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Abstract

Graphics Processing Units (GPUs) have evolved to devices with teraflop-level perfor-

mance potential. Application developers have a tedious task in developing GPU software

by correctly identifying parallel computation and optimizing placement of data for the

parallel processors in such architectures. Further, code optimized for one architecture

may not perform well on different generations of even the same processor family. Many

manually tuned GPU solutions would need a complete rewrite on a different architec-

ture, hence more programmer time and effort. High-performance computing on GPUs

can be facilitated by programming models and programming frameworks that attempt

to reduce the amount of time and effort needed to develop GPU applications.

This thesis describes a compiler framework for automatically generating and optimiz-

ing parallel code for GPUs (CUDA code for Nvidia GPUs), relieving programmers of the

tedious work of parallelizing sequential code. The framework describes a script-based

compiler for CUDA code generation combining:

• a Transformation Strategy Generator (TSG), which automatically generates mul-

tiple scripts representing different optimization strategies;

• an Autotuning System that automatically generates a set of code variants and

selects the best among them through empirical evaluation.

An underlying loop transformation and code generation framework takes TSG-generated

scripts as input and generates CUDA code; thus enabling an end-to-end system to pro-

duce high performance solutions for scientific computations on a given GPU architecture.

ix



This flexible organization enables the system to explore a large optimization search

space, simultaneously targeting different architecture features, but constrained by data

dependences and guided by data reuse and the best heuristics from manual tuning. The

system tailors the generated code to yield high-performance results for different GPU

generations, data types and data sets.

The key contributions of this thesis include:

(1) the meta-optimizer, TSG,

(2) a search and autotuning mechanism,

(3) integration with a script-based compiler framework, resulting in an end-to-end

automatic parallelization system.

(4) performance-portable code generation for the Nvidia GTX-280 and Nvidia Tesla

C2050 Fermi architectures, and

(5) performance gains of up to 1.84x over linear algebra kernels in the manually-tuned

Nvidia CUBLAS library, and up to 2.03x for a set of scientific, multimedia and

imaging kernels over a state-of-the-art GPU compiler.
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Chapter 1

Introduction

Peak performance of graphics processors (GPUs) is now in the Teraflop range for a

single device, and general purpose code on GPUs has demonstrated up to two orders

of magnitude performance gains as compared to conventional CPUs [VD08a, Wol08,

DMV+08, BG09]. In spite of this enormous potential, it is very difficult to develop

GPU applications that make efficient use of all the architectural features and achieve

high performance, particularly given the significant architectural changes across GPU

generations. For example, consider Nvidia GPUs.

• Nvidia GPU chips are partitioned into multiple streaming multiprocessors (SMs),

each of which have multiple cores. Details of how a computation gets mapped to

these SMs affects the performance enormously.

• Explicit data movement from the CPU address space to the GPUmemory hierarchy

is needed.

• The GPU memory hierarchy must be managed explicitly in software to hide mem-

ory latency.

• Improving memory bandwidth must also be managed explicitly using memory oper-

ations supported in software, and dedicated hardware mechanisms.

• Maximum performance on a GPU may depend on tuning multiple parameters in

the application.

Thus the programmer must explicitly manage available parallelism and the heterogeneous

memory hierarchy. Failing to address any of these aspects appropriately may change

the mapping of the computation onto the physical resources and thus may severely
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affect performance. Tools to simplify the programming and performance tuning process

have the potential to increase the accessibility of this important technology and improve

performance of the resulting code.

1.1 State-of-the-art in GPU Programming Tools

Nvidia has introduced their parallel programming extension called CUDA (Compute

Unified Device Architecture), which has demonstrated high performance for many sci-

entific applications [Nvi08a, Wol08]. The CUDA parallel programming model tries to

provide programmers with a modest set of language extensions to exploit the parallelism

and effectively use the memory hierarchy of the Nvidia GPU devices [Nvi08a]. As previ-

ously stated, multiple aspects of programming Nvidia GPUs must be explicitly managed

to maximize the performance gain. Researchers have reported days of effort to program

high performing solutions for well understood problems like matrix-matrix multiplica-

tion [Wol08]. In addition to that, the portability of solutions on devices from different

vendors or different generation of devices from the same vendor is also a challenging

issue.

Contemporary GPU compiler solutions have tried to reduce the complexities of writ-

ing low level CUDA code. hiCUDA [HA09] and OpenMPC [LME09] are pragma-based

compilers which map the parallelism expressed by the application developer to CUDA

programs. These approaches are limited in what can be expressed, and may still require

significant work by the programmer to partially optimize code. Compilers that optimize

CUDA code [ULBmWH08, YXKZ10] can be quite effective, but require that the initial

CUDA kernel be properly parallelized in a way that will facilitate optimizations.

In contrast, this thesis describes automatic parallelization, from sequential C code,

typically with subscripts restricted to an affine domain. When applicable, automatic

parallelization enables programmers with no GPU programming expertise to use GPUs.
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Compared to prior compiler research on automatic parallelization for GPUs, which

use a fixed optimization strategy [BBK+08b, BRS10, LVM+10], our autotuning compiler

can generate multiple code variants that can be evaluated empirically. We use compiler

concepts of dependence and reuse to guide transformations, rather than trying a fixed

collection of optimizations that may not be suitable for a computation [CWX+11].

1.2 Research Overview

In this thesis, we focus on developing a set of tools, which work in tandem to come up

with high performance solutions for loop nest computations, forming a system which

1. Automatically analyzes a sequential code, expressed in C,

2. Automatically identifies the optimization opportunities in the computation,

3. Proposes multiple optimization strategies, and

4. Employs autotuning to explore a potentially large space of solutions and selects

the best implementation.

The first three goals, as mentioned above, rely on extensive compiler analysis of the

sequential code and strategic decisions about the optimization strategies based on archi-

tecture properties such as capacity limitations of faster memories. Compiler abstractions

such as data dependences, data reuse patterns and potential constraints of the hardware

and software model of the GPUs help to come up with potential computation decompo-

sitions and data placement strategies. There are two major parts of our system, focused

on achieving the first three goals:

(1) a Transformation Strategy Generator (TSG), which automatically generates mul-

tiple optimization strategies, and is the main focus of this thesis;

(2) an underlying polyhedral loop transformation and code generation framework called

CUDA-CHiLL, which takes TSG generated strategies as input and produces CUDA

code;
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TSG is the most important product of this research work. TSG is able to explore a

large optimization space, simultaneously targeting different architecture features, but

constrained by data dependences and guided by data reuse and the best heuristics from

manual tuning. Additionally, this thesis describes the system which uses TSG capability

with an underlying framework for composing high level loop transformations and CUDA

code generation.

The complexity of mapping the computation to modern uniprocessor and multi-core

architectures has been managed by autotuning, that employs empirical techniques to

evaluate a set of alternative mappings of computation kernels to an architecture and

select the mapping that obtains the best performance. The third part of the system,

that addresses the last goal is:

(3) autotuning mechanism, which describes employing empirical techniques to evaluate

multiple strategies and derive optimization parameter values, exploring a search

space of possible implementations.

This thesis introduces a two level autotuning process which is based on separate search

strategies at each level to keep the search efficient. Our system first searches for the best

combination of computation decomposition and data placement choices. In the second

stage we consider load balancing and resource utilization.

This thesis describes an end-to-end system producing optimized solutions for differ-

ent computation kernels on two different generation GPUs. The results presented in

the thesis demonstrate that the overall compiler approach is powerful, yielding perfor-

mance results comparable to and sometimes exceeding the manually and automatically

generated code.

1.3 Example: Matrix-Matrix Multiplication

Consider the example of matrix-matrix multiplication in Figure 1.1, an important ker-

nel used in many scientific computations. The computation is a simple triply-nested
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for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[j][i] = c[j][i] + a[k][i] * b[j][k];

Figure 1.1: Matrix-matrix multiplication source code (BLAS)

loop with one computation statement. Many researchers [Che07, BBK+08a, BRS10,

YXKZ10] have shown that this simple computation performs well below peak if gener-

ated automatically by a compiler. For this reason application developers often prefer to

use manually-tuned BLAS libraries for matrix-matrix multiplication to speed up their

application.

1.3.1 Limitations of Manually-Tuned Libraries

Manually tuned libraries provide high performance routines for a set of widely used com-

putations, which speed up parts of the application, improving the overall performance

of the applications.

There are some limitations with such libraries.

• Many problems require dedicated and exclusive programming effort to devise solu-

tions for GPUs. This approach cannot be extended to cater to the needs of the

scientific community to generate general application code. Every different

application needs the same amount of time and effort on the part of developers to

achieve a high performance solution.

• There are only so many different solution strategies that can be explored if done

manually. There is a good chance that for a certain problem, the programmer

may only explore a few possible solutions in a potentially large search space of

possibilities, as it is too hard to evaluate all of them. Thus, developers tend to

settle for local maxima, ignoring the large picture due to inability to look through

a large search space.
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• Different versions of these libraries are needed for different platforms and may

need to be modified with every new generation of a specific architecture. Thus

portability is a major concern in developing GPU specific applications.

1.3.2 Matrix-Matrix Multiplication on a GPU

We continue with the example of matrix-matrix multiplication and in light of the major

goals of our system. First of all, our system analyzes the triply-nested loop computation

(Figure 1.1) and comes up with a computation partitioning strategy. The system follows

the computation partitioning analysis with analysis regarding the efficient use of the

memory hierarchy. Multiple parallelism and data staging options are pruned out due to

these analyzes, leaving a small set to be searched for a high performance solution.

1.3.3 Computation Partitioning

The sequential code can be mapped to the parallel architecture in a variety of ways.

There are two main factors which define the computation partitioning on a GPU.

Computation Decomposition is the logical representation of the sub-computations

such as 1D, 2D etc layouts.

Computation Partitioning Parameters are the variables which may decide

the size of the sub-computations and the number of blocks and number of threads

per block.

A minor variation in the computation partitioning parameters or decomposition can

lead to significant performance changes. Thus, achieving high performance is partly

dependent on efficiently mapping the sub-computations on the available resources like the

number of parallel blocks that compute parts of computation, and the number of threads

per block doing the amount of work per thread and sub-computations independently.

The number of threads per block dictates the number of blocks there are and thus the

sub-computations to run concurrently. A minimum number of threads is necessary to
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hide the latencies associated with the execution unit. An appropriate number of blocks

is also necessary to balance the workload on a given set of resources.

1.3.4 Data Placement

In the second stage, we decide where in the memory hierarchy each data structure will

be stored. In Nvidia GPUs, the memory hierarchy consists of registers, shared memory,

global memory; designated portions of global memory may have different usage and

caching behavior.

Data Placement Decisions are made by the system after it analyzes the reuse

of data in the computation for possible opportunities of using faster memory in the

hierarchy [AK02]. Data reuse patterns are analyzed through the access expressions

of the arrays in the computation.

For data reused across threads in a block, the data structure is identified as a

candidate for shared memory. Data with an access expression that indicates reuse

within a thread are selected for local storage i.e. registers. In our case study of

GEMM, the input arrays are identified for shared memory, and the result array

uses a register.

Data Partitioning Parameters are used to control the data footprint in the

target memory, limited by the size of target storage.

The size, layout and accessing mechanism of the data from the global memory to faster

but smaller memories, is crucial in achieving high performance. Some problems require

the data to be read in a completely different way than they are going to be eventu-

ally accessed by the threads. Such subtleties, if ignored may lead to a crucial drop in

performance. Equally important is to make decisions about the footprint of the data

structures in a specific level of memory hierarchy; sometimes multiple data structures

share a portion of the memory hierarchy. The overall footprint is dictated by the choices

made with the data partitioning parameters.
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1.3.5 Optimization Parameter Combinations

In matrix-matrix multiplication, there are three optimization parameters which define

the computation partitioning and data placement. There are multiple possible values

that can be bound to these variables. The important considerations, while choosing a

particular value for a computation partitioning parameter, are load balancing, parallelism

granularity, hiding memory latency and efficient use of registers for thread-specific data.

In term of CUDA execution model, these concepts are controlled by to number of parallel

blocks handling sub-computations and number of threads per block. The key trade-off

here is between the number of threads in a block which can become large enough to

limit the number of blocks mapped to an execution unit and can be set to small enough

number, where it fails to hide the latencies. Thus our system evaluates all the different

valid computation partitioning options both in terms of the computation partitioning

parameter values and the layout of the computation. In the case of matrix multiplication,

multiple parameter values are tested and the layout of the distribution of the computation

is set as 2D, given the 2-dimensional layout of the data structures involved.

Similarly, the data partitioning parameters balance maximizing reuse, minimizing

overhead and staying within capacity constraints. Data partitioning is also a tiling

problem, like computation partitioning. Tiling commands control the data footprint in

faster memory, through tile parameters. Efficient data footprint management through

tiling parameter values is coupled with the computation management parameters to

obtain high performance code.

1.3.6 Summary

The discussion above has focused on the problem of generating high performance code,

for sequential computations, without spending huge time or human effort. We have

addressed this problem by presenting a system which transforms sequential code to par-

allel code by deciding on a set of optimizations leading to code variants and searching a

large set of different code variants to identify the best performing code. We believe the

8



uniquely flexible organization of our compiler provides an advantage that yields perfor-

mance comparable to manually-tuned code, and this advantage is particularly on display

when optimizing in the presence of the idiosyncrasies of different GPU architecture gen-

erations.

1.4 Contributions

The thesis makes several key contributions, listed as follows:

• Automatic Code Transformation:Ameta-optimzer called the Transformation Strat-

egy Generator (TSG),automatically generates a collection of code transformation

strategies that derive the best-performing implementations of a computation.

• Autotuning: It describes an efficient search and autotuning mechanism to derive a

single high performing solution from a large search space of possible candidates.

• Integration with Script-Based Compiler Framework: It demonstrates an end-to-

end system, developing interfaces for integration of the TSG with an underlying

script-based compiler framework for code generation.

• Performance Portability: It demonstrates an approach that selects customized

implementations depending upon problem size or data type (i.e., single vs. double

precision) for two Nvidia architectures (GTX-280 and Tesla C2050 Fermi).

