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38.1 Introduction
The main goal of earth exploration is to provide the oil and gas industry with knowledge
of the earth’s subsurface structure to detect where oil can be found and recovered. To do
so, large-scale seismic surveys of the earth are performed, and the data recorded undergoes
complex iterative processing to extract a geological model of the earth. The data is then
interpreted by experts to help decide where to build oil recovery infrastructure. 

The state-of-the-art algorithms used in seismic data processing are evolving rapidly, and
the need for computing power increases dramatically every year. For this reason,
 CGGVeritas has always pioneered new high-performance computing (HPC) technolo-
gies, and in this work we explore GPUs and NVIDIA’s CUDA programming model to
accelerate our industrial applications. 

The algorithm we selected to test CUDA technology is one of the most resource-inten-
sive of our seismic processing applications, usually requiring around a week of processing
time on a latest-generation CPU cluster with 2,000 nodes. To be economically sound at
its full capability for our industry, this algorithm must be an order of magnitude faster.
At present, only GPUs can provide such a performance breakthrough.
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After much analysis and testing, we were able to develop a fully parallel prototype using
GPU hardware to speed up part of our processing pipeline by more than a factor of ten.
In this chapter, we present the algorithms and methodology used to implement this
seismic imaging application on a GPU using CUDA. It should be noted that this work
is not an academic benchmark of the CUDA technology—it is a feasibility study for
the industrial use of GPU hardware in clusters.

38.2 Seismic Data 
A seismic survey is performed by sending compression waves into the ground and record-
ing the reflected waves to determine the subsurface structure of the earth. In the case of a
marine survey, like the one shown in Figure 38-1, a ship tows about ten cables equipped
with recording systems called hydrophones that are positioned 25 meters apart. Also at-
tached to the ship is an air gun used as the source of the compression waves. 

To acquire seismic data, the ship fires the air gun every 50 meters, and the resulting
compression waves propagate through the water to the sea floor and beyond into the
subsurface of the earth. When a wave encounters a change of velocity or density in the
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Figure 38-1. Marine Seismic Data Acquisition
A vessel fires an air gun to generate a compression wave that propagates down to the earth and
generates reflection waves recorded by hydrophones attached to cables behind the ship.
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earth media, it splits in two, one part being reflected back to the surface while the other
is refracted, propagating further into the earth (see Figure 38-1). Therefore, each layer of
the subsurface produces a reflection of the wave that is recorded by the hydrophones.
Because sound waves propagate through water at about 2,500 m/s and through the earth
at 3,000 to 5,000 m/s, recording reflection waves for about four seconds after the shot
provides information on the earth down to a depth of about 10 to 20 km.

A typical marine survey covers a few hundred square kilometers, which represents a few
million shots and several terabytes of recorded data. Processing this amount of data for
many studies in parallel is the core business of CGGVeritas processing centers through-
out the world. Due to its very low initial signal-to-noise ratio and the large data size,
seismic data processing is extremely demanding in terms of processing power. As illus-
trated by the image in Figure 38-2, CGGVeritas computing facilities consist of PC
clusters of several thousand nodes, providing more than 300 teraflops of computing
power and petabytes of disk space. 

To support increasing survey sizes and processing complexity, our computing power needs
to grow by more than a factor of two every year (see the graph in Figure 38-2). Further-
more, heat limitations have forced CPU manufacturers to limit future clock frequencies
to around 4 GHz. Increasing the size of clusters in data centers can be realistic for only a
short period of time, and this problem enforces the need for new technologies. Therefore,
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Figure 38-2. Computing Capability Is a Critical Aspect of Our Domain
Our growing trend presented here, color coded according to each different hardware, shows that
whenever the technology was available (before 2005), our growth more than doubled every year.
The dashed curve gives a reference for exponential growth. As CPU clock frequencies reach a limit,
we start to fall below this curve, and only the use of new hardware like GPUs allows us to maintain
necessary computing power.
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we believe mastering new computing technologies such as general-purpose computing on
GPUs is critically important for the future of seismic data processing.

38.3 Seismic Processing 
The goal of seismic processing is to convert terabytes of survey data into a 3D volume
description of the earth’s subsurface structure. A typical data set contains billions of
vectors of a few thousand values each, where each vector represents the information
recorded by a detector at a specific location and specific wave shot.

