
Adaptive Scheduling of Computations and

Communications on Distributed-Memory

Systems

Mayez Al-Mouhamed and Homam Najjari ∗

Abstract

Compile-time scheduling is one approach to extract parallelism which has
proved effective when the execution behavior is predictable. Unfortunately, the
performance of most priority-based scheduling algorithms is computation de-
pendent. Scheduling based on the concept of earliest-startable-task produces
reasonably short schedules only when available parallelism is large enough to
cover the communications. A priority-based decision is more effective when par-
allelism is low. We propose a scheduling in which the decision function combines
two concepts: (1) task-level as global priority, and (2) earliest-task-first as local
priority The degree of dominance of one of the above concepts is controlled by
a computation profile factor that is the ratio of task parallelism to communi-
cation. It is shown that the above factor is an upper bound on the deviation
of schedule length from optimum. To tune the solution finish time the above
scheduler is iteratively applied on the computation graph. In each iteration, the
newly generated schedule is used to sharpen the task-levels which contribute in
finding shorter schedules in the next iteration. Evaluation is carried out for a
wide category of computation graphs with communications for which optimum
schedules are known. It is found that pure local scheduling and static priority-
based scheduling significantly deviate from the optimum under specific problem
instances. Our approach to adapting the scheduling decision to computation
profile is able to produce near-optimum solutions via a much reduced number of
iterations than other approaches.

1 Introduction

Deterministic scheduling can be profitable when the execution behavior of the computa-
tion can be made predictable at compile-time. The compiler determines the dependen-
cies and estimates the computation and communication requirements which are used
to produce a schedule that better matches the underlying parallel hardware[7, 8, 9, 18].

∗Computer Engineering Department, College of Computer Science and Engineering, King Fahd
University, Dhahran 31261, Saudi Arabia (mayez/homam@ccse.kfupm.edu.sa).

1

The problem of minimizing the schedule finish time of computations and commu-
nications is one NP-complete problem [10]. Lower bounds [2] and worst case analy-
sis [12, 3] have been proposed for scheduling precedence computations with and without
communication costs. The objective is to find efficient non-preemptive scheduling ap-
proaches that combine knowledge on the computation structure and multiprocessor in
order to minimize overall finish time. Different approaches have been proposed which
can be classified into the following categories: (1) search-based, (2) task-duplication,
(3) clustering, and (4) priority-based scheduling.

Search-based methods like branch-and-bound [20], simulated annealing [22], and
genetic [11] have been proposed for finding good mapping and partitioning of com-
putations. Scheduling based on task duplication over idle processors has been pro-
posed [15, 7, 8] to reduce the effects of dominant communication without excessively
increasing the overhead in managing duplicated data. The impacts of task and proces-
sor selection as well as the profitability of task duplication were experimentally studied
in the above papers. The degree of task duplication can also be adjusted [17] depending
on the number of available processors or their difference in speeds.

Linear clustering [13] consists of iteratively assigning tasks along the most com-
municative chains to the same processor. Clustering over an unbounded number of
processors [21] consists of partitioning the set of tasks into clusters of sequential tasks
and reducing the number of clusters to the number of processors by merging clusters.
Dominant sequence clustering (DSC) [25] is a low complexity clustering that accepts
the merging of a task to a cluster only if the length of the dominant chain to which
the task belongs to decreases.

The dynamic critical path method (DCP) was proposed in [16]. The DCP is a chain
of immediate tasks having zero mobility. For each processor having a predecessor of a
DCP task T , the algorithm searches a vacant slot to fit T while allowing other tasks
to move within the limit of their mobilities. Processor selection is based on looking for
the potential start times of remaining tasks on each processor which guarantees some
processor reservation for the most critical successor.

Examples of priority-based scheduling that operate over a bounded number of pro-
cessors are dynamic level scheduling (DLS) [23] and earliest-task-first (ETF) [12]. In
ETF, task and processor selection are based on finding the earliest startable task and
its best suited processor. Its main strategy is the knowledge of local task starting times
which are used to minimize processor idle times by trying to maximize the overlap be-
tween computation and communication. In DLS, the largest sum of computations from
a task to exit is considered as a static task-level. DLS evaluates a dynamic task-level
for each ready task as a function of static task-level and task starting time. Task
and processor selections are based on selecting the task and processor for which the
dynamic task-level is the largest. Unfortunately, the evaluation of static task-level for
computations with communication times does not provide effective task priority be-
cause the task-level strongly depends on mapping tasks to processors and their implied
communications.

Our investigation reveals that ETF is capable of producing acceptable solutions
with reasonable complexity when there is enough task parallelism in the computation

2

to hide the communication. In other words, the performance of ETF is sensitive to
the ratio of available task parallelism over effective communication. ETF and DLS
produce excessively long schedules when task parallelism is not sufficient to hide the
communications. Therefore the performance of these scheduling heuristics depends on
the computation and communication profile.

Our objective is to learn from the above algorithms and to design a scheduling
algorithm that adapts its decision by using some profiling information from the com-
putation. This method will prove to be effective when performance must be made
insensitive to variation in parallelism and communication. In other words, we propose
an iterative scheduling that smoothly adapts its decision function to some profiling
information. Two objectives are targeted in each iteration which are: (1) producing
a schedule based on currently accumulated knowledge of computation and commu-
nication, and (2) instantaneous exploitation of the task assignment to sharpen the
knowledge. This approach primarily applies to static scheduling but also provides use-
ful information for dynamic situations where no global knowledge of computation is
available. Analysis and evaluation will show that adaptive scheduling produces near-
optimum solutions and contributes to a better understanding of the scheduling problem.
Its iterative nature is useful as a compiler optimization approach.

The organization of this paper is as follows. Section 2 presents some background.
Section 3 presents an analysis of the performance problem, Section 4 presents a model
on performance degradation. Section 5 presents the evaluation of task-level. Section 6
presents the proposed scheduling. Section 7 presents the evaluation. We conclude this
work in Section 8.

2 Background

Wu and Gajsky [24] proposed two algorithms which are the modified critical path
(MCP) and mobility directed (MD). These algorithms use the as-soon-as-possible start-
ing time (ts(T)) that is the length of the longest path including computation and
communication from entry node to T . The as-late-as-possible completion time (tl(T))
is the difference between the longest path in the graph and the length of the longest
path from T to some exit node. MCP selects the free task with the largest (tl(T)) and
assigns it to the processor that can start it at the earliest time among all processors.
MD selects the free task T with least relative mobility (rm(T) = (tl(T)− ts(T))/µ(T))
and assigns it to a processor so as not to increase the current critical path, i.e. none of
the scheduled tasks is delayed beyond its latest time. MD uses an unbounded number
of processors and its complexity is O(pn(n + e)).

Linear clustering [13] consists of iteratively merging tasks along the most commu-
nicative chains in an attempt to minimize overall schedule time. Sarkar and Hen-
nessy [21] proposed a scheduling that consists of 1) clustering the tasks on an un-
bounded number of processors and 2) merging some clusters by incorporating the
network latency in order to match the number of clusters to the number of processors.
To cluster the tasks the edges are sorted in non-increasing order of the number of mes-
sages. At each step, the edge with the highest weight is “zeroed” if the the parallel

3

time PT (T) does not increase. PT(T) is the sum of tlevel(T) and blevel(T) which are
the lengths of the longest path from an entry node to T and from T to some exit node,
respectively. Finally, tasks in each cluster are sorted in decreasing order of their blevel.
The complexity of clustering is O(e(e + n)), where e is the number of edges.