• Experimental Evaluation: It presents automatically generated code which achieves

performance of up to 1.84x over linear algebra kernels in manually-tuned Nvidia

CUBLAS library; and up to 2.03x for set of scientific, multimedia and imaging

kernels over a state-of-the-art GPU compiler [BUH+08, YXKZ10].
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1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 gives a background

on GPU and CUDA. Chapter 3 describes our CUDA-CHiLL code transformation and

generation compiler system. Optimization heuristics and their impact on performance,

along with the search space of possible solutions and the pruning criteria is explained

in Chapter 4. The core algorithms of the TSG are presented in Chapter 5. Chapter 6

presents performance results for three BLAS functions (matrix-matrix multiply, matrix-

vector multiply and transposed-matrix-vector multiply), along with five other scientific

and imaging kernels. Finally we discuss related work in Chapter 7 and conclude the

thesis in Chapter 8.
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Chapter 2

Background

This chapter provides background on the target architectures, benchmarks and compiler

transformations that will be discussed in the remainder of the thesis.

2.1 GPU Architecture Features

The two architectures for this work are the older Nvidia GeForce GTX 280, and the newer

Nvidia Tesla C2050 Fermi, described in Table 2.1. Both architectures are organized in a

two-level parallelism hierarchy, with a number of streaming multiprocessors (SMs), each

of which has a SIMD unit comprised of several cores. Synchronization between threads

in an SM is supported by a barrier; synchronization between threads mapped to different

SMs typically relies on atomic operations or a return to the host processor.

The GPU devices have a heterogeneous, and mostly software controlled, memory

hierarchy. Both devices have a global memory that can be accessed by all cores on the

GTX280 C2050

#SMs 30 14

cores/SM 8 32

Total cores 240 448

Peak (single precision) 933 GF/s 1.03 TF/s

Peak (double precision) 87 GF/s 515 GF/s

Global memory 1 GB 3 GB

Bandwidth 142 GB/s 144 GB/s

Shared memory/SM 16 KB (up to) 48 KB

Registers/SM 16 K 32 K

“Texture” accesses yes yes

Constant memory 64 KB 64 KB

Data cache 0 (up to) 48 KB

Table 2.1: GPU target architectures .
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device. Both devices also have a large register file consisting of 16K/32K registers, and

each SM has a shared memory that threads in a block mapped to that SM can freely

access. Read-only constant and texture data in global memory are cached for low-latency

average access time. A data cache for global memory accesses is available on the C2050,

but on the GTX280, the bulk of global memory accesses are typically not cached, with

latencies on the order of hundreds of cycles.

A new architecture often requires a complete rewriting of the code, particularly if

the new architecture is significantly different from previous targets for the software.

While the fundamental execution model, memory structures and processor organization

are similar for the two GPU devices discussed above, there are a few key differences

highlighted in Table 2.1 that affect the code generation strategy.

The most significant difference is the presence of a data cache in the C2050. Further,

the balance of the architectures is different. SMs in a C2050 have four times more cores

than in the GTX280, which suggests that the number of threads per block should perhaps

be larger on a C2050, in context of achieving higher performance. The configurable

shared memory on the C2050 can be up to 3 times larger than the shared memory on

the GTX280, which is consistent with being able to support more threads per block.

The size of the register file per SM is also double in C2050 compared to the GTX-280

architecture. These architectural differences suggest that the optimization trade-offs may

lead to different implementations for the same code, targeting the two platforms, which

will be demonstrated in the performance results.

2.2 Compute Unified Development Architecture (CUDA)

A CUDA program describes a computation decomposition into a one or two-dimensional

space of thread blocks called a grid, where a block is indivisibly mapped to one of the SMs.

Each thread block defines a multi-dimensional space with up to three dimensions and

maximum of 512 threads. A kernel code is executed for each point in the grid, providing a
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two-level parallelism hierarchy represented by this 5-dimensional space. Threads within a

block run concurrently on the same SM in batches, called warps, under a SIMT1execution

model.

With so many parallel threads simultaneously accessing memory hierarchy, effective

utilization of the memory hierarchy has significant impact on performance. The pro-

grammer or compiler can reduce memory latency through locality optimizations that

copy data into lower-latency portions of the memory hierarchy as compared to global

memory on data that has temporal or spatial reuse. Whenever possible, registers provide

the most ready low-latency access and the register file on the GPU is large (16K/32K

registers per SM, on GTX-280 and C2050, respectively). By copying data into a thread-

local variable and aggressive unrolling of loop nests, the high-level source code can expose

reuse of local data that can be mapped to registers. Shared memory has latency com-

parable to registers (as long as there are no memory bank conflicts) for data that can

be shared by all threads in a block. To maximize memory bandwidth, the memory con-

troller will coalesce accesses to multiple data into a single memory transfer if the accessed

data has spatial reuse within the size of a memory transfer [ULBmWH08]. Therefore,

the programmer/compiler can order data accesses across neighboring threads (at least

a half-warp in GTX-280 and a warp in Fermi architectures) so that global memory

accesses are coalesced whenever possible. Another bandwidth optimization sequences

shared memory accesses to avoid bank conflicts.

2.3 Benchmarks and Libraries

This thesis compares performance of automatically generated code by our system with

implementations from manually tuned library and state-of-the-art compiler benchmark

suites for BLAS, scientific, imaging and multimedia kernel domains. Our goal is to

achieve performance, comparable to these manually tuned and automatically generated

1Single-instruction, multiple-thread (SIMT) is the name given to the Nvidia execution model where
multiple threads in a SM execute concurrently in a lock-step manner.
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benchmarks by the library and contemporary state-of-the-art compiler systems, respec-

tively. This section provides an overview of these codes to be used throughout the thesis

as examples, and in the performance evaluation of Chapter 6.

CUBLAS. CUBLAS is a basic linear algebra subprograms (BLAS) implementation

from Nvidia running over Nvidia’s CUDA runtime [Nvi08b]. It provides manually-

tuned solutions for different linear algebra kernels, which provides us with a clean, self-

contained computational resource to compare against. Over the course of this study,

multiple versions of CUBLAS were released. The performance of the CUBLAS also

stabilized and improved with time. We will present results from CUBLAS 2.2 and

CUBLAS 3.2 to emphasize the need of systems like ours that can automatically generate

optimized code and can consistently match or outperform the manually tuned code. We

have compared against matrix-matrix multiplication, matrix-vector multiplication and

transpose matrix-vector multiplication routines from CUBLAS, explained in detail in

Chapter 6.

Benchmarks Domain Benchmark Source/
Performance Compared to

Matrix-Matrix Multiplication (GEMM) Linear Algebra CUBLAS
Matrix-Vector Multiplication (GEMV) Linear Algebra CUBLAS

Transpose Matrix-Vector Multiplication (TMV) Linear Algebra CUBLAS
NBody Scientific Computation PLUTO

Coulombic Potential (CP) Scientific Computation PLUTO
MPEG4 Multimedia Kernel PLUTO
MRI-FH Imaging Kernel PLUTO
MRIQ Imaging Kernel PLUTO/PARBOIL

2D-Convolution (2D-Conv.) Imaging Kernel Compiler by [YXKZ10]

Table 2.2: Benchmarks set evaluated by CUDA-CHiLL based system.

PLUTO compiler benchmarks. We have also compared against a state-of-the-art

contemporary compiler, PLUTO [BBK+08a, BRS10, LVM+10] by using the set of bench-

marks that were provided to us by the group. These include, MRIQ, MRIQ-FH, NBody,

MPEG4 and CP.
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PARBOIL Benchmarks. The PARBOIL benchmark suite contains many applica-

tions which are better suited to performance measurement on a massively parallel plat-

forms. The suite is provided by IMPACT Research Group at University of Illinois,

Urbana Champaign as open source software [IMP07]. We have tested the MRIQ kernel

from the suite and compared the performance with the solutions provided by the suite.

In addition to these benchmarks, we also compare against an imaging benchmark,

2D convolution, from [YXKZ10], which adds to the kernels from imaging domain we

compared from PLUTO and Parboil benchmark suites.

2.4 Parallelizing Compiler Technology

This section presents well known compiler analyzes, used by traditional compilers for uni-

processors, shared-memory multiprocessors, vector architectures and memory hierarchy

optimization. These analyzes lay the groundwork to generate GPU code by constraining

computation decomposition possibilities and capturing memory access patterns.

2.4.1 Dependence Analysis

In any compiler system which modifies code structure and generates transformed code,

dependence analysis needs to done to ensure the correctness of the transformed code.

A fundamental approach to achieve correctness in the generated code is to create a

dependence graph between different statements of a sequential program. In a dependence

graph, any pair of statements is called a dependence. Dependences ensure that that the

order of the memory read and write operations is preserved [AK02].

To analyze loop nest computations, we reason about the dependences within the

iteration space of the loop nest. We use dependence distances to decide about the

presence of dependences.

• If all distances are zero, then the dependence is within the same iteration of the

loop nest (it is loop independent).
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• If at least one distance is non-zero, it is a loop carried dependence.

We use dependence analysis within our GPU compiler for the following purposes:

• identifying loop transformation opportunities

• identifying opportunities for block-level and thread-level parallelism

• identifying constraints and opportunities for loop nest transformations.

In our compiler, the presence or absence of dependences determines safety of paral-

lelism and other reordering transformations.

There are four basic types of dependences between two operations [AK02].

• Flow (True) dependence: A statement S2 is flow dependent on S1 (written ) if and

only if S1 modifies a resource that S2 reads and S1 precedes S2 in execution.

• Antidependence: A statement S2 is antidependent on S1 (written ) if and only if

S2 modifies a resource that S1 reads and S1 precedes S2 in execution.

• Output dependence: A statement S2 is output dependent on S1 (written ) if and

only if S1 and S2 modify the same resource and S1 precedes S2 in execution.

• Input dependence: A statement S2 is input dependent on S1 (written ) if and only

if S1 and S2 read the same resource and S1 precedes S2 in execution. It is not

required for safety, but is helpful for locality.

2.4.2 Locality Analysis and Optimizations

Locality refers to accessing the same or nearby data close together in time, in fast

memory. Many scientific applications access data in a certain pattern, which may allow

for certain optimizations to improve performance.

Locality within a loop nest. A data reference is said to have locality if the same

data or nearby stored data are accessed from the memory hierarchy level of interest by

multiple iterations of a loop nest.
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Types of Locality.

• Spatial Locality: the increased probability of accessing a nearby memory location

after a certain memory access. Moving a chunk of data, including the required

value along with some of the neighbors to a faster memory in the hierarchy, may

help in achieving high performance.

• Temporal Locality: a special case of spatial locality, where the same memory loca-

tion might be accessed again in the near future, following an access. This property

allows the executing program to keep the accessed data in a faster memory in the

hierarchy for a longer stretch of time, to achieve high performance.

Locality Optimization. In our system, we analyze the array references to identify

reuse patterns, among threads and across threads. High performance can be achieved by

copying data reused across threads into shared memory and reused inside threads, into

registers.

The tiling transformation has been used in our system as a technique for achieving

parallelism and locality optimization. Other contemporary systems [BBK+08a] have

also demonstrated the use of tiling for both purposes. For data locality, tiling helps

divide the iteration space into tiles which can be copied into smaller but faster memory.

An important feature of CUDA execution model is the ability to batch a number

of memory accesses from global memory together in a single memory read, called global

memory coalescing. This feature in GPUs can be exploited to bring in spatially local

data from the global memory in as few as a single memory operation, for a set of threads

called warps (16 (half-warp) or 32 threads, depending on the compute capability of

the CUDA device) [Nvi08a]. Memory coalescing is probably the single most important

memory access optimization, that needs to be exploited to achieve high performance and

is discussed in Chapter 4.
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2.4.3 Loop Optimizations and Transformations:

Loop optimization enables compilers to identify parallel computations, enabling code

optimizations and improved cache performance. Loop nests take much of the execution

time in many computations. Optimizing loop nests to take advantage of parallelization

opportunities and exploit locality results in faster execution.

2.4.4 Loop Transformations

A loop transformation reorders the execution of statements in a loop. A loop trans-

formation is said to be safe if it preserves the dependences of the original program in

the modified program. In theory, each transformation is applied to achieve performance

improvement, but some transformations may only be performed as a prerequisite to

another transformation, which yields benefits. Thus sometimes the individual transfor-

mations are beneficial and at other times a combination of multiple transformations is

needed.

Common loop transformations used in our system.

• Loop permutation: This optimization reorders the loops in a nest, changing the

order in which memory is accessed. Such a transformation can improve locality,

depending on the array’s layout. Different loop orders may also enable other loop

transformations or a desired loop transformation may need loop permutation as a

prerequisite operation.

• Loop tiling/blocking: Loop tiling reorganizes a loop to iterate over blocks of data

sized to fit in the cache. In our system, loop tiling is used to achieve parallelism

and locality optimization. A loop nest’s iteration space can be tiled into blocks

and threads to set up the launch configuration for a kernel. Also, tiling can be

used to reduce the data footprint so that it fits into smaller and faster memory in

the hierarchy.
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• Loop unrolling: Unrolling replicates the body of the loop multiple times, in order

to decrease the number of times the loop condition is tested and the number of

branches, which may degrade performance by impairing the instruction pipeline.

Completely unrolling a loop eliminates all overhead (except multiple instruction

fetches and increased program load time), but requires that the number of iterations

be known at compile time. We use explicit unrolling of loops in order to have

constant indices to the array references which can be mapped to registers. For

some kernels, we differentiate ourselves from other contemporary solutions by the

use of aggressive unrolling.

Data Placement Optimizations. Data related optimizations try to improve chances

for locality, by moving data to faster memories or by increasing the memory bandwidth

by using parallel hardware to access data in global memory. We target all the memories

• Data Copy (shared memory): We use data copy to move data from a slower memory

to a faster one [Che07]. We use it for copying data to shared memory from the

slower global memory in the context of a GPU. Data copying to a faster memory

helps in improving performance by lowering access times and also by simplifying

addressing. Also, it lowers the number of conflict misses in a cached architecture,

by copying a tile of data into a faster memory. A copy to shared memory from

global memory is available to all threads in a particular block.

