.
In turn, processor Pc polls the version number of
PR(T) and transfers PR(T) from the SR to SR’ when
these parameters are available in the memory of the
shared resource. This process is transparent to the
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Table 4.  List of tasks and their predecessors

TERM PRED1 PRED2
VO(I) T1(I-1) WO(1)
T1(1) R(I) V(0)
V1(1) T1(I-1) WO(I)
V11(1) V1(I) W1(1)
V12(1) T2(I-1) WV11(1)
T2(1) R(T) v12(1)
VZ(1) R(I) T3(I-1)
V3(I) T1(I) BP(I)
Va(1) T2(I) P(1)
T31(1) V2(1) Va(Il)
T32(1I) T1(I) V3(1)
T3(I) T32(1) T31(1)
V51(1) T1(1) S(I)
V5(1) T1(1) V51(1)
V6(T) T2(1) S(1)
T41(1) T3(I) VEe(1)
T42(1) V5(I) T41(I)
T4(1) M(1) T42(I)
V7(T1) I(1) T2(1)
vel(l) 1(1) Ti(1)
VB(1) Ti(I) V81(T)
TS(1) V7(1) Ve(1)
a, Forward, 1 =1, 6

TERM PRED1 PRED2
T61(I) R(I+1) T6(I+1)
Te(1) T61(1I) T4(1)
va(1) P(I) T6(I+1)
V13(I) T7{(I+1}) WVa(TI)
V10(I) R(I+1) WV13(I)
V14(1) P(I) T4(1)
T17(I) V14a(1) T5(1I)
T7(1) V10(1) T71(1)
TE1(1) T7(1) R(I)

T8(1) T81(I) B(I)
b, Backward, | = 6, 1

successor tasks of T whose processors (P') are
members of M". A processor P' can then acquire
PR(T) by polling the shared resource SR’ of M'.

e latter method reduces the effect of interrupt latency
wn the task synchronization, because the overhead on the
computing processors is of the order of the time spent by
P() to interrupt Pc and the latter processor to transfer
PR(T).

Note that the parameter addresses, memory allocation,
and routing are determined during the last stage of the
scheduling process, i.e, the generated code of a task does
not include the finding of successors or addresses, At the
worst, lask overhead consists of setting the interrupt bit of
Pc and storing the results PR(T) to the appropriate
memory location.

Monitoring MRTA and collecting data
Several methods” ' can be used to monitor the signals of
a multiprocessor, In this case, a logic analyser, DOLCH-
ATLAS-9600, is used to monitor the following signals:
RQ(1), RDY(!), BRDY(N), the port grant G(/} and the chip
selects within each shared resource. The latching
conditions are set to record only those transactions which
deal with the shared resource, The transaction data are
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Table 5.  Critical path terms and priority
Critical Path Tasks
Terms Priority Cost
VO(4) 485 4
T1(4) 481 28
VO(5) 453 4
T1(5) 449 28
VO(6) 421 4
T1(6) 417 28
V51(6) 389 42
V5(B} 347 42
T42(6) 305 8
T4(6) 297 23
V14(6) 274 42
T71(6) 232 a
T7(6) 224 4
V13(5) 220 8
V10(5) 212 20
T7(5) 192 16
v13(4) 176 8
V1o(4) 168 20
T7(4) 148 16
V13(3) 132 12
V10(3) 120 24
T7(3) 96 16
v13(2) 80 4
vio(z2) 76 4
T7(2) 72 16
V13(1) 56 12
V10(1) 44 24
T7(1) 20 16
T8(1) 4 4

transferred to a computer and analysed by software to
give the following average processor features.

@ The schedules (S(M)) are run individually on the
multiprocessor and the resulting LFT(M) now includes
the overhead caused by the runtime bus contentions.
Figure 8 shows the runtime performance LFT(M). The
scheduling system generates for this example, quasi-
optimum solutions for M = 2, 3 and 4. For M = 5 the
error is 3.2% using Fernandez-Bussel bound. For the
rest, optimum solutions were obtained. The process-
ing power (PP = LFT1/LFT ;) was 5.2 for the generated
schedules and 4.977 after their execution on MRTA.
The decrease in PP is caused by processor wait time.

® Let IT be the average idle time as generated by the
scheduler, i.e. 13.24% of LFT forM = 6, whichincreases
significantly when more processors are used. Figure 9
shows the ratio (IT/LFT(M)) as a function of the number
of processors. IT/LFT increases significantly for
M > LFT1/LFT i = 5.2 because of precedence
relationships, i.e. no tasks could be scheduled during
these intervals. The use of more than six processors for
this example does not lead to any improvement in
performance because the critical path of the task graph
is found for M = 6. Figure 10 shows the average data
transfer time (DTT) as generated by the scheduler, i.e.
when no bus contentions are considered. DTT/LFT (M)
decreases when M > & because DTT decreases with M
and LFT remains constant, i.e. LFT corresponds to the
critical path.

@ Let WT be the average wait time spent at the multiport
bus lock when a processor attempts to access the
shared resource. The ratio WT/LFT(M) does not
exceed 2.5% for M < 7 (Figure 11). This parameter
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M3

M1

Figure 7. Implementing the dynamics using three sub-
modules of MRTA (see text for description)

confirms expectations for the intermediate finish times
of the processors: these are rarely the same because
the average transfer time is only 9.55% of LFT(M), thus
the effect of concument requests to the shared
resource is reduced. The variations in the execution
time for the fundamental operators (8% for the NDP)
generates some loss of synchronization among the
tasks. This causes the processors polling the version
number of predecessors which in turn increases
processor wait time at the multiport bus lock.