The first step in seismic data processing is to correctly position all survey data within a
global geographic reference frame. In a marine survey, for instance, we need to take into
account the tidal and local streams that shift the acquisition cables from their theoretical
straight-line position, and we also need to include any movement of the ship’s position.
All of the data vectors must be positioned inside a 100 km2 region at a resolution of
1 meter. Many different positioning systems, both relative and global, are used during
data acquisition, and all such position information is included in this processing step. 

After correcting the global position for all data elements, the next step is to apply signal
processing algorithms to normalize the signal over the entire survey and to increase the
signal-to-noise ratio. Here we correct for any variation in hydrophone sensitivity that
can lead to nonhomogeneous response between different parts of the acquisition cables.
Band-limited deconvolution algorithms are used to verify the known impulse response
of the overall acquisition process. Various filtering and artifact removal steps are also
performed during this phase. The main goal of this step is to produce data that coher-
ently represents the physics of the wave reflection for a standard, constant source.

The last and the most important and time-consuming step is designed to correct for
the effects of changing subsurface media velocity on the wave propagation through the
earth. Unlike other echoing systems such as radar, our system has no information about
the propagation velocity of the media through which the compression waves travel.
Moreover, the media are not homogeneous, causing the waves to travel in curves rather
than straight lines, as shown in Figure 38-3a. Therefore, the rather simple task for radar
of converting the time of the echo arrival into the distance of the reflection is, in the
seismic domain, an extremely complex, inverse problem. To further complicate the
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process, more than one reflection occurs after a wave shot, so the recorded signal can in
fact be a superposition of many different reflections coming from different places.

Because the velocity field is initially unknown, we generally start by assuming a rather
simple velocity model. Then the migration process gives us a better image of the earth’s
subsurface that allows us to refine the velocity field. This iterative process finally con-
verges toward our best approximation to the exact earth reflectivity model.

At the end of the processing, the 3D volume of data is far cleaner and easier to under-
stand. Some attributes can be extracted to help geologists interpret the results. Typically
the impedance of the media is one of those attributes, as well as the wave velocity, the
density, and the anisotropy. Figure 38-4 gives an overview of what the data looks like
before and after the processing sequence. Also shown is an attribute map representing
the wave velocity at a particular depth of the seismic survey. Different rock types have
different velocities, so velocity is a good indicator to look for specific rocks such as
sand. In the particular case of Figure 38-4c, low velocities (in blue) are characteristic of
sand, here from an old riverbed. As a rock, sand is very porous and is typically a good
location to prospect for oil.
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Figure 38-3. Ray Tracing for a Single Reflector (Bottom) Through the Earth, Modeled by a Velocity
Field Display in Color
(a) We can clearly see how velocity variations bend the rays even for a rather smooth velocity
model. (b) In some cases, the velocity changes are extremely complex and nonhomogeneous, and
the wave propagation is extremely difficult to model, especially because we would need to
compute billions of rays.
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38.3.1 Wave Propagation
For a perfect theoretical seismic data set, the recorded signal rx of the wave propagation
from a specific source Si recorded by a hydrophone Gj after a reflection of amplitude Rx

at the 3D location x(x, y, z) can be expressed as follows:

where Ws is the source signal, Pix is the operator that propagates the wave from the
source position i to the reflection position x through the velocity field V, and Pxj is the
operator that propagates the reflected wave from x to the recorder position j.

To model the complete seismic recording by one receiver, we need to integrate the
Equation 1 for all possible reflection positions—that is, integrate on the whole 3D
volume of x values:

S P RC x P Wj xj
V

ix
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Figure 38-4. A Seismic Processing Example
(a) Raw data recorded during a land survey in Germany showing the poor signal-to-noise ratio and
the lack of calibration. (b) A vertical section of about 10 km wide and 5 km deep in the final 3D
result shows the layered structure of the earth. (c) This map represents an attribute extracted at a
particular depth from a final seismic data set. This attribute is used to distinguish between sand
and shale rocks (blue versus green) around a winding shape, which is the remaining channel
imprint of a 70-million-year-old river buried under 10 km of earth. 
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where Sj is the seismic recording at position j and RCearth is the reflectivity model of the
earth we are looking for. The complexity should be apparent now, because each of the
hundreds of millions of data vectors may include information from the whole earth
area in a way that depends on the velocity field. Note that in practice the velocity is
around a few kilometers per second. Thus if we record wave reflection for a few sec-
onds, only the earth approximately 10 km around the receiver position will contribute
to the signal.