• Data Copy Private (register): A specialized data copy is the copy of data to local

memory of a thread, which is the register file. We use the fastest memory in the

hierarchy to further improve performance.

In addition to local and shared memory, every thread has access to two more read-only

spaces. These are texture memory and constant memory. Fermi architectures are also

equipped with a data cache of size varying from 16k-48k. Our system targets texture

and constant memory spaces too, with similar data copy transformations as to shared

memory and registers.

19



• Data Copy (texture memory): A data copy to texture memory is achieved through

a bunch of directives in the generated code, for read-only arrays. It allows for a

specific array to be read through a parallel hardware used for texture reads, thus

increasing the memory bandwidth.

• Data Copy (constant memory): A data copy to constant memory is a similar

process as to texture memory. The size of the array is limited by the maximum

constant memory size, as reported in Table 2.1.

2.5 The Polyhedral Framework

The polyhedral model is a geometrical representation for loop nest computations. It uses

linear algebra and linear programming techniques to analyze programs and apply code

transformations. The polyhedral model [Bas04] handles a wider class of programs and

transformations than the uni-modular framework, which uses a single matrix to describe

the result of many transformations combined [Ban93, Ban90, WL91]. The executions of

a set of statements within a possibly imperfectly nested loops is seen as the union of a

set of polytopes representing the executions of the statements. Affine transformations

are applied to these polytopes, producing a description of a new execution order. The

boundaries of the polytopes, the data dependences, and the transformations are often

described using systems of constraints. This approach is often referred to as a constraint-

based approach to loop optimization. For example, a single statement within an outer

loop ‘for i := 0 to n’ and an inner loop ‘for j := 0 to i+2’ is executed once for each (i, j)

pair such that 0 ≤ i ≤ n and 0 ≤ j ≤ i+2.

2.6 Summary

This chapter outlines the architectural features of the two target GPUs and the charac-

teristics of the programming model used to program them. We focus on two particular
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Nvidia GPUs in this study, which belong to two architecturally different generations

of Nvidia GPUs. CUDA is the programming framework used to program them. An

overview of the benchmarks we have evaluated with our system was presented. We have

discussed background of important compiler functions like dependence analysis, locality

analysis, and loop transformations and optimization prior to a more detailed discussion

in coming chapters of their utilization in our system. Our system uses a code transfor-

mation and optimization framework which is based on the polyhedral framework and

is explained in detail in the next chapter. This mathematical way of handling code

transformation helps in achieving correct code generation for a range of different code

variants.
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Chapter 3

System Overview

In this chapter we present the organization of our compiler system. Figure 3.1 shows

the major sub-systems, describing a chain of processes which directs both parallel com-

putation partitioning and data staging, generates transformation strategies, and use

autotuning to evaluate these and find a high performance GPU (CUDA) code solution.

3.1 Main Components of the Compiler System

This section presents the overview of the compiler system, shown in Figure 3.1 which

includes two components that are focus of this thesis.

• Transformation strategy generator (TSG)

• Autotuning

This core part of the system is the focus of this thesis. However, it does not work as a

standalone system. It utilizes important sub-systems which are,

• Composable High-Level Loop Transformation Framework (CHiLL) [Che07]

• CUDA-CHiLL [Rud10]

The input to the compiler system is sequential C code and the output are the best

performing transformation strategy along with the best performing GPU (CUDA) code.
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Figure 3.1: Overview of system for high performance GPU (CUDA) code generation.

3.1.1 Transformation Strategy Generator (TSG)

The major contribution of this thesis is the Transformation Strategy Generator (TSG)

that analyzes the input code, derives a set of different parameterized optimization strate-

gies, and thus logically expresses a search space of possible high performance implemen-

tations of a computation. The TSG uses analysis to decide on the code transformations

while several features both related to architecture and the computations help cap the

size of the possible search space of solutions. The output of the algorithms in TSG is
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not code, but rather a transformation recipe that expresses an optimization strategy as

a sequence of composable transformations [DBR+05, HCS+09].

3.1.2 Autotuning

The other important contribution of this thesis is the mechanism of autotuning, which

expresses the search space through individual transformation recipes, navigates the

search space efficiently and finally finds the best performing solution for a given com-

putation on a given architecture. The strength of this autotuning mechanism is the

flexibility of independently autotune for the compiler optimizations and their respective

parameters for values, to transform a given computation.

3.1.3 Composable High-Level Loopt Transformation Framework (CHiLL)

CHiLL is a loop transformation framework that efficiently transforms and generates

code for complex loop nest applications. We will discuss in the next section the specific

CHiLL commands and their use, shown in Table 3.1. CHiLL operates most effectively

on sequential code restricted to an affine domain, where loop bounds and subscript

expressions are linear functions of the loop index variables. The CHiLL transformation

algorithms will generate correct code when dependence conditions are satisfied. Such

dependence information is kept updated during each step of the transformation process.

The script interface allows the users to compose and try many different combinations

of the transformations, thus providing a flexible platform for tuning transformation solu-

tions [CCH08]. These features make CHiLL a key component of our compiler system,

providing the technology to support autotuning. We will discuss in the next section, the

specific CHiLL commands and their use, shown in Table 3.1, in our system.

3.1.4 CUDA-CHiLL

CUDA-CHiLL is a source to source compiler transformation and code generation frame-

work for the parallelization and optimization of computations expressed in sequential
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loop nests for running on many-core GPUs. This system uniquely uses a complete

scripting language to describe composable compiler transformations that can be written,

shared and reused by non-expert application and library developers. CUDA-CHiLL is

built on CHiLL, which is capable of robust composition of transformations while pre-

serving the correctness of the program at each step [Che07, TCC+09, Rud10].

The rest of the chapter first explains the concept of transformation recipes, CHiLL

commands constituing the low level recipes and CUDA-CHiLL followed by an overview

of the core components TSG and autotuning, explained in detail in Chapter 5.

3.2 Transformation Recipe/Strategy

The composition of the CUDA-CHiLL commands is called a transformation recipe or

transformation strategy.It lists high level transformations in CUDA-CHiLL which may

be accompanied by low level CHiLL commands. Thus a recipe is an individual strat-

egy to modify the code structure. The transformation recipe also is the interface for

application or library developers, to interact with the system directly. We use the terms

transformation recipe and transformation strategy interchangeably in the rest of this

thesis.

3.2.1 CHiLL Transformations

Each line in a transformation recipe is a single transformation to be applied to the input

code. We call each of these transformation commands. Table 3.1 describes the relation

of several low level CHiLL commands to the high level CUDA-CHiLL transformation

commands. The table also shows how different CHiLL commands are composed to

form higher-level CUDA-CHiLL commands. However, in the implementation of these

interfaces, many of the constituent transformations were used multiple times, to achieve

the effect of one correct high level transformation operation. For example, the CHiLL
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CHiLL Used by Description
Command CUDA-CHiLL

Command
tile tile by index, Tile a loop with a given tile size. Specify an index variable for the new

copy to shared control loop and a second index variable to optionally rename the
copy to registers original index variable of the tiled loop.

permute permute For a specified statement, reorder loops in a loop nest (the iteration space of the
statement.) The permutation order is specified by a list of loop index variables.

datacopy copy to shared For a specified statement, starting loop level and array variable, copy array data
that is accessed within the starting loop level to a smaller dimensional structure.
Optionally annotate the new data structure with shared to specify a copy
to shared memory.

datacopy copy to Similar to datacopy but used to copy data private to a thread and thus
privatized registers does not have an option to flag for shared memory.
unroll unroll to Exposes ILP and register reuse

depth to the backend nvcc compiler, reduces loop overhead and can provide integer
speedups on GPUs.

Table 3.1: Description of common CHiLL commands matching higher level CUDA-
CHiLL commands.

command tile is used in the composition of most of the higher level CUDA-CHiLL

commands.

3.3 CUDA-CHiLL: Parallelization and Data Staging

CUDA-CHiLL, just like CHiLL, provides a powerful scripting interface which allows the

users to define transformations at a much more abstract level than CHiLL. Usually,

the CUDA-CHiLL abstractions incorporate many CHiLL commands in a single high-

level command. Thus, it provides a much more accessible way of programming the

GPUs by hiding the low level constructs and details of the GPU programming models.

An important feature that CUDA-CHiLL inherits from CHiLL is the capability of the

framework to transform sequential code for any given architecture with appropriate

modifications to the code generation part of the system. This section will list in detail

the CUDA-CHiLL constructs, their individual composition from CHiLL commands and

the parameters driving their operations.

3.3.1 High Level CUDA-CHiLL Commands

Our compiler system expresses an optimization strategy as a sequence of composable

transformations, which has been followed as a way of laying out the optimization strat-

egy in multiple research works [DBR+05, CWX+11, HCS+09]. Our system expresses the
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Command Example Parameter List Description

tile by index

{"i","j"} The index variables of the loops that will be
tiled.

{TI,TJ} Variables representing the respective tile sizes
for each index variable.

{l1 control="ii",

l2 control="jj"}
Specifies control loop variable names and
optionally renames tile loop index variables.

{"ii", "jj", "i", "j",

"k", "l"}
Final order of nested loops with updated loop
index names.

cudaize

"conv GPU" The name of the kernel function
{a=(N+M)*(N+M), b=M*M,

c=(N+M)*(N+M)}
The data sizes of the arrays if not statically
determinable.

{block={"ii"},
thread={"jj"}}

Specifies block and thread indices. The
bounds for these loops are used to derive grid
dimensions.

copy to registers
"kk" The loop level, given as an index variable, to

place the copy.
"b" The array variable to be copied.

copy to shared

"tx" The loop level, given as an index variable, to
place the copy.

"b" The array variable to be copied.
-16 Ensure the last dimension of the temporary

array are coprime with 16 to pad.
copy to texture "b" The array variable to be accessed from texture

memory.
copy to constant "b" The array variable to be accessed from con-

stant memory.
unroll to level 1 Unrolls all statements up to specific level from

innermost loops outwards. Stops unrolling if
it encounters a CUDA thread index.

Table 3.2: Description of important high level commands in CUDA-CHiLL.

code transformations at a very high level using the CUDA-CHiLL constructs described in

Table 3.2. When necessary, slightly lower level CHiLL transformation such as tiling indi-

vidual loops, unrolling a specific loop and so on, can also be performed. CUDA-CHiLL

takes these high level transformation specifications tailored to CUDA code generation

and generates the specific set of compiler transformations that must be composed to

produce the CUDA code. This abstraction layer is written in the embeddable scripting

language Lua [IdFF96], which permits the compiler developer to concisely express the

transformation algorithms.

3.4 Transformations for GPU Code Generation

In this section, we briefly explain the process of generating optimized CUDA code from

sequential code through the high level CUDA-CHiLL commands, as shown in Table 3.2.
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3.4.1 Computation Mapping using Tiling

We observe that an Nvidia GPU is a tiled architecture, with each streaming multi-

processor (SM) representing a separate tile with its own private memory, similar to

RAW [TKM+02]. Therefore, to generate code that executes in parallel across SMs, we

need a computation decomposition where each SM operates on localized data. Then,

each thread also operates on mostly independent data.

Subdividing the iteration space of a loop into blocks or tiles with a fixed maximum

size has been widely used when constructing parallel computations [Wol89, KM92]. The

shape and size of the tile can be chosen to take advantage of the target parallel hard-

ware and memory architecture, maximizing reuse while maintaining a data footprint

that meets memory capacity constraints. Sometimes referred to as loop blocking, tiling

involves deconstruction of an iteration space into a control loop and tile loop. Given an

iteration space of size N and a tile size of TX the tile loop will iterate over a maximum

space defined by the tile size (TX), while the control loop then has N/TX steps (when

TX divides N evenly).

Figure 3.2 represents a simple computation partitioning and CUDA code generation

for the 2D convolution code shown in Figure 3.2(a). The two tile commands in the

recipe of Figure 3.2 (b) result in the tiling of both the i and j loops of the sequential

computation, as shown by the automatically generated code of Figure 3.2 (c) resulting

from applying the recipe to the sequential code and printing the intermediate result at

line 5.

After tiling, the cudaize command specifies the name of the generated kernel function,

the mapping of one or two loop levels to block indices in the grid dimension, and the

mapping of up to three loops to thread indices. The effect of the cudaize call on the

generated code is to allocate storage and marshal inputs for the CUDA kernel, and

select the loops from the transformed loop nest that will be mapped to grid and thread

dimensions. These tile controlling loops are effectively removed from the code. The

resulting automatically generated CUDA code is shown in Figure 3.2 (d).
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void seqConv(float c[N+M][N+M], float a[N+M][N+M],float b[M][M])

{
int i,j,k,l;

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

for (k = 0; k < M; ++k)

for (l = 0; l < M; ++l)

c[i][j] = c[i][j] + a[k+i][l+j] * b[k][l];

}

(a) The 2D-convolution sequential source code.

1 TI=16

2 TJ=16

3 tile by index({"i","j"}, {TI,TJ},
{l1 control="ii", l2 control="jj"},
{"ii", "jj", "i", "j" , "k" , "l"})

4 cudaize(‘‘conv GPU’’, a=(N+M)*(N+M), b=M*M, c=(N+M)*(N+M),

block=‘‘ii’’,‘‘jj’’, thread=‘‘i’’,‘‘j’’)

(b) A very simple transformation recipe.

for (ii = 0; ii < 64; ii++)

for (jj = 0; jj < 64; jj++)

for (i = 16 * ii; i < 16 * ii + 16; i++)

for (j = 16 * jj; j < 16 * jj + 16; j++)

for (k = 0; k < M; ++k)

for (l = 0; l < M; ++l)

c[i][j] = c[i][j] + a[k+i][l+j] * b[k][l];

(c) The results of tiling the sequential code.

global void conv GPU(float (*c)[1024], float (*a)[1024],

float (*b)[16])

{
int bx = blockIdx.x; int tx = bx*blockDim.x+threadIdx.x;

int by = blockIdx.y; int ty = by*blockDim.y+threadIdx.y;

for (k = 0; k < M; ++k)

for (l = 0; l < M; ++l)

c[tx][ty] = c[tx][ty] + a[k+tx][l+ty] * b[k][l];

}

(d) The resulting CUDA kernel, invoked as gpuConv〈〈〈64, 64〉〉〉(...)