@ Let PT be the average polling time spent by a processor
polling the version number of predecessor tasks, i.e.
those caused by unready tasks. PT, and the wait time,
WT, are the direct consequence of operand variations.
Figure 11 also shows PT/LFT(M).

@ Let TT be the average overall transfer time through the
shared resource. Figure 12 shows that TT does not
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Figure 10. Average data transfer time DTT(M)/LFT (M)

exceed 13.5% of LFT(M). Of these, 8% are predicted by
the scheduler. The upper bound of the increasing
processor time, Max(TT — DTT), due to loss of
synchronization, is of the order of 5.5% when compared
with the processor finish times forM =1, .., 6.
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Analysis

The sequential structure of task programs positively
dampens the variations of the processor execution times.
When more than six processors are used, these variations
are bounded as LFT(M) is caused by the calculation of CP
which is equal to LFT(M) for M > 5. For M < 6, more
stable variations were observed because LFT(M) involves
a larger number of tasks than those of CP.

Compared with LFT(M), PT and WT are moderate and

have a reduced effect on overall performance. This is due

) two factors. First, the intermediate finish times of the
processors are mainly different. There were relatively few
cases where more than two processors attempted to
access the shared resource. This is because the probability
that a processor requests access to the shared resource is
close to DTT/LFT(M). A dynamic priority resolution
scheme (DPRS) could produce a slight improvement on
LFT (M) because WT did not exceed 4.5% in all the cases
(M =1,...,10). DPRS could give the highest priority to
the critical path tasks. Here, the use of semaphore is not
useful because the next task will not be enabled until its
predecessor data are ready and being transferred to the
ProCessor.

Second, PT is the direct cause of operand variations
because a task could not start before the transfer of all the
predecessor data is complete. The time spent polling the
shared resource does not directly add to the finish time.
The degradation is caused by the processor waiting at the
multiport bus lock which is partially due to the effect of
polling.

For this example, the scheduling software and the
implementation on MRTA of the various schedules
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allowed the achievement of a finish time of 4.195 ms
using six processors (P1, .., P6 of M1) in computing the
Newton-Euler dynamics. Here, the improvement in
performance is due to the fact that at the vector-matrix
operator level, the transfer time through the multiport bus
generally takes a small fraction of the operator time in case
of no bus contentions.

To study the interaction of modules M2 and M3, let C1
and C2 be the sets of experiments/schedules requiring six
orless processors (M2) and seven or more processors (M2
and M3), respectively.

For experiment C1, the implementation of the retained
schedule 56 on module M2 has generated a degradation
in performance of 5.4% (Figure 12). Of this 3.4% is due to
the loss of synchronization, which is caused by operand
variations, and 2% is due to concurrent access to the
multiport bus switch of M2. In this example, the required
bandwidth was 28% of the available bandwidth. Here,
software synchronization among the tasks is not a
bottleneck because of the optimized timing of the
processor access to the shared memory (see above) and
the moderate ratio of the task transfer time to task
execution time (see above).

The experiments of C2 showed a linear decrease in
performance compared with those of C1. This clearly
arises from the average increase in functions WT, PT, and
TTform =1,..,10(Figures 11 and 12). This suggests that
tightly coupled applications can be distributed on two
MRTA modules without dramatic performance degra-
dation. Further study of intermodule communications
with frequent data passing would be an interesting issue
for MRTA,

This example and others®® of robot control have
proved the usefulness of this system for developing
parallel algorithms with higher processing power than that
obtained using enumerative methods.

CONCLUSION

In a robot controller, lower levels usually perform regular
calculations with intensive interaction, while higher levels
evaluate refined global decisions with relatively slower
interaction. At all levels, parallelism can be useful to speed
up the process control.

The MRTA multiprocessor was designed and imple-
mented to allow the building of suitable interconnection
topologies by using smaller multiprocessor modules. A
module can support the implementation of a tightly
coupled calculation. Thus multiple or hierarchical
structures of the controller can then be mapped to the
multiple module architecture of MRTA. As processors of
such a system need not be fully interconnected, modules
can be loosely or tightly connected using processors. The
MRTA modulararchitecture is reconfigurable and expand-
able at the levels of the module interconnection topology
and the shared resource. The development of parallel
algorithms for robot control consists of decomposing the
original model of the process into tasks and scheduling
their computation such that the minimum finish time is
achieved. This problem is very difficult to solve in the
general case: a graph-structure for the tasks and an
arbitrary number of processors, No optimization
algorithms with polynomial time are known to find the
optimum solution. One approach to this problem is to
use an efficient approximation method whose perfor-
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mance is guaranteed in the worst case. The method is
constraint-free  regarding the problem size and the
number of processors. The proposed software admits
high-level formulation of control problems, performs task
generation, executes list scheduling and generates
executable processor assignments for MRTA modules.

Based on the Newton-Euler formulation of dynamics,
an example of robot control has been investigated and
implemented using three MRTA modules. The developed
software/hardware enabled partitioning of the problem
into tasks and the study of the implication of this process
on the resulting transfer time. The effects on performance
degradation caused by loss of synchronization were
analysed together with the overall application per-
formance.

This methodology is useful for developing parallel
algorithms and evaluating their performance within the
area of realtime robot control.
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