Yang and Gerasoulis[25] improved Sarkar’s scheduling over an unbounded number
of processors. The dominant sequence (DS) consists of the tasks that lie on the longest
path from entry to exit in a clustered graph. DS is formed by a chain of tasks with
maximal tlevel(T) + blevel(T) which is also taken as task-priority. A task whose
predecessors have all been examined is called free. A sequence of edge zeroing is
performed with the aim of reducing DS after considering the free tasks in decreasing
order of priority. The selected edge zeroing is done so that the current task T starts at
the earliest time and this clustering does not increase tlevel(T). In other terms, none
of the unexamined DS tasks can be delayed. Updating the values of tlevel(T) and
blevel(T) is done only when one of the free tasks’ child is clustered. This clustering
strategy reduces complexity to O((n + e)logn).

Kwok and Ahmad proposed a scheduling called Dynamic Critical Path (DCP) with
the aim of minimizing the number of processors. DCP minimizes the starting times of
tasks after estimating the effect on the successors. Only processors holding predecessors
or successors of the current task are examined. The notation uses the absolute earliest
starting time to start a task T on processors p which is denoted by (AEST (T, p)).
Similarly, the absolute latest starting time is denoted by (ALST (T, p)). The critical
tasks have identical AEST (T, p) and ALST (T, p), i.e. zero mobility. A DCP task T is
selected when all its DCP predecessors have already been scheduled. Only processors
holding the predecessors of T are examined. For each such processor, the algorithm
searches a vacant slot for fit T with the possibility of starting earlier or delaying pre-
viously assigned tasks within the limit of their AEST and ALST values. Processor
selection is based on minimizing the sum AEST (T, p) + AEST (T ′, p), where T ′ is the
successor of T that has the least difference between its AEST and ALST . This condi-
tion guarantees some processor reservation for the most critical successor. Finally, all
the tasks set at their AEST values. The complexity of DCP scheduling is O(n3).

Hwang, Chow, Anger, and Lee proposed the Earliest-Task-First (ETF) scheduling
for a bounded number of processors. ETF is a variant of Graham’s List-scheduling with
the difference that task selection is based on the principle of earliest-startable-task-first.
This requires evaluation of the earliest time for all ready tasks and for all processors.
The complexity of the ETF algorithm is O(n2P). Sih and Lee proposed the Dynamic
Level Scheduling (DLS) which also uses a bounded number of processors. In DLS, the
largest sum of computations (only) from T to exit is called the static task level SL(T).
The ready task that has the highest dynamic level DL(T, p) = SL(T) − ST (T, p) is
selected first, where ST (T, p) denotes the earliest time at which all incoming data
transfers are complete for T . This requires an evaluation of ST (T, p) for all ready
tasks and all processors. The complexity of DLS scheduling is O(n2P).

4

3 The computation dependent performance prob-

lem

A set of Γ(T1, . . . , Tn) of n tasks (T) with their precedence constraints and commu-
nication costs are to be scheduled on p identical processors so that their overall ex-
ecution time is held to a minimum. The computation can be modeled [12] by using
a directed acyclic task graph G(Γ,→, µ, C) where →, µ(T), and c(T, T ′) ∈ C denote
the precedence constraints, the task execution time, and size of message sent from
T to its successor T ′, respectively. The multiprocessor is denoted by S(P,R) where
p ∈ P is processor and r(p, p′) ∈ R is the bandwidth of data path between p and
p′ which is bound by rmax. The reference time to the transfer of message c(T, T ′) is
c(T, T ′) × r(p, p′), where p and p′ are the processors running T and T ′, respectively.
Local message transfer has zero cost (r(p, p) = 0).

Let T be a task and denote by Pred(T) the set of predecessors of T . The earliest-
starting-time (est(T, p)) of T on p is the earliest time the latest message from the
predecessors arrives to p(T):

est(T, p) = max
T ′∈Pred(T)

{ct(T ′, p′) + c(T ′, T)× r(p, p′)} (1)

where ct(T ′, p′) is the completion time of T ′ on p′. Note that est(T, p) is nil for each
p if T has no predecessors.

There exists at least one processor p∗, that is free at time t(p∗), for which T can
start at the earliest est(T, p∗) among all the available processors:

est(T, p∗) = minp{max{est(T, p), t(p)} } (2)

The est(T, p) provides an objective function for minimizing processor idle times by
selecting tasks and processors according to earliest-task-first (ETF) [12]. ETF uses
Graham’s list-scheduling [10] in which the scheduler tracks the increasing sequence
of the processor completion times by using a global time. Thus the starting times
of successively scheduled tasks form a non-decreasing sequence in time. This enables
finding of a worst-case bound [12] on the schedule length.

Evaluating static task priority for computation with communication times is dif-
ficult because the sum of communication along directed paths cannot be determined
without the knowledge of task-processor mapping. Thus, on-line task and proces-
sor selection in ETF is one advantage because it eliminates the need for any static
pre-processing such as off-line computation of task priority. ETF schedules gave an
acceptable deviation from some known solutions as reported in [23, 16]. Some anoma-
lies were also reported. For example increasing parallelism or reducing communication
always improves ETF schedule length [4]. The average running time of ETF appears
to be reasonable [16] when compared to other well-known algorithms.

To minimize overall schedule finish time ETF locally minimizes processor idle time
by searching opportunities to overlap computations with communications. However,
the efficiency of this strategy drops when: (1) there is not enough inherent task paral-
lelism to hide communications, or (2) there is excessive communication that cannot be

5

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ETF compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 1: Percentage deviation of ETF schedules from optimum solutions

hidden anyway. Task parallelism is the average number of parallel tasks per processor.
Therefore, these heuristics require increasing the parallelism, or decreasing the number
of processors, in order to achieve acceptable deviations as shown in Figure 1.

ETF schedules suffer from an important flaw. Figure 1 shows the percentage devi-
ation of ETF schedules from optimum solutions versus the communication granularity
and the inherent parallelism. Different performance levels are obtained depending on
computation profile. Specifically, ETF is capable of generating reasonably good solu-
tions only when there is sufficiently large parallelism to hide the communication. In
this case, there is no guaranteed performance. Our objective is to find a strategy that
smooths out the variations in performance by adapting the scheduling decision to the
amount of communication and parallelism.

In the next section we present an analytical explanation for the performance degra-
dation of ETF which will be used later as the basis for a design of an adaptive scheduling
algorithm. In the next section we establish a relation that can be used to predict the
deviation from the optimum of an ETF schedule as a function of communication and
parallelism.