Figure 3.2: A simple tiled and CUDAized 2D Convolution.

3.4.2 Data Staging in Memory Hierarchy using Data Copy

Multiple transformations are used for the complex data copy operations, to enable move-

ment of data to faster memory levels of the hierarchy. We present them in the following

subsections, to individually study their role and effects on data staging operations.
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Data Copy. The main operation for data staging is the copying of data into different

levels of memory hierarchy. CUDA-CHiLL specifies separate data copy commands, spec-

ifying copy of data in register, shared memory, texture memory and constant memory.

All of these copy commands work on the name of the data structure given as parame-

ter, but only two, the copy to registers and copy to shared memory are supplied with

the intended loop level positions for the copy loops. For texture memory and constant

memory copies, only the names of the data structures is enough to use the respective

memories. To support CUDA code generation, we augment pre-existing data copy with

a new capability that supports parallel code generation and GPU-specific memory struc-

tures.

When copying into shared memory, the copy must be properly synchronized to avoid

race conditions with other threads. Further, a private copy into registers copies a data

footprint that is private to individual threads. The code generator must also use the

right type annotation, shared for shared memory and a local variable declaration for

registers. Because of their robust underlying implementation in a polyhedral framework,

these datacopy transformations ensure correctness by understanding the data depen-

dences between loop statements, deriving conservative data footprints automatically for

a specific loop nest level, and handling cases of unevenly divisible loop ranges. This

again simplifies an error prone optimization step in achieving high performance CUDA

kernels.

Tiling for Data Copy. In addition to its role in setting up parallelization, tiling

also reorganizes computation within or across threads in the program so that the data

footprint fits within a specific level of the memory hierarchy. Data destined for shared

memory must be explicitly copied to/from the device global memory. Similarly, data

locally declared within a thread program will usually be placed in registers by the nvcc

backend compiler, but such data may require explicit copies to/from global or shared
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memory. Therefore, we couple tiling with explicit copying of data and associated syn-

chronization to perform the data staging into shared memory or registers.

When managing registers, we must also explicitly unroll the tiled loops so that

accesses to local array data will have constant indices that can be mapped to specific

registers. CHiLL supports loop unrolling through a combination of iteration space trans-

formations and statement rewriting.

3.5 Integration Interface for TSG and CUDA-CHiLL

We have integrated the sub-systems described in this chapter to form an end-to-end

system. There are two separate interfaces we have developed as part of this work. The

core part of the CUDA-CHiLL interface to CHiLL, is written in C++, and provides

the CHiLL transformations, the data structures representing the current state and GPU

related transformation and code generation capabilities.

The main contribution of our work to the Lua interface is limited to the handling

of data copy operations for registers and shared memory and unroll to a certain depth

level for the whole code structure. The goal, in the case of data staging operations for

registers and shared memory, is to create data copy loops at the correct locations in the

generated code.

(1) Computation Partitioning: The computation partitioning interface (added in

this list for completion purposes) remains the same as was provided by CUDA-

CHiLL, with its basic functionality of applying tiling transformation to modify

loop nests to create loops carrying parallelism.

(2) Data Copy Interfaces: The data copy interfaces were the major contribution

of the integration code. The interfaces initially provided for the shared memory

copy and register copy were basic and limited to a few BLAS computations only.

The shared memory data copy interface had to be re-written to incorporate the

scenarios which arose from new computations. New code structures were written
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for using the existing functionality along with the additional code handling the

new computations. Similar additions were needed in the register copy, however a

major part of the code was carried over.

(3) Unroll Interface: For unroll, it controls the number of individual CHiLL unroll

commands issued for specific loops, by unrolling not only the original loop but also

any additional clean up loops created by the transformations.

These functionalities have either been modified or completely re-written to allow for more

flexible handling of different transformation strategies in different types of problems.

As a whole, the interface interprets the current loop structure and identifies, labels

and modifies it, driven by the CUDA-CHiLL command parameters. Thus, for example,

one parameter in the cudaize command of Table 3.1, identifies and labels the loops

designated for thread parallelization, to be later interpreted by the code generator. An

unroll to depth CUDA-CHiLL command searches and unroll loops in the entire structure,

thus generating multiple unroll CHiLL commands for different loops.

3.6 Summary

In this chapter, we presented an overview of the major components of the system. Much

emphasis was given to the explanation of the underlying sophisticated compilers systems

called CHiLL and CUDA-CHiLL. The main contribution of this thesis are the TSG and

autotuning parts of the system, which are going to be discussed in detail in the coming

chapters.
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Chapter 4

Optimization Heuristics, Search

Space and Constraints

This chapter presents the optimization heuristics, defines the search space of unique

optimization combinations and the use of heuristics to constrain the size of the search

space. The process of defining a search space is explained through the matrix-matrix

multiplication example.

4.1 Optimization Strategy

To develop our optimization strategy, we considered manual tuning strategies for GPUs

[VD08a, BG09, BCI+08], compiler approaches for combining parallelism with locality

optimization (e.g., [KM92]) and memory hierarchy optimization strategies that compose

multiple optimizations [CCH05, MCT96, NTD10]. The key insight from the algorithm

in [CCH05] is to use compiler transformations to control placement of data in different

levels of the memory hierarchy according to the amount of reuse. The data with max-

imum reuse is placed in the fastest portion of the memory hierarchy, and tiling is used

to match the data footprint of the reused data to the capacity of the different storage

levels. We consider three main levels of memory hierarchy in the target GPU: register,

shared memory and global memory. In addition to them, we consider constant and tex-

ture cache which helps in exploiting additional memory space and allowing for additional

bandwidth due to separate access hardware (in the case of texture memory). Unlike a

conventional cache-based memory hierarchy where different memory hierarchies have an

order of magnitude difference in size, the GPU’s register file capacity is comparable to
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that of shared memory, and latencies are in the best case equivalent. Since we are gener-

ating parallel code, we use shared memory to exploit reuse across threads and registers

to exploit reuse within a thread.

4.2 Optimization Heuristics

This section describes the key optimization heuristics, used by our system in striving

for performance. ”These heuristics constrain the optimization strategies considered and

limit the possible values for the optimization parameters.

4.2.1 Computation Partitioning Heurisitics

Dependences and Parallelization. We permute the loops in the nest so that any

loop carrying a dependence is within a thread or a thread block. In the latter case,

thread synchronization must be inserted. Loops representing blocks should not carry

dependences, as this would require costly global synchronization. Different levels of

subloops within a loop nest can be parallelized as long as they use the same thread block

size and proper synchronizations are inserted.

Global Memory Coalescing. All data is initially copied into global memory. There-

fore, we select a loop order such that the x dimension for the thread index is linearly

accessing the bulk of its data in global memory, resulting in coalesced access. If global

memory coalescing is not possible due to interference with another array accessed in a

different order, an array that is reused across threads may be copied by different threads

into shared memory in a coalesced order, and accessed directly from shared memory.

4.2.2 Data Placement Heuristics

Shared Memory copy and Bank Conflicts. Data shared across threads, either as a

result of the global memory access coalescing optimization above, or through significant
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inherent reuse, is placed in shared memory. Shared memory accesses need to avoid bank

conflicts along the thread index, and 2-dimensional arrays that are loaded into shared

memory linearly along one dimension and accessed linearly in another dimension will

require padding of one of the dimensions to avoid shared memory bank conflicts.

Reuse in Registers. Registers provide low latency storage local to a thread, and

data that is reused within a thread should be copied into registers. Due to the large

register file size, tile sizes for register tiling are also good candidates for partitioning the

computation across streaming multiprocessors, thus avoiding an additional level of tiling

and overhead.

Map Read-Only Data to Texture Memory. Data that is read-only within a thread

may benefit from being accessed through a special texture memory designation, which

uses dedicated hardware to fetch the data, and in the GTX-280, permits data caching

of global memory accesses. The data for which texture accesses are beneficial must be

copied into either registers or shared memory and reused or else the texture access is not

profitable.

Map Read-Only Data to Constant Memory. Data that is read-only within a

thread and possible reuse across blocks may benefit from being accessed through a special

constant memory copy, which uses dedicated hardware to fetch the data, and in the

GTX-280, permits data caching of global memory accesses. It also may allow tiling of

execution of the kernel at the host. However, the maximum benefit from the constant

memory copy may only be gained if the input data is less than the maximum size of

constant memory.

4.2.3 Code Transformation Heuristics

Unroll Loops Aggressively. Loop unrolling exposes instruction-level parallelism and

register reuse to the backend nvcc compiler, reduces loop overhead, and can provide
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integer speedups on the GPU. Because of the large register file and the small number

of threads typically selected by our algorithm, we can fully unroll entire 2-dimensional

tiles without exceeding register capacity.

Our compiler structure facilitates exploring a rich search space which subsumes that

of previous GPU compilers [BBK+08a, BRS10, LVM+10, CWX+11]. To create a man-

ageable search space, we employ the above discussed compiler heuristics to focus on

candidate implementations that are likely to yield high performance.

The coming section articulates the optimization search space along with constraints

governing it. These constraints stem from the heuristics discussed earlier in the chapter.

This discussion about the search space also serves as a road-map for the next chapter

where the algorithms are presented in detail. We explain the search space in the context

of our example from linear algebra kernels, matrix-matrix multiplication. Because the

compiler can explore multiple optimization strategies, insights from the experiences of

manually tuning this code were integrated into our compiler implementation [VD08a,

NTD10].

4.3 Defining the Search Space

The section presents the search space of possible optimizations strategies, that is essen-

tially created by combining the optimizations for computation decomposition and data

placement, with multiple values of the optimization parameters. Our system tries to

avoid the local maxima by looking at a larger set of possible combinations of optimiza-

tion decisions and parameters. The mechanism is presented in separate algorithms in

Chapter 5.

4.3.1 Optimization Decisions

The first set of optimization decisions is related to management of the computation

workload. It is crucial to strike a balance between the entities which are assigned the
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sub-computations such as blocks and threads per block; and the available resources such

as number of registers, amount of shared memory, maximum number of blocks or threads

per block.

1. Computation Partition: Decisions on the structure and number of blocks and

threads per block, realized using permute and tiling. The key considerations to take

computation partitioning decisions are described below:

(a) Number of dimensions of blocks and threads are usually made to match the

dimensions of key data structures.

(b) The candidate loops chosen to select for threads and blocks are based on key

information regarding loop dependences, global memory coalescing and reuse.

(c) The candidate thread dimensions are created from a single loop or from mul-

tiple loops (determines data partitioning across threads).

(d) The data distributions per thread can be cyclic vs. block distributions in all

dimensions (affects global memory coalescing and memory system).

The result of this part is a possible set of tiling and permutation commands, which

represent possibly multiple computation decomposition. A special command called

cudaize would identify the loops which are designated as blocks and threads. These

loops wont appear in the final generated code.

In case of multiple computation decomposition strategies, they are represented by a

unique combination of tiling, permutation and cudaize commands. These strategies

are combined with optimizations from the data placement decisions, some of which

may not be valid, resulting in a complete optimization strategy.

2. Data Placement: Decisions on the placement in memory hierarchy, of data

from data structures in the computation; realized through copy commands for spe-

cific memory level. The key considerations to take data placement decisions are

described below:
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(a) Read-write data structure with reuse within a thread should try to use reg-

isters up to capacity limits (may require additional tiling to match register

footprint or use existing tile).

(b) Read-write data structure with reuse across threads should try to use shared

memory (may require additional tiling to match footprint to parallel threads).

(c) Read-only data structure with reuse across threads may try constant memory

(may require additional tiling at the host to fit data into constant memory).

(d) Read-only data already mapped to shared memory may try to use read-only

texture memory.

The result of this part of optimization decision making may lead to multiple copy

commands, directed at copying data to selected levels of memory hierarchy. The

system specifies and number of copy commands explained in Table 3.2. The number

of possible decisions have a tendency to grow exponentially with linear increase in

the number of data structures. Multiple data structures can be mapped to a

single level of memory hierarchy, and a single data structure can be decided to

go into different levels of memory hierarchy. In the first case, the search space

will get populated with the strategies, placing each of the data structures and

the unique combinations among themselves, in the decided memory level. In the

second case, a data structure may be copied to shared memory, but by making use

of read-only texture memory, to make use of dedicated hardware allowing for extra

bandwidth. Here also the number of unique combinations of optimizations include

the individual copies as well as their unique combinations with each other.

This set of optimization decisions are combined with those made in the previous

part of computation decomposition to lay out each possible combination of opti-

mizations in a separate strategy and describe the search space of optimization

decisions.

38



4.3.2 Optimization Parameters

The second source contributing to the search space of unique optimization combinations

is the set of optimization parameters that are specific to optimizations selected for com-

putation decomposition and data placement. These parameters can have multiple values,

driven by various constraints.

Parameter Values. Selection of parameter values that govern number and identity of

threads and blocks, data footprint in different levels of memory hierarchy, and unrolling

to a certain depth in loop nests. The optimization parameters define some of the key

ingredients of a high performance GPU solution. Some are given below:

1. Number of blocks computing a sub-computation.

2. Number of threads for each dimension in a block.

3. Granularity of computation within a thread.

4. Amount of data to be placed in different memory hierarchy levels such as shared

memory or registers at a time (may require additional tiling).

The optimization parameters, whether they are related to computation partitioning or to

data placement, are treated the same. The initial values and the step between two values,

given to these variables start with a value equal to a warp or a half warp (i.e. 32 or 16).

The maximum value is limited by the allowed number of threads per block. However

the number of these values are pruned by the tile size selection algorithm, explained in

Chapter 5.

These unique combinations of optimizations decisions can be combined with different

values of the optimization parameters, possibly creating a huge search space of strate-

gies. However, a key autotuning methodology, explained in the algorithms in Chapter 5,

restricts these kind of combinations, and looks at the two logical parts of search space

separately, allowing a manageable number of optimization strategies to form part of the

search space.
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4.4 Case Study: Matrix-Matrix Multiplication

To illustrate important differences in the search space explored by our compiler, we use

the examples in Figure 4.1, the code generated by our tool for matrix multiply for the

two architectures, starting from the sequential code in Figure 4.1(a).