It is not realistic to use a brute-force approach to solve this inverse problem, but it can
be simplified if we use the property of the propagation operator: Pij(Pji(a)) = I. That is,
propagation from source to reflection point and back to the source position should give
the initial result (that is, there should be no dissipation). From Equation 1 we can see
that

And if we consider all the possible contributions to a specific record—that is, summing
up all contributions for all x locations—we can write this:

Hence, the recorded seismic signal Sj , taken as a source and propagated through the
earth at all possible x locations, is equal to the earth reflectivity model convolved by the
initial source shot propagated to any possible reflection position in the earth. It is then
clear that if we correlate both sides of this equation by

and sum up information from all receivers for each source, we may extract the earth
reflectivity model:

where ∗ is the correlation operator, and using

Hence, if we propagate the source wave through the earth to all reachable positions x,
and correlate the result with the recorded data back-propagated to the same x location,
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we only have to sum up results for all sources and all receivers to obtain the earth reflec-
tivity model. Note that in practice we need to take into account the dispersive effect of
the propagation, as well as the fact that the data is band limited. Also, because the ve-
locity field is initially unknown, we need to start with an initial guess (based on expert
knowledge of the area) to compute a first reflection model and then refine our velocity
field by interpreting the results in terms of the geological structure. (See Yilmaz 2001
and Sherifs 1984 for more information.)

38.3.2 Seismic Migration Using the SRMIP Algorithm
In the case of the CGGVeritas algorithm, called SRMIP, that we want to develop using
CUDA, the wave propagation is performed using a finite-difference algorithm applied
in the frequency domain. 

As presented earlier, the seismic data is composed of a succession of wave shots. Each
wave shot is recorded as a 3D volume (x, y, t) where x and y represent the receiver loca-
tion and t the recording time. This data is transformed into frequency planes by apply-
ing a Fast Fourier Transform on the time axis. For each frequency plane, we want to
propagate the source wave (called the downgoing wave) and the seismic data (called the
upgoing wave) from the surface (depth = 0) to the maximum depth we want to image.
The propagation (also called downward extrapolation) is carried out from one depth to
the next by applying spatial convolution using finite-length filters. 

The SRMIP algorithm relies on a method to take advantage of the circular symmetry of
the wave propagator filter: the radial response of the filter is expanded as a polynomial
in the Laplacian, which is approximated by the sum of two 1D filters (approximating
the second derivative k 2

x and k 2
y ):

and approximate the exact extrapolation operator:

by a polynomial G(L):

where w is the frequency considered, v the velocity, and L the Laplacian.
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Because we want to extrapolate the wave in an iterative way for all depth values starting
from the surface, the choice of the filter parameterization is critical for the stability of
the results. To optimize the coefficients of the polynomials, we use the L∞ norm, be-
cause the stability condition is expressed more easily in this norm. In our SRMIP algo-
rithm, we use an expression of the extrapolator using Chebyshev polynomials (see
Soubaras 1996 and Hall 1991 for details): 

where Tn(x), the Chebyshev polynomial of degree n, is defined by Tn(x) = cos(n arccos x)
and can be recursively computed using the formula:

The degree of the polynomial expansion (that is, the parameter N ) is about 15, which
means that to propagate the wave from one depth to the next we need to apply a
Chebyshev polynomial of Laplacian filter 15 times, recursively.

The pseudocode given in Listing 38-1 shows the implementation of the extrapolator to
propagate the wave from one depth to the next. For obvious efficiency reasons, the
iterative calculation of the Chebyshev polynomial is computed directly and applied to
every point of the input wave grid, saving an operation in the internal loop.

The SRMIP algorithm has a high degree of parallelism. This is because the basic opera-
tion is a simple 1D convolution with a constant short filter (approximating the second
derivative). The fact that the Chebyshev recursion is not intrinsically parallel is not in
this case a problem, because the parallelism is achieved across independent grid ele-
ments. Note that for a parallel implementation, some potential improvements that
decrease the number of operations at the cost of a more complex data structure—such
as making the degree of the polynomials or the length of the second derivative filters
vary with the frequency—are not automatically advantageous.