4 Modelling the algorithm degradation

In his study of multiprocessor anomalies, Graham [6] showed that the sum of all idle
times in a schedule with no communications is bounded by the sum of all computations
along some chain of tasks. The bound was adapted later in [12] to incorporate non-zero
communication times. The main result is that the sum of all idle times in a schedule
generated by ETF is bounded by the sum of enough computations and communications
along one specific chain of tasks. We use this idea to show how the schedule length
can be affected by communication and parallelism. For this we first shortly review
the derivation of the bound on the idle times and then introduce the effect of average

6

communication and parallelism.
Assume a schedule generated by applying earliest-task-first as a scheduling heuristic

and let ω be the finish time of the schedule. The set of time points in (0, ω) can be
partitioned into two subsets A and B that consist of all the time points for which:
(1) all processors are busy (A), and (2) at least one processor is idle (B). B is the
disjoint union of q open intervals B = ∪1≤i≤q(bli , bri

) and bl1 < br1
< . . . < bli < bri

<
. . . < blq < brq

. The earliest-task-first scheduling allows the finding of a chain of tasks
X : TL → TL−1 . . . T2 → T1 that entirely covers B, where T1 is among the tasks that
have completed last in the schedule. The principle of earliest-task-first enforces the
starting times of successively scheduled tasks be a non-decreasing sequence in time.
This in turn allows the finding of a bound on the sum of all idle time intervals (µ(φ))
in the schedule:

∑

φi∈Φ

µ(φi) ≤ (p− 1)
L
∑

j=1

µ(Tj) + prmax

L−1
∑

j=1

c(Tj+1, Tj) (3)

where the left-hand sum covers all idle times (µ(φi)). Consider a chain of immediate
tasks (Xlarge) whose sum of computations accumulates the largest value among all other
chains. Since

∑L
j=1 µ(Tj) ≤

∑

T∈Xlarge
µ(T), then idle times

∑

φi∈Φ µ(φi) are bounded
by:

p

k

1 + rmax

1
L−1

∑L−1
j=1 c(Tj+1, Tj)

1
L

∑L
j=1 µ(Tj)

∑

T∈Xlarge

µ(T) (4)

where k is the largest integer satisfying k ×
∑L

j=1 µ(Tj) ≤
∑

T∈Xlarge
µ(T). To identify

some general features of ETF we need to consider a class of computations G for which
µ(T) and c(T, T ′) are uniformly distributed within some specified ranges. A given
computation graph G ∈ G can be characterized by means of two parameters: 1) the
communication granularity (α), and 2) the degree of parallelism (β). Parameter α is
defined as the ratio of average communication (c) to average computation (µ), that is:

α =

1
nedge

∑

T→T ′∈G c(T, T ′)
1
n

∑

T∈Γ µ(T)
(5)

where n and nedge are the number of tasks and the number of non-zero communication
edges, respectively. The graph parallelism is the average number of tasks that can be
made ready to run at the same time. This can be measured by using the ratio of the
sum of all computations over the sum of computations along the longest chain, that
is (

∑

T∈Γ µ(T))/(
∑

T∈Xlarge
µ(T)). We define the degree of parallelism β as the graph

parallelism over the number of processors:

β =

∑

T∈Γ µ(T)

p
∑

T∈Xlarge
µ(T)

(6)

In other terms, β is an indicator of the average number of tasks that compete for
scheduling on each processor. Let αmax be an upper bound on the communication gran-
ularity for a given computation. Since the communications are uniformly distributed

7

then the average communication along partial chains is also bounded by αmax. Then
the bound given in Equation 4 becomes:

∑

φi∈Φ

µ(φi) ≤

(

1 + rmaxαmax

kβ

)

∑

T∈Γ

µ(T) (7)

This indicates that (1 + rmaxαmax)/kβ is an upper bound on the percentage of idle
time in the schedule. The schedule finish time ω is the sum of all computations and
all idle times ω× p =

∑

T∈Γ µ(T) +
∑

φi∈Φ µ(φi), then the schedule finish time is bound
by:

ω ≤
1

p

(

1 +
1 + rmaxαmax

kβ

)

∑

T∈Γ

µ(T) (8)

The length of the optimum solution ωopt always satisfies
∑

T∈Γ µ(T) ≤ pωopt, then

the schedule length becomes ω ≤ ωopt

(

1 + 1+rmaxαmax

kβ

)

. This allows the finding of a
bound on the relative deviation of schedule length from the length of the optimum
solution:

ω − ωopt

ωopt

≤
1 + rmaxαmax

kβ
(9)

The sum of idle times due to precedence relationships represents a fraction of sched-
ule time that is bounded by 1/kβ. Thus large parallelism may completely hide the
effects of task precedence. The sum of the idle times due to non-zero communication
edges represents a fraction of schedule time that is bounded by rmaxαmax/kβ. The fin-
ish time ω increases at most linearly with and increase in αmax and rmax. This explains
why the schedule finish time is near optimum only when there is large amount of par-
allelism to hide the communications. It is clear that a pure earliest-task-first decision
will cause degradation when rmaxαmax/kβ is large. In this case, only a small fraction
of communication can be hidden by task execution and a better decision is to select
tasks that are followed by longer chains of computation and communications, i.e. tasks
with a higher task-level. Thus task and processor selection must include provision for
both earliest-task-first and highest-level-first strategies.

The above bound and the experimental testing (Figure 1) shows that it can be used
to model the deviation ((1+rmaxαmax)/kβ) from optimum. When task parallelism and
communication are known, the model allows the prediction of possible degradation in
the finish time of a schedule obtained by using the concept of earliest-task-first.

In the next section we present an approach to estimate the task-level in order to
account for computations and communications along chains of immediate tasks.

5 The task level

We estimate the task-level based on how the scheduler maps task computations and
communications in a schedule. The computed task-levels can then be used in the task
and processor selection of the same scheduler in the next scheduling iteration. The

8

task-level of a given task is computed by using the assignment of predecessors and the
implied communication.

Consider a chain of immediate tasks Y : T1 → T2 → . . .→ T , where T1 is an entry
task in G and T is any task that is linked to T1 by a dependence chain. The assignment
of tasks of path Y in a given schedule depends on the number of available processors,
the inherent parallelism in G, and the scheduling heuristic used. Given a schedule,
we define the longest activity path (lap(T)) of T as the largest sum of non-overlapped
time intervals during which some computations and communications are carried out
for some (immediate or not) predecessors of T .

Intuitively, we must have lap(T) = 0 whenever T is an entry node. A time interval
∆t should not affect lap(T) if ∆t occurs: (1) prior to the start of any predecessor of T ,
or (2) following the completion of T . lap(T) may be affected by ∆t that occurs between
the starting of some Ti ∈ Y and that of T . In the following we present a recursive
evaluation of task-level lap(T) which requires: (1) lap(T ′) for every predecessor T ′ of
T , (2) starting time st(T ′) and p′, and (3) processor p on which T is assigned.

Definition 1 The activity interval act(T ′, T) from task T ′ to its successor T is the
sum of all non-overlapped time intervals ∆t ∈ (st(T ′), st(T)) during which some com-
putation µ(T) or communication c(T ′, T) is carried out by arbitrary predecessors of
T .

The activity interval accounts for all time points in [st(T ′), st(T, p)] during which
there is at least one processor computing a predecessor of T , or one communication
link transferring data to enable the starting of T . The decision of scheduling T could
have been delayed beyond time point est(T, p) because some other tasks were executed
earlier according to the scheduling decision. Intuitively, we see that lap(T) should
not account for the delay st(T) − est(T, p(T)) which indicates that lap(T) must not
incorporate time points beyond: 1) the latest predecessor completion time or, 2) the
latest predecessor message time. The lap(T) depends on the largest sum of lap values
that is carried by a predecessor Ti and its activity interval act(Ti, T):

lap(T) = MaxTi∈pred(T){lap(Ti) + act(Ti, T)} (10)

Denote by T ′ an immediate predecessor of T that is started at the earliest time
among all other predecessors of T . Denote by lmt(Tj, T) = st(Tj) + µ(Tj) + c(Tj, T)×
r(pj, p) the earliest completion time of Tj if pj = p, or the earliest time all messages
c(Tj, T) from Tj reach processor p if pj 6= p. The earliest time T can start on p
is est(T, p) = maxTj∈Pred(T){lmt(Tj, T)}. Notice that the actual starting time of T
always satisfies st(T, p) ≥ est(T, p). To evaluate lap(T) we need to sort the predecessors
Tj ∈ Pred(T) in the decreasing order of their lmt(Tj, T) which facilitates evaluation
of the activity intervals. Figure 2 shows the evaluation of activity assuming a task T
having T1 and T2 as predecessors. We have lap(T) = max{lap(T1)+act(T1, T), lap(T2)+
act(T2, T)}. Figure 2-a shows that act(T1, T) must be entirely included in act(T2, T)
due to the non-overlap. Figure 2-b shows that act(T2, T) includes only a fraction of the
activities of T1. Figure 2-c shows that the activity induced by T2 is completely covered
by that of T1.