We first consider the automatically-generated transformation recipe and the gener-

ated code in Figures 4.1(b) and (d) for the GTX-280 and for Tesla C2050, respectively. In

both examples (Figures 4.1(b) and (d)), loops i and j are selected for block loops, as they

carry no dependences, and having two block dimensions matches the 2-dimensional array

accesses in the computation. Matching the dimensionality of the largest-dimensioned

data structure to the dimensionality of threads and blocks is a heuristic in our sys-

tem which prunes many alternate strategies, and is consistent with other compilers and

manually-written code.

In the GTX-280 versions for 1a and b, we tile the tile loop for i further to create

two dimensions of threads, while maintaining a per-thread, partial column (block) data

partitioning for output c, and a column and row partition for inputs a and b, respectively.

For the Tesla C2050, to support 1a and 1b, at lines 3 and 4 of the script we tile both i and

j loops to create threads (and also impact data footprint as described below). This results

in a per-thread data layout for c that is two dimensional. To achieve global memory

coalescing on accesses to this two-dimensional object, we permute the tile controlling

and tile loops for j (see the reordering in line 4). This gives us a two-dimensional

cyclic partition for c. The 2D cyclic partition of c subtly impacts the order in which c

is accessed from the global memory, which in turn may affect bank conflicts in global

memory [YXKZ10] and smooths out the performance for different problem sizes [NTD10].

In both versions at line 2, the script tiles the k loop to be placed outside the potential

thread loops, both for exploiting reuse of c in registers at thread level and b in shared

memory inside the block. The subsequent copy at lines 7 and 10 of Figure 4.1(b) needs

to identify the footprint of c to be placed in registers, and this corresponds to the data
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accessed within the thread program which will arise from loop i. Array b is targeted for

shared memory in both versions because it carries reuse and requires shared memory

to support coalesced access. The cudaize command in both scripts triggers CUDA

code generation; it appears at this point in the script because prior statements set

up the computation partitioning and loop structure, and subsequent statements refer to

transformations that occur inside the kernel program (unrolling).

The result of Figure 4.1(b) closely matches the SGEMM code in [VD08a] except

for a different parallel mapping scheme for the shared memory copy code, and the use

of texture memory loads for b. The Tesla C2050 version varies in a few ways. In

addition to the differences in data distribution, the chosen recipe puts both inputs into

shared memory, given the larger shared memory size available on the Tesla, favoring the

larger SM over L1 cache. Also, one or two of the inputs (depending on problem size) is

assigned to the texture memory to further accelerate loading data into shared memory.

The resulting code in Figure 4.1(e) is similar to that of the MAGMA library [NTD10],

but we do not perform a prefetch of input data into dummy variables to hide the latency

of memory accesses, and for larger matrix sizes (> 1k), we only access b through texture

memory.

The single precision (SGEMM) code, not shown in Figure 4.1, uses much larger

tiles on the Fermi than the GTX-280 (TX=TY=96 on Fermi and TX=64,TY=16 on

GTX-280); by doing so, we can control the data footprint as well as the computational

decomposition suitable for the architecture. It is interesting that such similar scripts

generate such differences in code.

4.5 Summary

This chapter presented the optimization search space we explore and the heuristics we

employ to constrain this space. It is an important goal to restrict the size of the search

space of unique implementations to keep its navigation practical.
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for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[j][i] = c[j][i] + a[k][i] * b[j][k];

(a) Matrix multiply source code (BLAS)

(b) CUDA-CHiLL script for SGEMM on GTX-280.

float P1[16];

__shared__ float P2[16][17];

bx = blockIdx.x, by = blockIdx.y;

tx = threadIdx.x, ty = threadIdx.y;

P1[0:15] = c[16*by:16*by+15][tx+64*bx+16*ty];

for (t6 = 0; t10 <= 1008; t6+=16) {

P2[tx][4*ty:4*ty+3] = tex1Dfetch(texbRef,1024*

((16*by+4*ty:16*by+4*ty+3) + (tx+t6)));

__syncthreads();

P1[0:15] += a[t6][64*bx+16*ty+tx]*P2[0][0:15]

P1[0:15] += a[t6+1][64*bx+16*ty+tx]*P2[1][0:15]

...

P1[0:15] += a[t6+15][64*bx+16*ty+tx]*P2[15][0:15]

__syncthreads();

}

c[16*by:16*by+15][tx+64*bx+16*ty] = P1[0:15];

(c) Generated CUDA kernel code from script in (b)

(N=1024,TI=64,TJ=TK=16)

(d) CUDA-CHiLL script for DGEMM on Tesla C2050 Fermi

double P3[4][4];

__shared__ double P2[64][17];

__shared__ double P1[16][65];

bx = blockIdx.x, by = blockIdx.y;

tx = threadIdx.x, ty = threadIdx.y;

for (t=0; t<=48; t+=16)

for (s=0; s<=48; s+=16)

P3[t/16][s/16] = c[64*by+ty+t][64*bx+tx+s];

for (kk=0; kk<=3952; kk+=16) {

for (tmp=0; tmp<=3; tmp++) {

P1[tx][16*tmp+ty] = tex1Dfetch(texbRef,3968*

((16*tmp+64*by+ty) + (kk+tx)));

}

__syncthreads();

for (tmp=0; tmp<=3; tmp++) {

P2[16*tmp+tx][ty] = tex1Dfetch(texaRef,3968*

((16*tmp+64*bx+tx) + (kk+ty)));

}

__syncthreads();

for (k=0; k<=15; k++) {

P3[0][0] += P2[tx][k]*P1[k][ty]

P3[1][0] += P2[tx][k]*P1[k[[16+ty]

...

P3[0][1] += P2[16+tx][k]*P1[k][ty]

...

P3[3][3] += P2[48+tx][tk]*P1[k][48+ty]

__syncthreads();

}

__syncthreads();

}

for (t=0; t<=48; t+=16)

for (s=0; s<=48; s+=16)

c[64*by+ty+t][64*bx+tx+s] = P1[t/16][s/16];

(e) Generated CUDA kernel code from script in (d)

N=3968,TI=TJ=64,TK=16)

Figure 4.1: Compiler generated transformation recipe and automatically generated code
for DGEMM.
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Chapter 5

Transformation Strategy

Generator

This chapter presents the Transformation Strategy Generator (TSG), an automated com-

piler decision algorithm along with the autotuning mechanism. The algorithms imple-

menting the two contributions of this thesis along with the brief description of the tasks

needed as prerequisite for the TSG are presented.

5.1 TSG Overview

The TSG algorithm, as shown in Figure 3.1, proceeds in two phases to derive a set

of CUDA-CHiLL transformation commands. The result of the decision making part of

TSG is a master recipe, listing all the optimization decisions taken. Multiple unique

combinations in the form of individual transformation recipes are generated using the

master recipe before their evaluation in the autotuning part of TSG.

First, Optimization Strategy Generation generates a master recipe, after following

two phases:

(I) an analysis of computation partitioning options, which considers dependences,

memory coalescing and data reuse;

(II) an analysis of data placement in memory hierarchy, which considers data reuse,

sharing patterns and memory coalescing;

The master recipe compactly represents the search space of possible implementations

with a collection of multiple computation partitioning decisions as well as all the data
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Figure 5.1: Overview of the first phase of TSG, resulting in master recipe.

placement options. The master recipe works as an input to the next phase which spawns

multiple solutions by generating unique combinations from its set of code transformation

decisions.

Second is the code generation and autotuning part of the system, which consists of

two phases:

(III) autotuning a set of unique recipes, generated from combining decisions in the

master recipe with default parameter values, and

(IV) autotuning for optimization parameters values for the selected recipe from

step (III) and final code variant selection.

We will present each phase in detail.
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5.2 Preprocessing of the Loop Order

Before the TSG, we analyze the dependence information in the dependence graph which

identifies the loops carrying the dependences. Also in the preprocessing, we gather

important information about the data structures in the computation which includes

access patterns and dimension. The information about the data structures is needed in

reuse analysis, which will determine the movement of data in the memory hierarchy. All

the operations to gather the dependence and data structure information are defined in

CHiLL.

Once the information is acquired, it is kept, used and modified by the TSG. This

allows for the TSG to work independently of the changes being made to the computation

related information by underlying software. Due to this independence, the TSG can view,

understand and modify the computation at a higher level with a cleaner representation.

5.3 Phase I: Computation Partitioning Analysis

In the first phase of the TSG, the algorithm analyzes the dependence information to

partition the computation. The loops in the computation with no dependences will

be transformed or tiled, resulting in a new loop nest, where some loops will represent

the parallelism (blocks and threads). The computation partitioning analysis algorithm

uncovers the possible parallelizations for a given computation, which may be further

constrained once memory hierarchy optimizations are applied in Phase II.

Input: The input to the TSG is SUIF intermediate code of the sequential C compu-

tation kernel code.

Output: The output of this first phase, as described in the computation partitioning

analysis , is a set of computation partitioning variants v ∈ V , each containing candidate

loops for blocks (v.BX, v.BY) and threads (v.TX, v.TY and v.TZ) on a GPU, and a

loop order (v.Order) that moves these parallel loops to outermost levels, and sequenced
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such that block loops precede thread loops and according to the x,y or x,y,z dimension

sequencing.

The first phase of the algorithm looks at the computation partitioning at three pos-

sible levels. These are

• Kernel-level partitioning at the host,

• Block level partitioning on the device defining a grid of thread blocks, and

• Thread level partitioning defining blocks of threads.

5.3.1 Kernel-Level Partitioning at the Host

In CUDA programming model, a computation can be divided at CPU host in to multiple

kernels, computing sub-computation. However, the only way one can benefit from such

an arrangement, is by the efficient use of memory hierarchy and hiding the latencies

associated with the tiling of the computation. In Nvidia GPUs, parts of the memory

hierarchy reside in global memory and are efficiently accessed by specific load commands.

Example of such memories are texture and constant memory. We know from the litera-

ture, that accessing data resident in global memory through constant memory is slightly

faster than access through texture or as raw global memory. So we only take the case of

using constant memory in the variants with kernel tiling.

We analyze the data structures(typically arrays) used in the computation, to deter-

mine if they are read-only and have reuse across thread blocks. If there is any such data

structure, it is selected to be assigned for constant memory use. If the size of the data

structure is more than the size of constant memory (64K), the kernel has to be tiled in

the host code. We create the variant with host level tiling. This adds a tile by index

command, which pushes the tile controlling loop as the outer most. Using constant mem-

ory may impact computation partitioning at the device and loop order by the additional

level of tiling in the host.
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Algorithm: ComputationPartitioningCandidates

Inputs:

L = 〈Loops, Statements,Refs,Deps〉// a loop nest computation

v = Initial {
T = ∅ // set of tile commands

CM = ∅ // constant memory candidates

BX = BY = ∅ // assignment of block loops

TX = TY = TZ = ∅ // assignment of thread loops

Order = {l1, l2, . . . , ln} // assignment of loop order

R = SM = TM = ∅ // candidates for registers, shared and texture memory

}

Output: V , master recipe representing a set of partially-specified variants

Loops = {l1, l2, . . . , ln} represents a (possibly imperfect) loop nest in its nesting order

1. Preprocessing: Permute Loops such that any loop carrying a dependence is moved inward

so that the dependence is carried within a thread program, or outward so that it is carried

by the sequential host program. If needed, loop skewing can be performed so that the

dependences are carried by the outermost loop. The output of this step is a modified loop

order, Order = {l′1, l′2, . . . , l′n}.

2. Constant memory candidates: Identify read-only variables as candidates for placement in

constant memory. If a variable’s data footprint of the whole loop nest is larger than the

constant memory limit, some loops need to be tiled in the host. We create a variant v

for each such data structure (one at a time due to a small constant cache) that can be

copied together within the same tile, and add the data structures to v.CM . The output

of this step is a set of loops selected for tiling to adjust the data footprint v.T (potentially

empty), and a modified loop order v.Order.

3. Block loop candidates: Candidates for the block loops must meet the following criteria:

(1) they do not carry a dependence; and, (2) it is safe to permute them to the outermost

position (or next-to-outermost position if there was a dependence). We use 2D blocks

for computations with multi-dimensional data structures, and only a single dimension

otherwise (v.BX). This heuristic improves the surface to volume ratio of partitioning. This

step (and subsequent ones) is applied to all existing variants, and the output is potentially
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a larger set of variants, each incorporating the loops selected for tiling v.T , a modified loop

order v.Order, and the candidate v.BX and v.BY values.

4. Candidate thread loops in the x dimension and memory coalescing: Candidate loops for the

x thread dimension are evaluated next. Such loops must also meet the following criteria:

(1) they do not carry a dependence; (2) permutation to inside the block loops is safe;

and, (3) the last dimension of at least one array is accessed by the corresponding loop

index. The first is needed for correctness and the third criterion is designed so that the

x dimension linearly accesses the bulk of its data in global memory, resulting in coalesced

accesses. When there are no loops that meet these criteria, the last one is relaxed. The

output of this step is potentially a set of variants, each of which includes the loop selected

for tiling v.T , a modified loop order v.Order, and a candidate v.TX value.

5. Additional thread dimensions: Remaining loops mapped to the y and z thread dimensions

must meet just two criteria: (1) they do not carry a dependence; and, (2) it is safe to

permute them to just within the x thread dimension. As with blocks, we match thread

dimensionality to data dimensionality. We may obtain additional thread dimensions by

further tiling v.TX, as in Figure 4.1(b), or by selecting a different loop for v.TY as in

Figure 4.1(d). The output of this step is potentially a set of variants, each of which

includes the loops selected for tiling v.T , a modified loop order v.Order, and candidate

v.TY and v.TZ values.

The result is a set of variants which reflect both tiling and no tiling at the host level.

The variants with host tiling will have a tile by index command at this stage.