Figure 38-5 gives an example of results obtained by applying the SRMIP algorithm to
seismic data. Beyond the general quality improvement, we can see that the results are
particularly improved where the earth structure is complex. For instance, the salt body in
the top of the earth section has a very high velocity compared to the other surrounding
rocks. Therefore, before migration, all data below the salt is not properly focused and
appears almost random. After migration, as the propagation within different velocity
media has been properly handled, the earth structure below the salt appears.
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Listing 38-1. Pseudocode of the Extrapolator

The input Wave grid is convolved recursively with two 1D Laplacian filters to produce the
propagated Wave1 grid at the next depth.

T(x,y) = Wave(x,y);
TT(x,y)=Laplacian⊗Wave(x,y);
Wave1(x,y) = aw/v(1,x,y)*T(x,y) + aw/v(2,x,y)*TT(x,y);
for (n = 2; n < NMAX; n++)
{
// Compute the Chebyshev polynomial TTT
// using the two previous stored values TT and T.
TTT(x,y)=2*Laplacian⊗TT(x,y)–T(x,y);

// Add the contribution of the iteration to the results.
Wave1(x,y) += aw/v(n,x,y)*TTT(x,y);

// Store Chebyshev results for next iteration.
T(x,y) = TT(x,y);
TT(x,y)= TTT(x,y);

};
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Figure 38-5. The Impact of the Migration Algorithm on a Data Set
(a) The high-velocity salt body blurs the image below. (b) After migration, information below the
salt is correctly focused and reveals the earth’s structure.
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38.4 The GPU Implementation
Selecting algorithms for GPU implementation can be difficult, especially without expe-
rience in GPU programming. In our seismic processing sequence, there are several im-
portant considerations. For example, the algorithms we port to the GPU are part of an
industrial application already running in parallel on a large cluster. Therefore, our goal
is an application running on the same kind of cluster but with graphics cards installed
in every node. Furthermore, a significant part of the application that deals with all
cluster parallelization and efficient data management cannot be changed to accommo-
date the GPU programming model. 

The pseudocode in Listing 38-2 illustrates another consideration. Clearly, the overall
benefit of GPU acceleration is limited by the percentage of total execution time attrib-
uted to each computational kernel. This code shows the general structure of the
SRMIP program that runs independently on every node of the cluster. Each instance of
the program (one per processor core) processes a group of seismic shots in sequence and
produces a contribution to the final image. Profiling the program with standard param-
eters shows that 65 percent of the CPU time is consumed in the wave propagation,
while all the interpolation routines used 20 percent, and the final correlation and sum-
mation use 5 percent. The interpolation step has been added to reduce processing time
for the wave propagation. Therefore, it is possible that this step could be removed, de-
pending on how much we accelerate the wave propagation.

Listing 38-2. Pseudocode of the Algorithm Showing the Main Loops and Steps of the Process 

// uwave = upward wave; dwave = downward wave
// Frequency loop ~ 1000 iterations
for (freq = 0; freq < freq_max; freq++)
{
Read_frequency_plane(uwave,dwave,nx,ny);

// Depth loop ~ 1000 iterations
for (z = 0; z < depth_max; z = z+dz)
{
Read_velocity_scalar_field(velocity,nx,ny,z);

// Propagate uwave and dwave from z to z+dz
// by applying N time (N~15) Laplacian operator.
for (i=0; i < N ; i++)
{
convolution(uwave,velocity,nx,ny,z,dz);
convolution(dwave,velocity,nx,ny,z,dz);

} 

38.4  The GPU Implementation 841
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Listing 38-2 (continued). Pseudocode of the Algorithm Showing the Main Loops and Steps of the
Process 

// Interpolate uwave and dwave between z and z +dz.
interpolate_wave_over_dz(uwave,velocity,nx,ny,z,z+zd);
interpolate_wave_over_dz(dwave,velocity,nx,ny,z,z+zd);

for (zz = z; zz < Z+dz; z++)
{
// Interpolate uwave and dwave on output grid.
Interpolat_xy(uwave,nx,nx,zz,fnx,fny,final_uwave);
Interpolat_xy(dwave,nx,nx,zz,fnx,fny,final_dwave);