9

lmt(T1,T)

p(T1)

T2

T1

p(T2)

lmt(T2,T)

a - Activity sums up non
overlapped task activities.

act(T2,T)

act(T1,T)

p(T)

lmt(T1,T)

p(T1)

T2

T1

p(T2)

lmt(T2,T)

p(T)

b - Activity accounts once for
overlapped task activities.

act(T2,T)

act(T1,T)

p(T1)
T2

T1

p(T2)

p(T)

c - Activity does not account
for completely hiden activities.

lmt(T2,T) lmt(T1,T)

act(T1,T)

act(T2,T)

Figure 2: Task level: (a) non-overlapped, (b) overlapped, and (c) coverage

An O(n) algorithm to evaluate the Longest Activity Path (LAP) of T is given
below, where n is the number of predecessors of T . LAP assumes that the predecessors
Pred(T) are sorted in decreasing order of lmt(Ti, T) and stored into a heap H. It starts
by evaluating the current lap (current lap) of T and current activity (current act)
induced by the predecessor with the largest lmt. At each step, it removes the next
predecessor T ′ from H; if lmt(T ′) ≤ st(prev task) then there is no overlap between the
previously accumulated activity and that induced by T ′ which is ∆t = lmt(T ′)−st(T ′).
current lap should then be increased by ∆t as shown in Figure 2-a. Otherwise, there
is some overlap between the previously accumulated activity and that of T ′. Here the
activity induced by T ′ is ∆t = st(prev task)− st(T ′) which can be positive (Figure 2-
b) or negative (Figure 2-b). In either case, current lap = current lap + lap(T ′) + ∆t
but the accumulated activity is incremented only by positive activity. Finally lap(T) is
updated to current lap only when current lap is the largest of all previous predecessors
of T .

Algorithm Longest-Activity-Path LAP

Input: pred. sorted in decreasing lmts and stored in H
Output: longest-activity-path lap(T)
(1) Initialize: current act = 0, current lap = 0,

prev task = {}, st(prev task) =∞, lap(T) = 0;
(2) While (H 6= Ø) Do

Begin

T ′ ← get top(H);
If lmt(T ′) ≤ st(prev task) Then

∆t = lmt(T ′)− st(T ′);
Else ∆t = st(prev task)− st(T ′);
current lap = current act + lap(T ′) + ∆t;
If ∆t > 0 Then current act = current act + ∆t,

prev task = {T ′};
If lap(T) < current lap Then lap(T) = current lap;
H ← H − {T};

End.

10

Now we are well equipped to define a scheduling decision function (d(T)) that
combines two fundamental concepts which are: (1) earliest-task-first (etf), and (2)
highest-level-first (hlf) for scheduling computations with communication times. The
knowledge of task parallelism and communication allow the finding of an upper bound
on the relative deviation of earliest-task-first schedule length from optimum (κ = (1 +
rmaxαmax)/kβ). This can be used as a weighting factor in the decision function to
direct task and processor selection so that: (1) a large value of κ (low task parallelism
and/or large communication) leads to an etf decision, and (2) a low value of κ leads to
an hlf decision (large task parallelism and/or low communication). In the next section
we present a scheduling algorithm that implements the above proposal through the use
of a decision function d(T) that is a linear function of task-level, κ, and task starting
time.

6 The scheduling algorithm

In this section we present our proposed algorithm which is called ADAPT . Its strategy
is simple and consists of selecting a tentative task and the processor for which this task
can run at the earliest time. Next it selects all the ready tasks that have their earliest
starting times on the above processor. The previously defined decision function d(.) is
used to find a new tentative task only when the execution time of a ready task conflicts
(overlaps) with a current tentative task. Otherwise, the first assigned task is one that
can start and finish earlier. In the following we present in some detail our proposed
algorithm ADAPT which is shown on Figure 4.

In statement 2.1, ADAPT uses set Ready and Assign to store ready-to-run tasks
and assigned tasks, respectively. Initially, Ready contains all tasks without predeces-
sors. The processor’s free time t free(p) is the earliest time a processor can be assigned
a new task. t free(p) is set to 0 for every p. For each ready T we set est(T, p) = 0 and
let p0 be the processor on which T can start at the earliest.

ADAPT schedules one task in each iteration of statement 2. In statement 2.1,
a tentative task Tt is lexicographically selected among ready tasks. Tt can start at
the earliest on some processor pmin(Tt). Next, all ready tasks which can start at the
earliest on pmin(Tt) are stored into a set H. Thus set H contains all the tasks that may
compete with Tt for being assigned first on the pmin(Tt). All tasks of H are examined
to find out possible conflicts.

If the running of some task T ∈ H does not overlap with that of Tt when it is set at
its earliest starting time, then T may precede Tt or follows it without conflict. Figure 3-
(a) and (c) show that though Tt and T have their earliest startable times on the same
processor, they do not conflict. In Figure 3-(a) T can start and complete prior to the
start of Tt which means that T becomes the tentative task. In this case, postponing
the assignment of Tt does not cause any degradation in the schedule, therefore T can
be assigned earlier than Tt. This significantly improves processor utilization because
pmin(Tt) would otherwise be left idle if Tt were assigned directly. In Figure 3-(c) Tt can
start and complete prior to the start of T , which means that T will be assigned to a
later decision order without causing any delay over its earliest startable time.

11

T
Tt

a - T does not delay Tt, then T will

 be assigned regardless of its
 priority.

p(Tt)

st(Tt) ct(Tt)

st(T) ct(T)

prev.
T

Tt
p(Tt)

st(Tt) ct(Tt)

st(T) ct(T)

prev.
T

T

st(Tt) ct(Tt)

st(T)

prev.

ct(T)

b - Tt and T compete for p(Tt).

 The decision function must be
 used to resolve the conflict.

c - Assigning Tt does not cause

 any delay to T. Assigning T
 is delayed for a later decision.

Tt

Figure 3: Resolution of conflicts for the best processor

If running some task T ∈ H at its earliest startable time does conflict with the
running of Tt, then the assignment of one of these tasks causes Tt to be delayed over
its earliest startable time. In this case, the conflict is resolved by assigning the earliest
task and delaying the other. Figure 3-b shows that Tt and T will have an overlapped
(conflicting) execution time if both must be assigned at their earliest starting time.
In this case, ADAPT evaluates a decision function d(T) = lap(T) − κ × est(T, p)
and selects the task that has the highest d(T) of the two conflicting tasks, where κ
is evaluated as κ = kβ

1+rmaxαmax
and k is some constant (≥ 1). The scheduler decision

is then adapted to task parallelism and communication. If the parallelism is large
enough to cover communication, then κ is large and an earliest-task-first will be fine.
Otherwise, κ is small and we use the most recently updated value of the task-level
that is lap(T). The important thing to note is that ADAPT selects T as long as
d(T) ≥ d(T ′) which means that:

est(T, p) ≤ est(T ′, p) +
1 + rmaxαmax

kβ
(lap(T)− lap(T ′))

Clearly ETF discipline is not strictly enforced as T can still be selected first even
if est(T, p) ≥ est(T ′, p) provided that the difference est(T, p)− est(T ′, p), which is the
additional idle time, is no more than the weighted difference in task-level which is
1+rmaxαmax

kβ
(lap(T)− lap(T ′)).