5.3.2 Block-Level Partitioning

After we have the host level tiling done, we are left with the tiled or untiled loops

with dependences and possibly a set of loops without dependences. The loops which

are without dependences are selected to setup a maximum of 2 dimension of grid to be

assigned to individual SMs for execution. Loops that are candidates for the block loops

must meet the following criteria:
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(1) they do not carry a dependence; and,

(2) it is safe to permute them to the outermost or next-to-outermost position.

If only one or zero candidate loops carry reuse, we only use a single level of block loops (x

dimension). Otherwise we parallelize maximum allowed two loops for x and y dimensions.

This comes from the heuristics of improving surface to volume ratio of partitioning. Once

candidates for the x and y dimensions are selected, we mark these loops for tiling, so that

tiling can be applied to adjust the number of blocks during autotuning. The output of

this step is potentially a set of variants, each incorporating the loops selected for tiling ,

a modified loop order , and the candidate values for the tile sizes which ultimately decide

the number and dimension of blocks in the grid.

5.3.3 Thread level partitioning

Candidate loops for the x-thread-dimension are evaluated next. Such loops are the ones

that are not marked as block loops and must also meet the following criteria:

(1) they do not carry a dependence;

(2) permutation to just inside the block loops is safe; and,

(3) the last dimension of at least one array is accessed by the corresponding loop

index.

The first criterion is needed for correctness and the third criterion is designed so that the

x-dimension linearly accesses the bulk of its data in global memory, resulting in coalesced

accesses. When there are no loops that meets these criteria, the last one is relaxed.

5.4 Phase II: Data Placement Analysis

The second phase examines each data structure in the computation and identifies can-

didates for mapping to different levels of the memory hierarchy (other than constant
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memory). The data placement analysis algorithm takes as input the master recipe from

Phase I with parallelization decisions. The information about the data structures col-

lected in pre-processing is used to identify the access and reuse patterns along with the

structure of the arrays. Data placement decisions are made for each possible paralleliza-

tion strategy. It marks which data structures can be destined for which level of the

memory hierarchy. The algorithm explains the criteria for data placement in shared

memory, registers and texture memory. While placement into texture memory is con-

strained to read-only data, the decisions of placement in shared memory and registers

are based on reuse across or within the threads.

Algorithm: DataPlacementCandidates

Inputs:

L = 〈Loops, Statements,Refs,Deps〉//a loop nest computation

V = master recipe from Phase I with parallelization candidates

Output: V , master recipe with parallelization and data placement candidates

1. Shared memory candidates: Candidates for shared memory v.SM are not in v.CM . They

have reuse across one of the thread loops v.TX, v.TY or v.TZ, or their accesses are not coa-

lesced in v.TX and coalescing is possible for other loops l ∈ Loops−{v.BX, v.BY, v.TX}.
For each candidate data structure d, the algorithm creates a shared memory candidate

object sc = 〈d, l, t, ct, o〉 that describes the data structure, a loop level l for which the copy

should be placed, and, optionally, a specification of how to tile internal loops within each

thread. This specification includes a set of internal loops t to be tiled, corresponding tile

controlling loops ct, and a modified loop order o after tiling. These latter three optional

fields are only necessary if d’s footprint within l is an array that is larger than the number

of threads, as determined by polyhedral scanning. For example, the loop order o is defined

as {v.BX, v.BY, ct, v.TX, v.TY, v.TZ, t} if t represents a single loop. This order captures

the right footprint for the copy across threads. We add each sc to v.SM .

2. Register candidates: Candidates for register v.R are not in v.CM or v.SM , and have reuse

carried within the innermost loop or across some other loop inside the thread program.

For each candidate data structure d, the algorithm creates a register candidate object rc =

〈d, l, t, ct, o〉 that describes the data structure, a loop l to place the copy, and an optional
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tiling specification as for shared memory tiling. For registers, the loop order o when tiling

for a single loop t within the thread would be {v.BX, v.BY, v.TX, v.TY, v.TZ, ct, t}. We

add each rc to v.R.

3. Texture memory candidates: Candidates for texture memory are read-only data that are

also in v.SM . We have found through experimentation that texture memory has only

demonstrated performance gains in such cases (and not for data in registers or global

memory).

5.5 Phase III: Generating and Autotuning Variants

At this stage, the TSG has finished laying out the optimization decisions for computation

partitioning and data placements. These decisions, collected in themaster recipe, serve as

the input to this phase of code variant generation and evaluation. The autotune-variant

algorithm will generate actual CUDA-CHiLL recipes from all unique combinations of

decisions prescribed in the master recipe. It shows how the algorithm combines and

emits the commands representing the individual optimization decisions in the master

recipe. It has to make sure that commands which are paired with other commands are

emitted correctly in a given recipe. For example, a certain data placement command

may only work if it is accompanied by a tile by index command, tiling the copy of data

in a certain part of memory hierarchy. These commands also have some parameters

which can have multiple values. The potential combinations of the all the values of the

parameters with the set of unique combinations of optimizations can be huge. Thus

we adopt a strategy to split the evaluation in to two phases. A preliminary pruning is

done at this phase by binding a fixed value to each of the parameters in the recipe and

empirically evaluating the recipes, to pick the best in the set. The output is often a single

recipe which performs the best, with parameter values which might not be optimum.

We validated this pruning strategy by doing an exhaustive search of parameters and

data placement for matrix-matrix multiply and found that, while the actual performance

varies with different parameter values, the relative differences between implementations
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Figure 5.2: Overview of the autotuning and empirical evaluation phases of the TSG.

leads us to the right data placement decisions. Therefore, for this benchmark which is

coming closest to peak performance, we can prove that this approach to separating the

data placement search from the parameter search does not degrade the final solution

while dramatically reducing the number of points to be searched.
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Algorithm: AutotuneVariants

Input: V = master recipe from Phase II

Output: V ′ = set of parameterized CUDA-CHiLL scripts

1. Constant memory: If this variant uses constant memory, the algorithm emits the following

for all data structures d in v.CM : emit(v,copy to constant(d))

2. Reorder and tile for computation partitioning: Emit the command to tile and order block

and thread loops. If this variant requires tiling in the host for constant memory, the

algorithm also emits a tile command to accomplish this. Prior to generating the com-

mand, the algorithm creates parameters representing tile sizes T1, . . . Tn and identifiers

representing tile controlling loops tc1, . . . , t
c
n. This step generates the ordering for the

block and thread loops, and applies the necessary tiling to adjust parallelism as needed:

emit(v,tile by index(v.T , {T1, . . . , Tn}, {l1control = ltc1 ,. . .}, v.Order))

3. Copy to registers, tiling if needed: The algorithm creates a copy v′ of each variant v ∈ V

for each subset v′.R ⊂ v.R, and adds it to V ′. This allows TSG to evaluate which subset

yields the best utilization of the register file, as follows:

(a) Scan the set v′.R to identify whether additional tiling is needed from the individual

rc = 〈d, l, t, ct, o〉 objects in v′.R.

(b) For example, assume only a single loop t must be tiled, the tile size T is created, and

the remainder is specified in the register candidate objects.

(c) Generate tile commands as needed: emit(v’,tile by index(t, {T}, {ct}, o, strided))

(d) Foreach rc ∈ v′.R, emit(v’,copy to registers(rc.d,rc.l))

4. Copy to shared memory, tiling if needed: The algorithm creates a copy v′ of each variant

v ∈ V for each subset v′.SM ⊂ v.SM and adds it to V ′. This allows TSG to evaluate

which subset yields the best utilization of the shared memory, as follows:

(a) Scan the set v′.SM to identify whether additional tiling is needed from the individual

sc = 〈d, l, t, ct, o〉 objects in v′SM .

(b) For example, assume only a single loop t must be tiled, the tile size T is created, and

the remainder is specified in the shared memory candidate objects.

(c) Generate tile commands as needed: emit(v’,tile by index(t, {T}, {ct}, o, strided))

(d) Foreach sc ∈ v′.SM , emit(v’,copy to shared(sc.d,sc.l))
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5. Fetch using texture memory: The algorithm creates a copy v′ of each variant v ∈ V for

each subset v′.TM ⊂ v.TM and adds it to V ′. This allows TSG to evaluate which subset

yields the best utilization of texture memory, as follows:

(a) Foreach tc ∈ v′.TM , emit(v’,copy to texture(tc.d))

6. CUDA blocks, threads and kernel: Generate the CUDA command for each variant v ∈ V :

emit(v, cudaize(〈 kernel 〉, { 〈params〉 }, { block={v.BX, v.BY }, thread={v.TX, v.TY, v.TZ }
}))

7. Loop Unrolling and Unroll-and-Jam:

As a final step, the algorithm creates up to three variants v1, v2, v3 for each variant

v ∈ V corresponding to different levels of unrolling: emit(v1, unroll to level(0)), emit(v2,

unroll to level(1)), emit(v3, unroll to level(2))

5.6 Phase IV: Autotuning Optimization Parameter Values

From Phase III, a single recipe is selected and serves as input to the last phase of the TSG.

The focus of the Phase III was to decide on the unique combination of optimizations from

a set, with bounded parameter values. The focus of the Phase IV is to allow for multiple

values for parameters in the recipe selected from Phase III. The autotuning parameterized

variants algorithm describes the final autotuning step on unbound parameters in the

recipes to find the best parameter values and the best recipe.

54



Algorithm: SelectBlockTileSizes

X=MAX NUM OF THREADS PER BLOCK

T = {warp size, warp size ∗ 2, ...X }
M = number of Streaming Multiprocessors

Input:

P = problem size

Output: T ′ ={empty set }// tile sizes potentially maximizing device occupancy.

foreach (t ∈ T )

# of blocks (B) = ceil(P/t)

# of blocks in last computation cycle (R) = (B%M)

If ( M-1)/2 < R < (M-1)

T ′ ← t

Algorithm: Autotuning Parameterized Variants

P = set of problem sizes

Input:

T l = {pr1, pr2....prn}
T l comb = {empty set}
V = selected recipe from Phase III

t val = MAX VAL

Output: V ′ = optimized code

foreach (p′ ∈ P )

foreach (i ∈ T l)

T l[i] ← SelectBlockTileSizes(p’)

T l comb = {T l[1]× T l[2]× ....× T l[n] }
v = V

foreach (t ∈ T l comb)

v.t ← t

val = evaluate(generate code(v))

If val < t val

V ′ ← generate code(v)
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5.7 Selecting Parameter Values: Tile Sizes

In optimizing GPU code through compiler transformations and optimization techniques,

we see the problem as essentially a tiling problem. However, the fact that we have to

autotune through the parameters for tiling, presents us with a challenge to constrain

the search space for its parameters to a small subset of values. Also important is the

fact that, to generate the optimized libraries for a set of functions we need to provide

a solution based on some limited set of values (2 or 3) for tiling parameters, where the

performance difference is not more than 5 or 10% of the best solution. We focused our

study on optimizing CUDA code for NVIDIA GPU (GTX 480). We started looking at

an aspect of GPU code execution which is stressed upon by a number of researchers

and library developers i.e. occupancy. Occupancy here refers to the use of available

GPU resources, basically how much work is scheduled for SMs in the course of complete

execution of a piece of code. Many contemporary researchers believe higher occupancy

is necessary to achieve greater performance [Nvi08b, YXKZ10]. Others like Vasily et

al. [VD08b] argue against occupying much of the GPU in terms of blocks, but by using

as much of the fastest memory available as possible. It seems that almost comparable

performances can be achieved by both the methods with appropriate parameter values

for different variables like block sizes, thread workload, number of registers and amount

of shared memory usage etc. In this discussion we will focus on the question of whether

we can predict with enough generalization, the set of tiling parameter values that may

always lead to a solution with comparable performance to the best available.

5.7.1 Understanding Features and Constraints

Consider matrix-vector multiplication as an example. Our optimization strategy for this

BLAS kernel is based on tiling the data for shared memory and registers and coalescing

accesses to global memory from within the threads. We have a 1D block and thread

dimension within a block organization for the distribution of work on the streaming
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multiprocessors of the GPUs. To start with, we concentrated on two tile sizes i.e. 16

and 32 which correspond to the half-warp and warp sizes (the unit of resource allocation)

in CUDA. In our strategy, the tile sizes are also important, in the context of determining

the number of threads in a block and thus the block size. Also effected would be the

number of registers and amount of shared memory use, effected by another parameter,

which is the amount of work to be delegated to each thread in a block. We arrange

the threads in a single row, for coalescing global memory accesses and assign a vertical

stream of work for each thread, accomplished by having a loop inside each kernel imple-

mentation intended for threads. For this particular kernel, the loop size is also the same

as the tile size. So in this particular case, one tile size is effectively dictating all the

important occupancy, memory utilization and work management issues. The example of

matrix-vector multiplication can be considered a base case for understanding the rela-

tion of particular tile sizes with the available system resources. So we devised a set of

experiments to understand and to come up with a generalized formula for selecting tile

size, which performs better based on the notion of effective use of available resources.

Figure 5.3: Experimental evaluation of the most profitable tile sizes for matrix-vector
multiplication over a range of matrix problem sizes (128-8K).
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5.7.2 Efficient Workload Management: Experimental Methodology

We performed separate experiments with different tile sizes for a range of problem sizes

from 128-8k, with step size of 7, and identified the best tile size at each point. The tile

sizes we focused on eventually, were multiples of 32, the warpsize.

The hypothesis was that if we could find a pattern in the behavior exhibited by each

tile size in relation to the problem size, on a particular set of resources, we can at least

constrain the possible tile sizes in a certain range, which would then enable us to pick two

or three best ones with not a lot of performance difference among them. The hypothesis

was based on the experimental observations, where we manually tried a particular set

of tile sizes (multiples of 16 or 32), striving for better performance. We found out that

some tile sizes performed poorly compared to the other tile sizes, on the same problem

sizes. Periodic drops in performance were clearly observed in the curves of each tile size

as shown in Figure 5.3.

We observed a drop in performance for numbers of blocks that were not a multiple

of 16. This behavior can be attributed to under utilization of the available SMs by the

number of blocks remaining in the last batch of executing blocks. We observed that

every time the utilization of SMs was <50% at a given time, the performance would fall,

resulting in pruning of the particular tile size.