// Convolve the two waves and sum results.
sum_udwave(final_uwave,final_dwave,fnx,fny,zz,result);

}
}

}

In addition to focusing GPU implementation efforts on the most time-consuming
parts of our application, it is equally if not more important to consider the amount of
parallelism inherent in our algorithms. Indeed, the CUDA programming model is
designed to let users exploit the massive data-parallel processing power of the GPU, so
to achieve high performance, we have to choose algorithms with significant data paral-
lelism. In the case of the SRMIP algorithm, the typical grid size we need to process is
400×400 elements, which is determined by the spatial extent of the wave propagation.
The data grids correspond to 25 m spacing within a 100 km2 region, which results in
parallelism of roughly 160,000 independent operations. This is more than enough to
make efficient use of modern GPUs.

38.4.1 GPU/CPU Communication
A potential problem for GPU-based seismic processing is the cost of GPU/CPU com-
munication. Looking at the general trend of hardware evolution, we predict the GPU
will roughly double in performance every year. However, for data transfer between the
CPU and GPU (currently using PCIe), the increase in performance is far less impres-
sive. We can expect the PCIe bandwidth to increase by 2× every two or three years at
best. Therefore, if we want to design implementations that scale with future GPU per-
formance, we have to avoid potential communication bottlenecks.
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By analyzing the data flow of our code and taking into account the large memory avail-
able on NVIDIA Quadro FX 5600 hardware (1.5 GB), we were able to develop a com-
munication schema where almost all the relevant data is stored on the GPU. As shown
in Listing 38-3, frequency planes are sent one by one to the GPU, which then com-
putes the two waves to be propagated for all depths and interpolates the results in the x,
y, and z directions. Only the final result after summing all contribution will have to be
sent back to the CPU. 

Listing 38-3. Pseudocode Showing the Proposed Communication Scheme

// Frequency loop ~ 1000 iterations
for (freq=0; freq < freq_max; freq++)
{
Read_frequency_plan(uwave,dwave,nx,ny);

// Send frequency plan (~2 x 1.3 MB).
Send_freqplan_to_GPU(uwave,dwave,nx,ny);
// Depth loop ~ 1000 iterations
for (z=0; z < depth_max; z=z+dz){
Read_velocity_field(velocity,nx,ny,z);
// Send velocity field (~0.6 MB).
Send_Velocity_to_GPU(velocity,nx,ny);
for (i=0; i < N ; i++)
{
convolution(uwave…); //(on the GPU)
convolution(dwave…); //(on the GPU)

}
interpolate_wave_over_dz(uwave…); //(on the GPU)
interpolate_wave_over_dz(dwave…); //(on the GPU)
for (zz = z; zz < Z+dz; z++)
{
// Interpolate uwave and dwave on output grid.
Interpolat_xy(uwave…); //(on the GPU)
Interpolat_xy(dwave…); //(on the GPU)
// Convolve the two waves and sum results.
sum_udwave(uwave,dwave…); //(on the GPU)

}
}

}
// Get back results (~1.3 GB) 
Receive_image_result(result,nx,ny,nz);
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According to our profiling, the CPU time to compute one depth value is about 30 ms,
and the total time of the depth loop is about half a minute. Taking that into account, we
can easily compute the throughput needed by our communication scheme and check
that we are within PCIe bandwidth limits. Even the velocity transfer (in the inner loop)
is around 20 MB/s, which is far below the communication bottleneck even if the GPU
implementation is an order of magnitude more efficient than the CPU version.

The 1.5 GB of memory on the NVIDIA Quadro FX 5600 is of great advantage here.
Considering that standard cluster nodes have only a few gigabytes of memory to be
shared between two to four processor cores, most of the data set handled in memory by
one core on the CPU should fit in the GPU memory. 

38.4.2 The CUDA Implementation
NVIDIA’s CUDA technology provides a flexible programming environment that allows
us to address each of the considerations outlined in the last section. After analyzing our
core algorithm and the global framework of the GPU, we split our 12 most compute-
intensive CPU routines into four separate kernels to be implemented using CUDA.
The four kernels more or less correspond to the four routines shown in the pseudocode
in Listing 38-3.