In statement 2.2, the final Tt is assigned on processor p∗ = pmin(Tt) for which the
earliest processor free time t free becomes least ct(Tt). Next, ADAPT updates the
starting times of all ready tasks with respect to p∗. It also finds a new “least starting”
time for every ready task T that has p∗ as the processor on which it could start at
the earliest. For any such task T the earliest startable processor is stored in pmin.
Every time least st is modified the priority function must be updated. Notice that the
updated decision function value is non-decreasing.

In statement 2.3, we use an integer λpred(T) that is initially set to the number
of unscheduled predecessors of T . Since Tt is now assigned, then λpred(T) must be
decremented for every successor T of Tt, i.e. Tt ∈ Succ(T). Such a successor T may
become ready to run if λpred(T) = 0 which means that all predecessors of T have
already been assigned. For every newly ready task T , ADAPT evaluates its earliest
starting time for every processor and finds the least startable time least st(T) and its
processor pmin(T). Finally, the decision function d(T) is initialized.

12

Algorithm: ADAPT

(1) Initialize: Ready ← {T : Pred(T) = ∅}, Comp← ∅,
For each T ∈ Ready: est(T, p) = 0, pmin(T) = p0;
For each p ∈ P : t free(p) = 0;

(2) While |Comp| < n Do

Begin

(2.1)Select task Tt from Ready in lexicographical order
Let H = {T ∈ Ready : p min(T) = p min(Tt)}
While (H 6= ∅) do

Begin

Pick T from H in lexicographic order;
If (least st(T) < least ct(Tt)) Then

If (least ct(T) ≤ least st(Tt)) Then Tt = T ;
Else if (d(T) > d(Tt)) Then Tt = T ;

Remove T from H;
End

(2.2)Assign Tt on p∗ = pmin(Tt),
update t free(p∗) = least ct(Tt);
Remove Tt from Ready, add Tt to Comp;
Repeat for each T ∈ Ready:

est(T, p∗) = max{est(T, p∗), t free(p∗)},
If p min(T) = p∗ Then

Begin

Find least st(T) = est(T, p+), p min(T) = p+,
least ct(T) = est(T, p+) + µ(T);
d(T) = lap(T)− κ× least st(T);

End

(2.3)Repeat for each task T ∈ Succ(Tt) :
Npred(T) = Npred(T)− 1
If Npred(T) = 0 Then

Begin

Add T to Ready, least st(T) =∞
Repeat for each p ∈ P :

est(T, p) = maxT ′∈Pred(T){ct(T
′)+

c(T ′, T)× c(T ′, T)r(p(T ′), p)},
est(T, p) = max{est(T, p), t free(p)},
If est(T, p) < least st(T) Then

least st(T) = est(T, p), p min(T) = p,
least ct(T) = est(T, p) + µ(T);

d(T) = lap(T)− κ× least st(T);
End

End

Figure 4: Scheduling algorithm ADAPT

13

The main loop of ADAPT is statement 2 that executes n times because one task is
scheduled in each iteration. Statement 2.1 executes at most n times in order to select
one ready task. In statement 2.2, we perform the following three operations. First, we
update the parameters of the algorithm. Second we evaluate the largest activity path of
the newly assigned task at a cost of O(n). A cost of O(n) is needed for finding the new
least st and updating the priority of some ready tasks. The overall cost of statement
2.2 is O(n). Finally, in statement 2.3 we visit all successors of Tt but the condition
λpred(T) = 0 occurs only once for each task and for each occurrence we evaluate est
for all processors. The global cost of statement 2.3 is O(pn2) which is also the time
complexity of ADAPT.

6.1 Iterative scheduling

ADAPT is used in an iterative scheduling framework which consists of alternatively
scheduling the forward and backward task graphs associated to a given computation.
It produces one valid solution in each iteration. In the ith iteration, ADAPT evaluates
lapi(T) for each newly scheduled task T . lapi(T) represents an estimate of the achieved
longest path from entry node to T as achieved in the ith schedule. In iteration i +
1, ADAPT uses a decision function di+1(T) = lapi(T) − κ × esti+1(T, p) and after
scheduling T it evaluates lapi+1(T) to be used in the i + 2th scheduling iteration. The
use of lapi(T) in the i+1th iteration is meant to provide the scheduler with a measure
of the longest path from T to exit node. To start the first scheduling iteration we set
lap(T) = 0 and use d1(T) = −est1(T, p) in backward scheduling of the computation
graph. In the evaluation we will study the number of iterations needed to find the best
solution which is a function of the size of the search space.

Figure 5 shows: (a) a DAG, (b) scheduling steps of ADAPT, and (c) ETF and
ADAPT Gantt charts. The Gantt chart of the schedule obtained from the first iteration
of ADAPT over the backward task graph is shown (Hbak) in Figure 5-(c). The decision
function during this first iteration is d1(T) = −est1(T) because lap(T) = 0 for all T s.
During this iteration, we evaluate lap(T) after scheduling each task which will be used
in the second iteration. The scheduling of steps of ADAPT in the second forward
iteration are shown in Figure 5-(b). The values of evaluated lap(T) are shown in
the fourth column of Figure 5-(b). Here we use the lap values which are obtained
from the first backward iteration (Figure 5-(c) Hbak) which are used in the second
forward scheduling iteration (Figure 5-(c) Hfor). The second iteration uses d(T) =
lap(T)−κ× est(T), where kappa is set to 1 for simplicity. The tasks that are ready to
run (Ready) are listed in first column of Figure 5-(b). The second and third columns
show the tasks (with their starting times ests) that can start at the earliest on p1 and
on p2, respectively. The fourth and fifth columns show the lap(T)−est(T, p) (assuming
κ = 1) and scheduled tasks, respectively. Figure 5-(c) shows: (1) ETF finish time (41
units), ADAPT’s first scheduling iteration (backward) (34 units), and ADAPT’s second
scheduling iteration (forward) (30 units).

Generally, a few iterations of ADAPT are sufficient to find solutions whose finish
time are much shorter than those produced by ETF scheduling. Each new iteration
is likely to retain some similarity with the previous solution and introduces variation

14

Ready P1(T / est(T,P1)) P2(T / est(T,P2)) T(lap(T), est (T)) Scheduled
--
RDY(A, B, C) P1(A/0, B/0 ,C/0) P2(A/0, B/0, C/0) A(32-0) B(23-0) C(28-0) ---> A
RDY(B, C, D) P1(D/6) P2(B/0, C/0) B(23-0) C(28-0) ---> C
RDY(B, D, E) P1(D/6) P2(B/8, E/14) B(23-8) E(8-14) ---> B
RDY(D, E, F, G) P1(D/6) P2(E/14, F/13, G/13) D(23-6) ---> D
RDY(E, F, G) P1() P2(E/14, F/13, G/13) E(8-14) F(6-13) G(18-13) --->G
RDY(E, F, H, J) P1(E/17, F/20) P2(H/23, J/20) E(8-17) F(6-20) ---> E
RDY(F, H, J) p1() P2(F/21, H/23, J/20) F(6-21) H(3-23) J(9-20) ---> J
RDY (F,H) p1(F/22, H/28) P2=() F(6-22) H:(3- 28) ---> F
RDY(H ,I) P1(H/28, I/25) p2=() H(3-28) I(3-25) ---> I
RDY(H) P1(H/28) P2 =() H(3-28) ---> H

A/6 C/8B/5

G/8F/3E/5D/9

H/3 J/9I/3

9
9

9

9

8

8

5 9

5 6 7

77
34

a - Example of Directed acyclic graphs

b - Scheduling steps

c - Gantt chart for ETF, first bakward eteration, first forward iteration.