An interesting fact evident from the graph is that the periodicity of performance drop

is inversely proportional to the size of the tile. The effects are more visible for larger

problem sizes (> 2K). For < 2K, we can almost pick any of the multiples of 32. From

these observations, we have developed an algorithm to select tile size values.

5.7.3 Selecting Tile Sizes to Maximize Device Occupancy

The algorithm to select block tile sizes outlines the process of selecting tile size values.

This simple method gives us the set of tile sizes values which can then be autotuned

to find the best one. Manually-tuned libraries use a set of implementations for a range

of problem sizes. We can generate these implementations automatically through the
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autotuning of the parameter values. A set of two to three parameter values can be used

to generate a set of implementations of a computation for a given range of problem sizes.

Tile Sizes: Threads (x dimension) The scheduling unit on a GPU is a warp of 32

threads. Of particular importance are the number of threads in the x dimension, which

exploit global memory coalescing. Thus the algorithm limit the tile size used to govern

number of threads per block by the warp size and its multiples. Also, by using tile sizes

to define the number of threads in a block, we put an upper bound on the tile size search

space, i.e. maximum number of threads per block.

Tile Sizes: Blocks The algorithm takes into account a data set size (or a range)

to determine whether a particular tile size leads to a computation partition where a

significant fraction of the resources are idle. This algorithm was derived from empirical

analysis using a much larger set of tile size candidates, and prunes away sizes that will

lead to idle resources.

Tile Sizes: Data Staging When tiling is used to stage data into shared memory

or registers, the maximum tile size is limited by shared memory or register capacity

constraints, respectively. The footprint of data accessed by a thread block cannot exceed

the size of shared memory, which is quite small as shown in Table 2.1.

5.8 Summary

This chapter presented the details about the TSG and autotuning mechanisms, two of

the major contributions of this thesis. The chapter presented the key constraints and

heuristics driving the decision making. Also presented and discussed in detail are the

algorithms defining the functionality of these parts in the system.
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Chapter 6

Experimental Evaluation

We generate highly-tuned code for the benchmarks presented in Table 2.2 on the two

architectures studied for this thesis i.e. the GTX-280 and C2050 presented in Table 2.1.

6.1 Experimental Methodology

For all measurements, each version of the generated code and the CUBLAS library was

evaluated 10 times, and we used the mean of those run times, recorded using CUDA

events. In the case of benchmarks from a contemporary compiler [BRS10], we have

used the timing mechanism provided with their benchmark suite which is based on C

timers. Performance results were reasonably stable, with a standard deviation of less

than 0.1msec for execution times in the tens of milliseconds. Prior to showing all the

performance results, we describe in detail two case studies and compare against manual

tuning.

6.2 Performance Comparison: Manually-Tuned BLAS

This section presents the results of optimized code for three BLAS kernel routines com-

pared with those in the manually-tuned BLAS library by Nvidia, CUBLAS.

6.2.1 Matrix-Matrix Multiplication

Matrix-matrix multiplication, from the set of BLAS kernels, was discussed as a case study

in Chapter 4. Figures 6.1 and 6.3 show the performance of SGEMM and DGEMM on

the two GPU architectures over a range of square matrix sizes from 1K to 8K elements.

We compare against the CUBLAS 3.2 library, and for C2050 we also compare against
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Figure 6.1: SGEMM GFLOPS (vs CUBLAS 3.2).
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Figure 6.2: SGEMM GFLOPS (vs CUBLAS 2.2 for GTX-280).
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Figure 6.3: DGEMM GFLOPS (vs CUBLAS 3.2).
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Figure 6.4: SGEMV GFLOPS (vs CUBLAS 3.2).

MAGMA 0.2 [NTD10] for DGEMM. Figure 6.1 shows SGEMM, which achieves the

highest level of performance (up to 592 GFlops) for the compiler-generated code because

it has the most computation. The compiler-generated code performs almost at the same
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Figure 6.5: SGEMV GFLOPS (vs CUBLAS 2.2 for GTX-280).

level as the manually-tuned CUBLAS 3.2, coming within 2% of CUBLAS 3.2 on the

GTX-280 and within 8% on the Tesla C2050. MAGMA performance lies in between the

two, but all are close.

We have also compared the code against a previous version of CUBLAS i.e. CUBLAS

2.2 on GTX-280, as shown in Figure 6.2. The experiment was done on every point

from problem size 128 up to 8K. The graph shows the optimized code from our system

performing consistently better than CUBLAS 2.2. There are the problem sizes in the

range, where CUBLAS performs comparable or better than code from our compiler

with manually-tuned routine. The same routine, if used for other points throughout

the range, does not yield the same kind of performance. It strengthens our conviction

that generating customized solutions for computation with slightly different parameters,

yields superior performance compared to the use of fixed implementations.
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Figure 6.6: DGEMV GFLOPS (vs CUBLAS 3.2).

6.2.2 Matrix-Vector and Transposed Matrix-Vector Multiplication

We will now discuss the results of the other BLAS benchmarks, which include single

and double precision results for matrix-vector multiplication (GEMV), and transposed

matrix-vector multiplication (TMV), and compare against CUBLAS. The matrix-vector

multiplication kernels is optimized by choosing a single dimension of blocks and threads

for computation partitioning. The input vector is put in shared memory and the result is

stored in registers by each thread. Much of the performance improvement is done through

coalesced accesses loading the entire vector into shared memory for most problem sizes.

As compared to GEMV, the challenge in achieving high performance for transposed

matrix-vector multiplication is that it is not possible to achieve global memory coalescing

for the input matrix given the parallelization strategy, where each output element is

assigned its own thread. Therefore, the compiler loads the input matrix into shared

memory in coalesced order, and then different threads access the data.
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Figure 6.7: SGETMV GFLOPS (vs CUBLAS 3.2).

We use constant memory for the input vector, and it improves performance for all

but one problem size (8K) on GTX-280 and for a single problem size (6K) on C2050,

in our single precision experiments. Double precision results also follow the same trend,

but times out on the GTX-280 for larger problem sizes. On GTX-280, which has no

L1 cache and smaller shared memory, single precision code always perform within 5% of

CUBLAS, with a maximum speedup of 1.53x. Our double precision code achieves 1.90x

speedup over CUBLAS. For C2050, the code outperforms CUBLAS significantly, up to

1.90x for both single and double precision code.

For SGEMV in Figure 6.4 the compiler-generated code outperforms CUBLAS 3.2 on

both architectures, by as much as 1.84x on C2050 and 1.22x on GTX-280. It is interesting

that the raw performance for larger data set sizes is actually better on the less powerful

GTX-280. We suspect this reflects a less efficient use of the available memory bandwidth

on the C2050. The compiler uses a register for the result, shared memory for the input

vector, and accessing the input array out of global memory, but tile sizes are different

for the two platforms, generally smaller sizes for GTX-280 (64-128 range) and larger for

C2050 (128-384 range). Results for TMV are shown in Figure 6.7 and 6.8.
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Figure 6.8: DGETMV GFLOPS (vs CUBLAS 3.2).

Figure 6.5 presents comparison against CUBLAS 2.2 for GTX-280. The automat-

ically generated code from our compiler system almost always performs better than

CUBLAS 2.2 on each point from 128-8K. The automatically-generated code for both

benchmarks almost always outperform the manually-tuned CUBLAS code.

6.3 Performance Comparison with State-of-the-Art GPU

Compiler

We applied our system to a set of optimized benchmarks generated by a state-of-the-art

compiler presented in [BRS10]. To derive timings, compute GFlops and compare with

the benchmarks, we used the test harness provided with the benchmarks. Figure 6.9

shows the speedups we achieve over the [BRS10] benchmarks (y-axis), on the C2050

and GTX-280 GPUs; each bar represents a benchmark. Performance in GFlops for each

kernel is shown at the top of each bar. Overall, our system achieves an average speedup

of 1.48X and 1.33X for the C2050 and GTX-280, respectively.

The CP benchmark shows the highest performance (332 GFlops) and speedup (2.03X)

over PLUTO. Our system selects 32x16 blocks and 16x16 threads and fully unrolls the
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Figure 6.9: Performance comparison with state-of-the-art GPU compiler in [BRS10]

innermost computation loop of 256 iterations, while PLUTO uses 32x32 blocks, 16x16

threads and less work per thread, along with an unroll factor of 16 (using an unroll

pragma). A similar strategy achieves performance of over 265 GFlops on the GTX-280.

For the two MRI kernels, MRIQ and MRI-FH, we were able to find better performing

solutions by using half as many threads per block as the PLUTO-generated code. In

addition, in MRIQ, data placement in shared memory for the key data structure kV als

was also different from the PLUTO-generated code. The code for MRIQ is also high-

lighted in Chapter 8 of [KH10].In [KH10] and [IMP07], a different strategy is used for

kV als that tiles in the host code and places tiles of kV als in constant memory, as is done

in the PLUTO benchmark. The PLUTO and hand-coded PARBOIL benchmarks MRIQ

and MRI-FH perform comparably to each other; and our compiler achieves a speedup

of 1.13X on the C2050 and matches their performance on the GTX-280.

In the NBody kernel, the major differences from the PLUTO strategy are fewer

threads per block and unrolling of the innermost computation loop with a factor of 128
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struct kValues {

float Kx; float Ky; float Kz; float PhiMag;

} kVals[M];

float x[N], y[N], z[N], Qr[N], Qi[N];

for ( i = 0; i < M; i++) {

for ( j = 0; j < N; j++) {

expArg = PIx2 * (kVals[i].Kx*x[j] + kVals[i].Ky*y[j] + kVals[i].Kz*z[j]);

cosArg = cosf(expArg);

sinArg = sinf(expArg);

phi = kVals[i].PhiMag;

Qr[j] += phi * cosArg;

Qi[j] += phi * sinArg;

}

}

Figure 6.10: MRIQ: Sequential code and transformation strategy for C2050.

compared to PLUTO’s factor of 16 unrolling. Our system achieves a 1.81X and 1.28X

improvement on the C2050 and GTX-280, respectively. For MPEG4, a multimedia

kernel, the computation partitioning and data placement strategy is similar across our

compiler and PLUTO, but we use 256x256 blocks as compared to 8x4 blocks in PLUTO.

The number of threads per block is the same, but our solution performs far less work per

thread, and allows the system to co-schedule multiple blocks on the same multiprocessor.

We achieve a 1.26x speedup on C2050 and 1.77x on GTX-280 as compared to PLUTO.
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Figure 6.11: MRIQ GFLOPS.

6.4 Performance Comparison of MRIQ and 2D Convolu-

tion

We briefly consider the benchmark MRIQ. from Parboil [IMP07] and PLUTO [BRS10]

benchmark suites. This code is highlighted in Chapter 8 of [KH10].The automatically-

generated script for both architectures places a key data structure kV als in shared

8 16 24 32
0

50
100
150
200
250
300
350
400
450
500

CUDA−CHILL−TC2050
naïve GPU−TC2050
CUDA−CHILL−GTX280
naïve GPU−GTX280

Convolution Mask Size(Square Matrices) for 4kx4k image.

G
Fl

op
s

Figure 6.12: 2D Convolution GFLOPS.
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memory and all other data in registers. In [KH10] and [IMP07], a different strategy is

used that tiles in the host for constant memory.

CUDA-CHiLL achieves speedups over the manually-tuned implementation for large

data sets of 1.14x on the Tesla and 1.08x on the GTX-280, as shown in Figure 6.11.

2D Convolution. To show that this approach can be applied to optimize other array-

based codes, the last benchmark is a 2D convolution, applied to a square image of 4K

but with varying mask size and an irregular data footprint for the image. We applied our

optimization for four different mask sizes, from 8 to 32. Changing the mask sizes results

in different tile sizes. Thus the problem size defines the computational decomposition

to achieve the best performance. We found the use of constant memory for the mask

matrices and shared memory for the image itself, to be the most beneficial.

The automatically-generated code achieves up to a 13x speedup over the naive imple-

mentation, and up to 1.67x improvement on the compiler described in [YXKZ10] as

shown in Figure 6.12. We achieve performance ranging from 72 GFlops to nearly 250

Gflops on GTX 280, and up to 443Gflops on Tesla C2050 with a minimum of over

120Gflops, depending on the mask size (which affects amount of data reuse in shared

memory).

6.5 Impact of Optimizations on Performance

In this section we show the impact of specific optimizations on application performance.

The code targeting the two architectures have a few similarities and use all the various

levels of the memory hierarchy. Nevertheless, the impact of the optimizations vary across

architectures, applications and data set sizes. In Table 6.1, we capture the performance

difference from the best-performing baseline, and one with one optimization turned off.

Overall, we observe that the most significant loss of performance results from either

disabling unroll-and-jam or copying to registers.These optimizations work together to
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Name
Problem Unroll Registers Shared Mem Texture Mem Constant Mem

Size GTX- Tesla GTX- Tesla GTX- Tesla GTX- Tesla GTX- Tesla
(Sq. Mat) 280 C2050 280 C2050 280 C2050 280 C2050 280 C2050

SGEMM 4320 92.30 97.12 92.34 84.77 72.17 97.68 1.38 4.20 0.00 0.00

DGEMM 4544 Timedout 95.39 Timedout 94.55 37.60 53.20 0.52 3.28 0.00 0.00

SGEMV 4096 67.78 63.46 67.31 70.42 54.10 0.00 0.00 0.00 0.00 1.31

DGEMV 2048 48.93 56.75 57.89 61.91 0.00 0.00 0.00 0.00 2.69 3.34

SGETMV 4096 63.06 0.51 29.71 20.75 92.59 77.32 0.00 0.00 3.84 0.00

DGETMV 2048 0.00 0.00 9.67 19.54 85.26 83.33 0.00 0.00 0.00 0.00

2D-Conv (single precision) 4k,16 58.66 64.73 81.87 64.66 80.05 33.61 0.00 0.00 20.47 48.23

MRIQ (single precision) 32k,3k 0.00 0.00 12.47 51.8 10.61 16.70 0.00 0.00 0.00 0.00

MRI-FH (single precision) 32k,3k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.09 59.15

MPEG4 (single precision) 4k,16 45.61 62.04 98.87 87.75 97.69 88.20 0.00 0.00 0.00 0.00

CP (single precision) 32k,3k 0.00 5.36 93.81 30.99 10.58 10.26 0.00 0.00 0.00 0.00

NBODY (single precision) 4k,16 49.36 10.74 62.76 53.59 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.1: Performance percentage loss, resulting from disabling individual optimiza-
tions.

manage the register file and improve instruction-level parallelism. For most of the com-

putations, small 2D arrays are accessed from registers and unrolling simplifies access

expressions so that the arrays are mapped to registers by the back end compiler.