All four target algorithms perform local computations on a grid by applying a small oper-
ator to every grid element. We divide the computational grid into 2D tiles that map
nicely to CUDA’s grid of thread blocks. Each kernel loads a tile of grid data from global
memory and caches the data in shared memory for further processing. The main advan-
tage of shared memory is its extremely high bandwidth compared to global GPU mem-
ory. For three of the kernels, we load the data directly from GPU memory using standard
arrays. For the wave propagation algorithm, we use CUDA’s texture extensions as a read
path to GPU memory. By using texture, we take advantage of hardware caching and au-
tomatic boundary handling, which is otherwise difficult and costly to implement in the
kernel code. Because the convolution kernel is applied recursively, storing an extra copy of
the outputs back into a texture was necessary between iterations. 

The GPU code for our algorithms is quite straightforward, because CUDA is a C-based
language. However, the G80 architecture has several performance constraints that make
optimization somewhat complicated. For example, G80 has 8,000 32-bit registers per
multiprocessor, which limits the register count for each kernel. For example, if a kernel
executes on 256 threads running in parallel, each thread can use only 32 registers before
reaching the limit. In many cases, it is necessary to optimize around this problem in
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one of two ways. First, we can simply reduce the kernel complexity (that is, the code
size) to decrease register pressure and complete the algorithm using multiple passes.
The second, and many times more successful, approach is to adjust the number of
threads in a thread block. In this case, the range of useful thread counts is limited not
only by the available registers but also by the fact that we need enough threads to hide
memory latency (for example, global loads). 

Our experience implementing kernels in CUDA is that the most efficient thread con-
figuration partitions threads differently for the load phase and the processing phase.
The load phase is usually constrained by the need to access the device memory in a
coalesced way, which requires a specific mapping between threads and data elements.
During processing, however, we try to organize the workload in such a way that threads
do as much processing as possible—at least around 30 operations per byte of data
loaded.

38.4.3 The Wave Propagation Kernel
As previously mentioned, our processing time is dominated by the wave propagation
operator. Practically, the wave at a given depth is extrapolated to the next depth using
the iterative process described in Section 38.3.2 and Listing 38-1. The iteration loop
executes on the CPU; the GPU kernel is mainly in charge of the convolution of the
wave grid by the Laplacian filter. In addition, at each iteration, the velocity field at each
grid position is used to index into a lookup table and scale the input wave by the poly-
nomial coefficients. 

Figure 38-6 provides a graphic illustration of how we partition CUDA threads for data
loading and convolution with the cross-shaped filter kernel. For loading, warps for a
thread block are distributed across a 2D tile region of the computational grid. We use a
tile size of 48×32 elements and thread block dimensions of 48×8, so threads with the
same y component spread out such that each thread reads four complex frequency coef-
ficients in a vertical column. The data covered by each tile represents a portion of the
actual frequency plane as well as a support region (that is, the boundary elements) de-
termined by the cross-filter radius. After storing the tile in shared memory, we synchro-
nize all threads in the block and move to the processing phase. The radius of the
convolution filter is four elements, so the output tile is 40×24. Therefore, we redistrib-
ute the thread warps so that each thread computes filtered results for three elements.
This approach allows us to use all threads in the block for loading and most threads for
processing. The less efficient alternative would be to disable more threads before pro-
cessing, so that each thread outputs four elements.
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In addition to giving us an efficient mapping between threads and elements for the load
and processing phases, the 48×32 tile size fits nicely within certain resource constraints in
the GPU. For example, the G80 architecture has 16 KB of shared memory per multi -
processor. Our tile size (for complex data) takes about 12 KB, so this configuration uses a
majority of the shared memory for filtering. A slightly smaller tile size that still uses more
than half the available shared memory is less efficient because it prevents multiple thread
blocks from running in parallel. Another advantage of this tile size involves coalescing
constraints for global memory. In general, it is easier to reason about alignment require-
ments for fast memory access if the thread block width is a multiple of the SIMD width
of the GPU, which for G80 is 16 threads. Finally, it is important to have enough threads
in the machine to hide memory latencies, and a 48×8 thread block gives 384 threads,
which, in our experience, is plenty of parallelism for G80.