A/6 D/9
A/6

I/3

B/5 C/8 F/3
A/6

E/5 G/8 H/3 J/9

0 5 10 15 20 25 30 35 40

ETF

Hfor

P1

P2

P1

P2

P1

P2

Hbak
J/9 G/8 B/5

A/6
C/8

I /3 H/3 F/3 E/5 D/9 A/6

A/6
A/6

D/9 F/3
A/6

E/5
A/6

I/3 H/3

G/8 J/9B/5
A/6

C/8

Figure 5: (a) DAG, (b) ADAPT steps, and (c) Gantt chart

at the same time. This process continues until a balance is found (task-level) which
corresponds to some steady local minima. This corrective process has been shown
in practice to be a process that explores a space of “good” solutions which allows
optimization of the solution finish time.

Iterative scheduling can be seen as a deterministic evolutionary process [14] that
has hereditary variation and differential production. Change is introduced via each
iteration in such a way that each new state (solution) is similar to the previous state and
yet different. The similarity is present because the task-level does not always change
enough, from one iteration to another, to trigger a change in the decision function
d(T). Each state is evaluated through the mapping of lap, local task starting time,
and computation profile. Inferior task assignments are discarded because “excessive”
task delay in the current state leads the lap value associated with a task to increase
proportionally to the task delay. This partially improves the local state (task) in

15

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ADAPT(S) compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 6: Percentage deviation of ADAPT (S) from optimum

the next scheduling iteration. This process continues until a balance is found which
corresponds to some steady local minima.

7 Performance evaluation

A random problem generator (RPG) is used to generate computation graphs with a
few hundred tasks and a uniform distribution of computation and communication.
The previously defined communication granularity α and degree of parallelism β are
used for setting the generated problems and the number of processors. We use the
RPG to generate computation graphs for some instances of α and β. Each generated
computation problem is scheduled by randomly selecting a task and randomly assigning
it to some free processor. The random task and processor selections are meant to
eliminate possible correlations between the above heuristics and the random schedule.
All idle times in the random schedule are filled with additional tasks for which new
dependence edges are created in order to preserve as much as possible the original
settings of α and β. However, if the previous setting cannot be maintained the graph
and its schedule are rejected. The result is a new computation graph for which we
know an optimum solution over a given number of processors because the schedule has
no idle times.

The studied ranges of α and β are [0 − 4] with a step of 0.5 and [1, 2, 2.5, 3, 4],
respectively. For each instance of α and β we use a uniform distribution to generate
30 computation problems. The variance on the number of edges is set to 50% of the
average needed number of edges. Each graph has at least 6 levels and 70% of the
outgoing edges from one level are incoming edges to the next level and the remaining
30% of the edges reach arbitrary forward levels.

We study the performance of: (1) ETF , (2) ADAPT (S) which uses d(T) =
ctprev(T) − est(T, p), (3) ADAPT (1) which uses d(T) = lap(T) − est(T, p), and (4)

16

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ADAPT(1) compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 7: Percentage deviation of ADAPT (1) from optimum

ADAPT which uses d(T) = lap(T) − kβ × est(T, p)/(1 + rmaxαmax). ADAPT (S) is
intended to study the effect of using the task completion time (ctprev(T)) achieved in
the previous scheduling iteration as the task-level. ct(T) represents a primary measure
of longest path from entry node to T . By comparing the performance of ADAPT (1)
to that of ADAPT we can study the effects of weight kβ/(1 + rmaxαmax).

Each generated problem is scheduled by each of the above heuristics. The length of
the optimum solution is denoted by (ωopt). We plot the relative percentage deviation
for each heuristic h which is (ωh/ωopt−1)100. Each plotted point results from averaging
the heuristic finish times for 30 generated problems. Figures 1, 6, 7, and 8 show the
results.

ETF (Figures 1) can perform well when there is enough task parallelism to cover
available communication. In this case the ETF strategy provides good management of
processor idle time which effectively minimizes the schedule finish time. This effect is
depicted in the bound (ω−ωopt)/ωopt ≤ (1

kβ
+ rmaxαmax

kβ
) which predicts the degradation

of the heuristic finish time when: (1) the available parallelism is relatively low (term
1/kβ), or (2) the amount of communication is relatively large compared to the available
task parallelism (term rmaxαmax/kβ). The result is that the schedule length of ETF
may deviate by more than 20% from optimum for the studied ranges of α and β.

ADAPT (S) uses a simple but more balanced decision function (d(T) = ctprev(T)−
est(T, p)) than ETF which is greatly rewarded by a noticeable improvement in per-
formance especially when the parallelism is low. ADAPT (S) deviates on average by
at most 7% from optimum for all the studied cases. It was shown to be much less
sensitive to computation profile than ETF. However, the number of iterations needed
for ADAPT (S) to achieve the above performance is linear with the communication
granularity (Figure 9).

ADAPT (1) differs from ADAPT (S) by the use of a more accurate task-level. The
use of lap(T) instead of simple task completion time ct(T) as task-level enhanced the
solution generated by ADAPT (S) by about 5%. Accurate evaluation of task-level

17

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ADAPT compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 8: Percentage deviation of ADAPT from optimum

is also rewarded by a noticeable improvement in performance as near optimal solu-
tions were generated by ADAPT (1) for all the studied cases. Also ADAPT (1) needs
far fewer iterations to find its best solution than that those needed for ADAPT (S)
(Figure 9).

ADAPT is designed using a decision function that combines task-level with the
concept of earliest-task-first in a manner that is adapted to the computation profile.
A task T is selected if for each ready task T ′ that competes for the same processor we
have:

est(T, p) ≤ est(T ′, p) + (
1

kβ
+

rmaxαmax

kβ
)(lap(T)− lap(T ′))

A low ratio of communication to parallelism (rmaxαmax/kβ) leads to the earliest-
task-first decision. A large ratio of communication to parallelism brings task-priority to
decide whether earliest-task-first should be taken or not. Thus, the use of task-priority
occasionally breaks the earliest-startable-task order. Therefore, successively scheduled
tasks do not form non-decreasing sequence in time which means that Graham’s bound
no longer holds. In fact this happens only where assigning more prior tasks has a
greater importance in minimizing schedule length than a simple application of the
earliest-task-first discipline.

ADAPT achieves on average about a 2% deviation from the optimum solution.
Comparing ADAPT and ADAPT (1) we can see that setting up the weight (1 +
rmaxαmax)/kβ in d(T) enables the adaptation of the scheduler to the computation
profile specified by α and β. This was rewarded at two levels: (1) producing near
optimum solutions (Figure 8), and (2) shortening the number of iterations for finding
the best solution (see Figure 9 for low and high parallelism).

Graham’s list-scheduling [10] (LS) applies only to zero communication problems.
LS generates optimum solutions for tree-computations with equal task times but as
experimental evaluation of LS [1] showed its ability to generate near-optimum solutions
for both deterministic and stochastic computations as it deviates from the optimum

18

by less than 5% in 90% of the cases. For zero communication problems ADAPT does
not deviate by more than 1.5% in 90% of the cases.

7.1 Comparing to best know solutions

We also repeated the above testing by directly scheduling the computation graphs
without filling the idle times. In this case no optimum solution is known for the gener-
ated problems. Each generated computation graph is scheduled by ETF, ADAPT (S),
ADAPT (1), and ADAPT . The shortest finish time that is achieved by any of the
above heuristics for a given computation graph is denoted by (ωbest) and used as a ref-
erence of the optimum solution. We similarly evaluated the average relative deviation
from ωbest for each heuristic. The results were similar to those of Figure 1, 6, 8, and 7
but with some difference in the value of deviation from ωbest.

ETF deviated by less that 6% for 1+α
β
≤ 0.8 and deviated by up to 20% from ωbest

when 0.8 ≤ 1+α
β
≤ 1.6. For ADAPT (S), the deviation from ωbest was generally below

5%. However, for large task parallelism the deviation of ADAPT (S) did not exceed
2%. The deviation of ADAPT (1) was below 3% and was mostly close to 1% for large
parallelism. Finally, ADAPT did not produce schedules deviating by more than 1%
from ωbest. This provides another level of confidence in the proposed approach.

7.2 Optimization of the schedule

Using ADAPT to carry out iterative scheduling on the forward and backward com-
putation graphs allows the exploration of a space of solutions. Although the finish
time of the solutions found fluctuates, there is a good chance of finding new solutions
with shorter finish times compared to the solution generated out of the first iteration.
The iterative solutions can be classified into four categories: a) converges to its local
minima, b) converges to a solution other than its local minima, c) cyclic, and d) does
not converge. The average number of required iterations Nα,β needed to generate the
best solution for the first three categories strongly depends on the computation profile
such as task parallelism (β) and communications (α). The last category may converge
if the iterative process is continued beyond Nα,β.

Figure 9 shows the average number of iterations Nα,β at which ADAPT (S), ADAPT
(1), and ADAPT found their best solution. The number of iterations is plotted versus
task parallelism. Two plots are shown for each algorithm: one for low communica-
tions (0 ≤ α ≤ 0.5) and another for high communications (3 ≤ α ≤ 4). For a given
computation, increasing task parallelism leads to a decrease in the number of possible
task-processor mapping as a result of decreasing the number of processors. Thus higher
values of β mean lower number of alternatives for task-processor mapping. This effect
is shown for all of the above three decision functions.

Increasing the communication requirements of a problem instance leads to an in-
crease in the number of possible scheduling decisions that can be attempted in searching
to optimize the solution. Therefore, increasing α leads to an increase in Nα,β. Coarse-
grain computation (low α) requires far fewer iterations for finding the best solution

19

0

5

10

15

20

25

30

35

40

45

50

2.5 3 3.5 4 4.5 5

A
v.

 n
um

be
r o

f i
te

ra
tio

ns

Task Parallelism

Number of iterations for ADAPT(S), ADAPT(1), and ADAPT for low and high communications

ADAPT(S) high comm.
ADAPT(S) low comm.
ADAPT(1) high comm.
ADAPT(1) low comm.
ADAPT high comm.
ADAPT low comm.

Figure 9: Typical number of iterations to find best solutions for ADAPT (S),
ADAPT (1), and ADAPT

than fine grain computations (large α). Ranking the above algorithms in increasing
order of Nα,β is ADAPT , ADAPT (1), and ADAPT (S) which is also the order of least
deviation from the optimum solution. ADAPT requires the least number of iterations
to achieve the least deviation from optimum. The difference in the number of itera-
tions needed in the case of low and high communications is bounded by 25 iterations
for ADAPT (S) and ADAPT (1) and bounded by only 16 iterations for ADAPT . This
shows the benefits of adapting the decision function of ADAPT to the computation
profile to speed convergence to the best solution.

7.3 Comparison to other approaches

Pase [19] experimentally studied 12 scheduling heuristics (S1 − S12) including the task
duplication technique (O(pn2)) [15] and ETF [12] (S2). His heuristic (S1) assigns
priority from the graph bottom and selects the task that is closest to top. The priority
function [19] is evaluated based on task computation times but neither account for
the communication edges nor the network latency. He found that S1 and ETF are
among the best heuristics and both outperform the TD scheduler of [15]. Our study
indicates that the use of ADAPT with iterative scheduling significantly outperforms
ETF versus change in communication and task parallelism.

Table 1 compares the average percentage improvement of the schedule finish time
generated by some scheduling heuristics. The plotted deviations are evaluated as (1−
ωX/ωY)100, where ωX and ωY are the average finish times generated by scheduling
heuristics HX and HY , respectively.

The heuristic called Dominant Sequence Clustering DSC [25] was proposed for
scheduling DAGs on an unbounded number of completely connected (FC) processors.
DSC scheduling improves the clustering approach presented in Sarkar and Hennessy [21]
but slightly outperform (3.3%) ETF as reported by Yang and Gerasoulis [25].

20

IRS ADAPT
Comm/Comp DSC/ETF DSC/Sarkar ETF HLETF Iter. ADAPT Iter.

0.1-0.3 0.06 5.56 3-4 0.3-1.3 22 0.2-0.6 5
0.83-1.25 3.3 20.74 4-12 0.7-6 40 0.4-2.6 20
3.3-10 2.36 19.39 10-28 7-9 50 1-2.6 40

Table 1: Comparison of average deviation of DSC, Sarkar, ETF, IRS, and ADAPT

Heuristic ETF is used as reference in [25] and this work, therefore we can compare
our work to that reported in [25, 21]. A schedule generated by using DSC (O(n log n))
is a few percent shorter (Table 1) than one generated by using ETF [25] when com-
munication granularity is in the range of 0.83− 1.25 and 3.3− 10. Table 2 shows that
ETF schedules deviate from optimum by 3% (low β) to 4% (high β), 4% to 12%, and
10% to 28% in the ranges of low, medium, and high communication repectively.

The dynamic critical path DCP [16] was tested over a number of known task graphs
for which the size was varied, and seven scheduling heuristics were run on each graph
instance. DCP schedules were shorter than ETF schedules by at most 7% in all studied
cases and problems [16]. However, the running time of ETF was also found to be among
the best [16] when compared to DSC [25], MCP [24], EZ [21], DCP [16], MD [24], and
DLS [23].

The iterative refinment scheduling (IRS) [5] uses the HLETF for each scheduling
iteration. Due to its iterative refinment, IRS scheduling largely outperforms ETF
over all the studied range of parallelism and communication. Table 2 shows that IRS
schedules are near optimum in the range of low to medium communication. However,
IRS requires about 50 iterations in the range of high communications to achieve a
schedule length that deviates by 7% (low β) to 9% (high β) from optimum. Note that
the cost of running IRS is linear with the cost of running ETF scheduling and the
number of iterations.

A priority-based scheduling is the dynamic level scheduling DLS [23]. No perfor-
mance data is presented for DLS. The decision function of DLS is similar to ADAPT (S)
but with the difference that DLS uses a static task-level and ADAPT (S) uses the com-
pletion time ct(T) of T from an iteration as the task level for the next iteration. Thus
the task-level for ADAPT (S) is some combination of computation and communication
as achieved by the scheduler. However, ADAPT has three improved features compared
to DLS which are: (1) a more accurate task-level (lap) that accounts for computa-
tion and communication along directed paths, (2) adapting the decision function to a
computation profile, and (3) possible refining of the solution through the use of itera-
tive scheduling. Finally, Table 2 compares the time complexities of some well-known
scheduling methods.