Listing 38-4 shows CUDA C code for the wave propagation kernel used in our SRMIP
algorithm. The structure of the code reflects the thread configuration discussed previ-
ously. See the comments for a description of the constant terms used in the code. As
explained previously, for this kernel we load the input data using CUDA’s 2D texture
extension. We also read the lookup table through 2D texture, because we need to get
efficient, almost random, access to the polynomial coefficients. The cross-shaped filter
is stored in CUDA’s constant memory. 
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Warp Warp

Data Processed per Thread Blocks:

40x24 Complex Values

Data Loaded per Thread Block:

48x32 Complex Values

Figure 38-6. Two Thread Organization Strategies for the Convolution Kernel
For data loading, 48×8 thread blocks load 48×32 tiles of complex values. This means each thread
loads four values in a column from global memory and writes them to shared memory. For the
processing phase, the output tile is 40×24 elements (disregarding the filter support region). In
this case, each thread performs a convolution for three output elements in a column.
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Listing 38-4. CUDA C Code for Our Convolution-Based Wave Propagation Algorithm

__global__ void Convo(float2 *odata1, float2 *odata2, 
int id, int nx, int ny) 

{ 
// TW is the logical tile width (40 elements).
// TH is the logical tile height (24 elements).
// RW is the tile width including the filter support region.
// IT is the number of input elements per thread (4).
// OT is the number of output elements per thread (3).
// FR is the convolution filter radius (4 elements).

// Compute local and global thread locations.
int ltidx = threadIdx.x;
int ltidy = threadIdx.y * IT; 
int gtidx = blockIdx.x * TW + ltidx - FR;
int gtidy = blockIdx.y * TH + ltidy - FR;
int tltid = ltidy * RW + ltidx;

float2 term; 
int i;
// Each thread reads 4 input values from global memory.
// The loop is for clarity and should be unrolled for efficiency.
for (i = 0; i < 4; i++) {
term = texfetch(itexref, gtidx, gtidy + i);
smem[tltid     ] = term.x;
smem[tltid + IO] = term.y;
tltid += RW;

}

__syncthreads();

// Each thread compute results for 3 output values.
if (ltidx < TW) {
int rtlt = (threadIdx.y * OT + FR) * RW + (ltidx + FR);
int itlt = rtlt + IO;
int gthx = blockIdx.x * TW + ltidx; 
int gthy = blockIdx.y * TH + threadIdx.y * OT;
int rind = gthy * nx + gthx;
int index;
float vel, floorvel, residus;
float2 term0, term1, temp, temp2;
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Listing 38-4 (continued). CUDA C Code for Our Convolution-Based Wave Propagation Algorithm

// Compute one element for 3 consecutive lines.
if (gthx < nx) {
// The loop is for clarity and should be unrolled for efficiency. 
for (i = 0; i < 3; i++) {
if (gthy < ny) {
temp   = texfetch(otexref, gthx , gthy);
temp.x = (smem[rtlt-   4] + smem[rtlt+   4])*coeff_X[4] + 

(smem[rtlt-   3] + smem[rtlt+   3])*coeff_X[3] +
(smem[rtlt-   2] + smem[rtlt+   2])*coeff_X[2] + 
(smem[rtlt-   1] + smem[rtlt+   1])*coeff_X[1] +
(smem[rtlt-4*RW] + smem[rtlt+4*RW])*coeff_Y[4] + 
(smem[rtlt-3*RW] + smem[rtlt+3*RW])*coeff_Y[3] +
(smem[rtlt-2*RW] + smem[rtlt+2*RW])*coeff_Y[2] + 
(smem[rtlt-  RW] + smem[rtlt+  RW])*coeff_Y[1] +
smem[rtlt     ]*(coeff_X[0]+coeff_Y[0]) - temp.x;

temp.y = (smem[itlt-   4] + smem[itlt+   4])*coeff_X[4] + 
(smem[itlt-   3] + smem[itlt+   3])*coeff_X[3] +
(smem[itlt-   2] + smem[itlt+   2])*coeff_X[2] + 
(smem[itlt-   1] + smem[itlt+   1])*coeff_X[1] +
(smem[itlt-4*RW] + smem[itlt+4*RW])*coeff_Y[4] + 
(smem[itlt-3*RW] + smem[itlt+3*RW])*coeff_Y[3] +
(smem[itlt-2*RW] + smem[itlt+2*RW])*coeff_Y[2] + 
(smem[itlt-  RW] + smem[itlt+  RW])*coeff_Y[1] +
smem[itlt     ]*(coeff_X[0]+coeff_Y[0]) - temp.y;