ADAPT schedules are comparable to those of IRS in the range of low and medium
communications. However, ADAPT largely outpeforms ETF and IRS in the case of
coarse grain communication and low parallelism as shown on Table 1. ADAPT provides
a scheduling performance that is independent of the instance of communication and
parallelism and enables a refinment of the solution through iterative scheduling.

21

Heuristic Operability Time complexity

Sarker (EZ) [21] Unbounded O(e(e + v))
Yang (DSC) [25] Unbounded O((n + e)logn)
Wu (MCP) [24] Bounded O(n2logn)
Wu (MD) [24] Unbounded O(n3)

Hwang (ETF) [12] Bounded O(pn2)
Ahmed (DCP) [16] Unbounded O(n3)

Kruatrachue (DSH) [15] Unbounded O(n4)
Al-Mouhamed (IRS) [5] Bounded O(pn2 × iterations)

(ADAPT) Bounded O(pn2 × iterations)

Table 2: Comparison of time complexities

8 Conclusion

Minimizing the schedule finish time of precedence-constrained computations with com-
munications times has been addressed by using quite different approaches ranging from
genetic algorithms to clustering. Graham’s list scheduling requires that each task be
associated with its task-level which, due to non-zero communication, cannot be deter-
mined without task-processor binding. ETF [12] and DLS [23] were two attempts to
redesign the scheduling heuristic based on list scheduling. ETF preserves Garham’s
global clock and ensures that the starting times of successively scheduled tasks are
non-decreasing. This guarantees that ETF schedules satisfy Graham’s bound with an
additional term for non-overlapped communications. The price of meeting the worst
case bound is that the performance of the scheduler depends upon the computation
profile. The DLS obtained encouraging results after relaxing the global time and in-
troducing a static priority to assist the earliest-task-first discipline.

Our work is an extension of the above effort. We have presented a compile-time
adaptive scheduling having no global time and using a decision function that incorpo-
rates: (1) an earliest-task-first discipline, and (2) a dynamic task-level. This ensures
good management of processor idle time when there is enough parallelism to hide the
communications and provides a means of distinguishing dominant tasks from others
when needed. To eliminate the computation dependence aspect a computation profile
factor was introduced and used to control the dominance (weight) of the above two
disciplines. Due to the dynamic nature of the task-level the scheduling was proposed
within an iterative framework which allows the exploration of a variety of solutions cor-
responding to a variety of task-levels. Iterative scheduling is an evolutionary process
(deterministic) that has hereditary variation and differential production.

Evaluation was carried out for a wide category of computation graphs with com-
munications for which optimum schedules are known. It was found that pure local
scheduling and static priority-based scheduling significantly deviate from the optimum
under specific problem instances. Our approach to adapting the iterative scheduling
decision to computation profile was able to produce near-optimum schedules with a
reasonable number of iterations within the limits of the studied computation prob-
lems.

22

References

[1] T.L. Adam, K.M. Chandy, and J.R. Dickson. A comparison of list schedules for
parallel processing systems. Comm. of the ACM, 17, No 12:685–690, Dec 1974.

[2] M. Al-Mouhamed. Lower bounds on the number of processors and time for schedul-
ing precedence graphs with communication costs. IEEE Trans. on Software En-
gineering, 16, No 12:1390–1401, 1990.

[3] M. Al-Mouhamed. Analysis of macro-dataflow dynamic scheduling on non-uniform
memory access architectures. IEEE Trans. on Parallel and Distributed Systems,
19, No 3:875–888, Nov 1993.

[4] M. Al-Mouhamed and A. Al-Maasarani. Performance evaluation of scheduling
precedence-constrained computation on message-passing systems. IEEE Trans.
on Parallel and Distributed Systems, 5, No 12:1317–1322, December 1994.

[5] M. Al-Mouhamed and A. Al-Maasarani. Scheduling optimization through itera-
tive refinement. In Inter. Conference on Parallel Architecture and Compilation
Techniques (PACT’95), pages 178–184, Cyprus, 1995.

[6] E.G. Coffman et al. Computer and Job-Shop Scheduling Theory. John Willey and
Sons, 1976.

[7] S. Darbha and S. S. Pande. Effect of imprecise compile time costs on schedul-
ing tasks on distributed memory systems. Frontiers ’96: The 6th IEEE/ACM
Symposium on the Frontiers of Massively Parallel Computation, pages 134–141,
1996.

[8] S. Darbha and S. S. Pande. A robust compile time method for scheduling task
parallelism on distributed memory systems. The 1996 ACM/IEEE Conference on
Parallel Architectures and Compilation Techniques (PACT’96), pages 156–162,
1996.

[9] S. Darbha and K. Psarris. Program repartitioning on varying communication cost
parallel architectures. Journal of Parallel and Distributed Computing, 33:205–213,
March 1996.

[10] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. on Applied
Mathematics, 17:416–429, 1969.

[11] N. Hou, E.S.H. Ansari and H. Ren. A genetic algorithm for multiprocessor schedul-
ing. IEEE Trans. on Parallel and Distributed Systems, 5, No 2:113–120, Feb 1994.

[12] J.-J. Hwang, Y.-C. Chow, F.D. Anger, and C.Y. Lee. Scheduling precedence
graphs in systems with interprocessor communication times. SIAM Computing,
pages 244–257, Apr 1989.

23

[13] S.J. Kim and J.C. Browne. A general approach to mapping of parallel computation
upon multiprocessor architectures. Proc. of the Inter. Conf. on Parallel Processing,
3:1–8, Aug 1988.

[14] Ralph Michael Kling and Prithviraj Banerjee. ESP: Placement by simulated evo-
lution. IEEE Trans. on Computer-Aided Design, 8, No 3:245–256, Mar 1989.

[15] B. Kruatrachue. Static task scheduling and grain packing in parallel processing
systems. Ph.D. Thesis, Department of Computer Science, 1987. Oregon State
University.

[16] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical path scheduling: an effec-
tive technique for scheduling task graphs onto multiprocessors. IEEE Trans. on
Parallel and Distributed Systems, 7, No 5:506–521, 1996.

[17] Yu-Kwong Kwok and Ishfaq Ahmad. On using task duplication in parallel program
scheduling. Under review with IEEE Trans. on Parallel and Distributed Systems,
1996.

[18] C. Papadimitriou and M. Yannakakis. Towards an architecture-independent anal-
ysis of parallel algorithms. SIAM Journal of Computing, 19, No. 2:322–328, April
1990.

[19] D.M. Pase. A comparative analysis of static parallel schedulers where communi-
cation costs are significant. Ph.D. Thesis, Oregon, Jul 1989.

[20] P.Y. Richard Ma, E.Y.S. Lee, and T. Masahiro. A task allocation model for
distributed computing systems. IEEE Trans. on Computers, C-31:41–47, Jan
1982.

[21] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel
programs. Proc. of the SIGPLAN Symp. on Compiler Construction, pages 17–26,
Jul 1986.

[22] J. Sheild. Partitioning concurrent vlsi simulated programs onto multiprocessor by
simulated anealling. IEEE proceedings, 134:24–30, Jan 1987.

[23] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Trans. on Parallel and
Distributed Systems, 10, No 2:175–187, Feb 1993.

[24] M.-Y. Wu and D.D. Gajski. Hypertool: A programming aid for message-passing
systems. IEEE Trans. on Parallel and Distributed Systems, 1, No 3:330–343, Jul
1990.

[25] T. Yang and A. Gerasoulis. DSC: scheduling parallel tasks on an unbounded
number of processors. IEEE Trans. on Parallel and Distributed Systems, 5, No
3:951–967, Sep 1994.

24