vel      = texfetch(vtexref, gthx, gthy);
floorvel = floorf(vel);
index    = floorvel;
term0    = texfetch(ltexref, index, id);
term1    = texfetch(ltexref, index + 1, id);
residus  = vel - floorvel;
term0.x  = term0.x + residus*(term1.x - term0.x);
term0.y  = term0.y + residus*(term1.y - term0.y);
temp2    = texfetch(olktexref, gthx, gthy);
temp2.x += term0.x*temp.x - term0.y*temp.y;
temp2.y += term0.x*temp.y + term0.y*temp.x;
odata1[rind] = temp2;
odata2[rind] = temp;

}
rtlt += RW; itlt += RW;
gthy++; rind += nx;

}
}

}
}
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38.5 Performance 
Because of its strategic importance, our wave migration system uses highly optimized
CPU code, especially on Intel platforms. Therefore, our GPU-to-CPU performance
comparison uses a solid reference on the CPU. However, it should be noted that, be-
cause CPU performance for this algorithm does not scale linearly with the number of
cores (mainly because of memory access bottlenecks), we compare our GPU kernel to a
latest-generation CPU with only one core enabled.

Using a synthetic data set with typical input parameters, our CUDA kernels achieve
performance ranging from 8× to 15× over the optimized CPU code. In addition, the
kernels perform equally well on real seismic data sets, where the CUDA code is fully
integrated into our industrial processing sequence. However, it is important to note
that we have not tested the GPU implementation with the full range of input parame-
ters used with the CPU version. The main reason is that the GPU code is designed for
a specific problem size and thread configuration, while the CPU can more easily adapt
to different kinds of user parameters and data characteristics. Even still, the GPU per-
formance is a significant improvement by any measure.

Including all the kernels in the industrial parallel application is an ongoing process, and
many issues still remain to be solved. The algorithm is so time-consuming that even
with a speedup of 15×, a few graphics cards will not meet our processing needs. A clus-
ter solution is mandatory, and on the hardware side, the question of how to design a
cluster including GPUs is still open. What speedup the overall application will finally
achieve and for what hardware price is our main strategic concern for the future. 

38.6 Conclusion
With NVIDIA’s CUDA technology, we now have access to a powerful data-parallel
programming model and language for exploring scientific computing on the GPU.
Once mastered, the flexibility of CUDA can be a real advantage when considering the
huge variability of algorithm behavior and data size within the scientific domain. Most
important, the CUDA implementation of our most expensive seismic algorithm is
more than an order of magnitude faster than its CPU version.

In the long term, CPUs are expected to continue to follow Moore’s Law due to the rise
of multicore architectures, while GPUs should be able to roughly double in floating-
point performance twice a year. Another attractive aspect of GPUs is their fast memory,
which outperforms the regular DDR or FBDIMM memory typically used by CPUs.
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This proved to be very important for all of our algorithms, because they are already
memory limited on the normal cluster solution. The main drawback with GPUs is the
transfer speed through PCIe, and bus performance is not expected to increase as rapidly
as GPU performance. 

There are several factors to consider before building a GPU-based seismic processing
cluster. First, it is simply not practical to deploy a large-scale cluster built with racked
workstations, because it is neither dense enough nor cost-effective. At this point, two
paths can be explored: (1) Classical 1U servers with PCIe slots and a companion external
package (such as NVIDIA’s Quadro Plex) containing the GPUs or (2) a form factor that
includes one or more GPUs on the motherboard. Second, because GPUs need CPUs for
control, it’s important to choose CPUs for each node that are powerful enough to manage
the GPU without becoming a bottleneck. Also, there is the issue of whether PCIe band-
width is enough to drive one or more GPUs per cluster node. Finally, given the scale and
processing time of our algorithms, fault-tolerant hardware is critical in order to recover
from failures and avoid wasting days of processing time. Future generations of GPUs will
need this feature to be viable for inclusion in our processing centers.

Although there are many open questions about how graphics processors can be used in
a large-scale cluster, our work in this chapter shows that GPUs definitively have the
potential to disrupt the current seismic processing ecosystem.
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