Copying data to shared memory generally improves performance on both architec-

tures, more significantly on the GTX-280, possibly due to the absence of a data cache as

compared to the C2050. TMV and GEMM use shared memory to copy an input matrix

into shared memory in coalesced order that is stored in global memory in a different

order, which has a huge impact on performance. Table 6.1 shows the impact of texture

memory on GEMM. Using texture memory improves performance by up to 30GFlops.

While we evaluated use of texture memory on all the benchmarks, we saw little improve-

ment and sometimes degradation on all benchmarks other than GEMM. We make the

following observations from our experiments. The gains from texture memory are likely

to be more significant on data structures not allocated to shared memory (e.g., reg-

ister data). We found that texture calls were prohibitively expensive within the core

computation, but could be beneficial during the data staging portion of the kernel.

The performance gain in GEMM comes from increased bandwidth to global memory

by using the dedicated texture fetch hardware. Texture memory benefits a few other

programs, but these same programs improve further by using constant memory. Constant

memory on the other hand improves performance in kernels where we are able to put
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one or more of the appropriately-sized inputs in the constant memory (GEMV,TMV

and MRI-FH) that is accessed in the same order across all the threads. Using constant

memory eliminates the overhead of shared memory copy and potentially frees up shared

memory for shared data in some kernels.

An interesting observation in the table is the absence of all major optimizations in the

solution of MRI-FH. Given the number of data structures and their respective sizes, the

best performance is achieved by using constant memory for smaller-sized data structures

and accessing the larger data structures through global memory in coalesced order.

Computational Partitioning Phase Autotuning Phase
Total Input Loop Perms. Pruned Output Mult. Total Potential Evaluation Versions Total

Kernels Comb. Data Dep. Mem Coal. Comb. Kernels Var. Variants Opt. Params Eval. % Pruned

GEMM 6 4 1 1 4 5 7936 124 64 188 97.63
GEMV 2 1 0 1 1 2 560 35 16 51 90.80
TMV 2 1 0 1 1 2 560 35 16 51 90.80
MRIQ 2 1 0 1 1 2 176 11 16 27 84.65

2D-Conv 24 22 1 1 4 5 9984 156 64 220 97.79
MRI-FH 2 1 0 1 1 2 5104 319 16 335 93.43
MPEG4 24 22 1 1 4 5 9984 156 64 220 97.79

CP 6 4 1 1 4 5 2816 44 64 108 96.16
Nbody 2 1 0 1 1 2 304 19 16 35 88.48

Table 6.2: Search space pruning results for computation partitioning phase.

6.6 Size of Optimization Search Space

The section presents the possible sizes of search space and actual number of implementa-

tions evaluated for the computations studied in this thesis. Table 6.5 shows the impact

of compiler heuristics on pruning the search space of implementations. Dependences

and memory coalescing heuristics limit the search space to no more than five different

computation partitionings. If we consider all combinations of computation partitioning

and data placement decisions, we may end up with thousands of possible scripts. By

holding the tile sizes fixed during Phase III of the algorithm, it tries a maximum of

335 transformation recipes. When tuning for optimization parameter values, the total

combinations of different values of optimization parameters limits the number of points

to search to 64. A total of less than a few hundred strategies are tried to find the final
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implementation. Almost 97% of the data placement and optimization parameter search

space never gets evaluated.

Most of the kernels have majority of their potential variants pruned by the autotuning

mechanism, with matrix-matrix multiplication, 2D convolution, MPEG4 and coulombic

potential benchmarks benefiting the most with over 95% of the search space pruned. In

case of matrix-vector multiplication and transposed matrix-vector multiplication, auto-

tuning system, will save a major effort by pruning the search space by 90.8%. The least

benefited from the scheme is MRIQ kernel, with 84% of the search space pruned. How-

ever, the total number of possible variants is also significantly lower than some of the

other benchmarks evaluated. So the percentage of pruned variants must be seen in the

context of total number of possible variants. The larger the potential search space, the

higher the benefits of the two-part autotuning system.

6.7 Summary

In this chapter, the results obtained from experimental evaluation of the automatically

generated code by our system are presented. We show results for nine computations

from BLAS, scientific, imaging and multimedia kernel domains. We show significant

improvement on most of the performance numbers achieved by manually-tuned libraries

and state-of-the-art compiler generated code. Our results for two different architectures

highlight one of the major contributions of this thesis, i.e. performance portability

exhibited by the automatically generated code by the system.
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Chapter 7

Related Work

This chapter examines the previous and contemporary work related to our research.

The following sections will discuss manual optimization, various compiler optimization

systems and autotuning frameworks developed to automatically generate GPU code.

7.1 Manually Tuned Computations

While the literature richly describes high-level compiler optimization strategies for tar-

geting architectural features, we have learned through working with application and

library developers that users targeting high performance have the perception that com-

mercial compilers fall short in achieving performance levels comparable to what they can

derive manually. As a notable contemporary example, GPU programmers aggressively

tune their code, due to wide variations in performance of GPU codes resulting from sub-

tle differences. As compared to programming conventional architectures, tuning GPU

codes is more difficult and time consuming if done manually. Manual code optimizations

for CUDA code have been performed in [BG09, DMV+08, Wol08, VD08a, BCI+08,

NTD10, KH10] showing phenomenal performance.

7.2 Transformation Recipe Mechanism

A number of interfaces to code transformations are similar to the transformation recipes

in this thesis, including pragma-oriented transformation specifications such as Loop-

Tool [QK06], X language [DBR+05], and Orio [HNS09]. A related tool POET uses an

XML-based description of code transformation behavior to produce portable code trans-

formation implementations [YSY+07]. However, our transformation recipes are separate
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from code, which benefits in keeping the code architecture independent and providing

reuse of these recipes for similarly-structured code. A major strength of our system

in terms of applying transformations is composition of multiple transformations. We

are using the CHiLL framework to compose transformations and generate code, which

relies on a polyhedral transformation framework to manipulate mathematical represen-

tations of iteration spaces and loop bounds. While other polyhedral frameworks (e.g.

[KP93, GVB+06]) provide composition of multiple transformations, the transformation

recipes in our system specify high-level transformations that operate on a complete loop

nest; transformation algorithms translate from the recipes to the iteration space manip-

ulations for all statements enclosed in the loop nest [Che07, CCH08].

7.3 Annotation-Based Compiler Frameworks

There has been some recent work on compilers generating and optimizing CUDA codes

to reduce the complexities of programming GPUs. Lee et al. [LME09] generate CUDA

code from sequential C code with extended OpenMP annotations. hiCUDA [HA09] is

a pragma-based language that translates sequential C code to CUDA code. Both of

these annotation-based approaches suffer from limitations in what can be expressed, and

therefore impede the compiler from having the flexibility to derive the best implementa-

tion. For example, hiCUDA code must be explicitly tiled by the programmer, and the

pragma must describe the exact footprint for the data to be copied into shared memory.

A few compilers take CUDA programs as input, and produce optimized CUDA as

output. CUDA-lite [ULBmWH08] relies on annotations in CUDA code to instruct the

compiler how to improve the coalescing of global memory accesses and the bandwidth to

global memory. Yang et al. [YXKZ10] can optimize a naive CUDA kernel with thread

remapping and data copy optimizations. Their thread remapping approach merges neigh-

boring threads or thread blocks, which can be viewed as a bottom-up version of tiling.

Their compiler achieves impressive performance though it still requires the input CUDA
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Compilers R-Stream PLUTO Cui et al. CUDA-CHiLL

Parallelization Strategy
Blocks fixed strategy multiple variants appears to be fixed multiple variants
Threads fixed strategy multiple variants appears to be fixed multiple variants

Memory Hierarchy Levels Supported
Registers post-processing post-processing

√ √
Shared Memory

√ √ √ √
Texture Memory × × × √
Constant Memory × √ × √

Autotuning Support
Optimization Parameters × √ √ √

Computation Partitioning Variants × √ √ √
Data Layout/Placement Variants × limited

√ √
Generates transformation recipe × × √ √
Pruning Strategy/Measurements × × × √

Table 7.1: A comparison of GPU automatic parallelization systems.

kernel to be properly parallelized since it does not support loop permutation. Moreover,

manual parallelization may still prove to be cumbersome when dealing with complicated

boundary conditions arising from data set sizes that are not even multiples of thread

and block sizes.

7.4 Automatic Parallelization for GPUs

A number of automatic parallelization compiler systems have been developed which are

based on a polyhedral framework. Compilers based on a polyhedral framework have

been proposed to transform sequential codes into optimized CUDA codes, including our

work. We summarize each of the compilers in Table 7.1 and describe the code generation

algorithm it uses.

The first of these, R-Stream [LVM+10], applies a fixed sequence of optimizations, in

keeping with traditional compilers, that are determined through a machine model. It

does not perform autotuning, nor does it utilize constant or texture memory.Some opti-

mizations such as unrolling and privatization have to be applied after the code is lowered

to the intermediate representation, where our system integrates within the polyhedral

framework. These limitations may partially explain why its reported performance results

fall far short of those presented in this thesis.
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Various aspects of Pluto to support C to CUDA transformation, are described in

[BBK+08a, BBK+08b, BRS10]. These papers present individual algorithms such as

finding parallel loops for two levels of parallelism with regard to global memory coalesc-

ing, finding data footprint size for shared memory copy and finding padding factors to

avoid shared memory conflicts. In contrast, we provide a comprehensive optimization

strategy generation algorithm to factor in all these factors and their interactions, as well

as extensive results to show the impact of autotuning. In [BBK+08b], the autotuning

portion and some of the code generation steps are performed outside the polyhedral

compiler, which could limit the robustness and effectiveness of the solution. This paper

performs limited autotuning: its parallelization algorithm may generate multiple com-

putation partitions arising from global memory coalescing, data placement in shared

memory appears to be varied, and a few parameter values tested, but there are few

details presented. Further, it is not shown how close their performance is compared to

state-of-the-art manual optimization.

The closest work to ours is a script-controlled compilation framework by [CWX+11],

designed specifically for generating BLAS kernels. The system takes the script, a pre-

defined optimization scheme, and a data layout plan for matrices, as input to represent

a complete optimization strategy. Complementary additional features of the compiler

include transposed copy to global memory and padding of triangular matrices. The

results reported in their paper are comparable to CUBLAS 3.2 (single precision only). As

compared to our results, they use the identical optimization strategy for both the GTX-

285 and C2050 for single precision matrix-matrix multiply, while our experience and the

experience of the MAGMA library developers [NTD10] is that a very different strategy

is needed for C2050 (different computation partitioning, use of texture memory and

additional optimizations). The computation partitioning is not described but appears

to be fixed. Data layout and mapping variants and optimization strategies appear to

try all valid possibilities among a (potentially large) enumerated set. The algorithm

to generate optimization strategies, the number of variants generated and strategies to
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prune variants are not described in detail in the paper. It is not clear how their approach

can be expanded beyond BLAS kernels to more general application codes. Further, the

compiler does not make use of constant or texture memory. Our compiler, to the best

of our knowledge, is the only one that can utilize the full memory hierarchy including

the texture memory. With multiple code variant generation and direct support for

parameter tuning, we have achieved very high performance, close or in some cases faster

than manual tuning. We are also the first to report results on double precision floating

point BLAS kernels.

7.5 Autotuning Systems

Some of the older and contemporary systems that use autotuning include self-tuning

library generators such as ATLAS [WPD01], PHiPAC [BACD97], OSKI [VDY05] and

SPIRAL [PMJ+05]. There are also compiler based autotuners that automatically gener-

ate and search a set of alternative implementations of a computation [WP05, GVB+06,

BBK+08b]. Application-level autotuners use empirical search across a set of parameter

values suggested by the application programmer [CH04].

All of these systems will search multiple code variants to find the best solution for

the target architecture. Our autotuning mechanism is distinguished from other auto-

tuning systems because we select code variants and fine-tune optimization parameters

in independent phases, greatly reducing the size of search space of potential solutions to

be evaluated and still providing comparable or better solutions than manually tuned or

other compiler generated code.

7.6 Summary

This chapter presented the previous and contemporary research related to the work

presented in this thesis. We examined the research in the discussion about the automatic

parallelization for GPUs and autotuning systems.
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Chapter 8

Conclusion and Future Work

This chapter summarizes the work presented in this thesis and discusses future work to

express possible logical steps that may be taken to extend the system for a wide variety

of computations.

8.1 Summary of Thesis

This thesis described a compiler system organized around the concepts of transformation

recipes and autotuning which automatically maps a sequential loop nest computation to

an equivalent high-performance CUDA implementation for a Nvidia GPUs. The major

goals of this system are to provide a set of tools to programmers to generate correct

and high performance CUDA code from a sequential computation and save the time and

effort that is typically needed to achieve it.

The major contributions of this thesis are the transformation strategy generator

(TSG) and the two-phase autonuning system, introduced in Chapter 3 and explained

in detail in Chapter 5. The opportunities for parallelization and data placement are

explained by the TSG. The TSG, being the main focus of the thesis has been explained

in Chapter 5 with key TSG algorithms.

The TSG includes the mechanism to generate multiple strategies with multiple com-

binations of optimization decisions and optimization parameters, representing different

code variants. A number of heuristics, both hardware and software related, are used in

the decision making in the TSG. Multiple heuristics act as constraints for many decisions

related to both parallelization and data placement. The heuristics and constraints are

discussed in detail in the Chapter 4.
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The other main contribution, the autotuning mechanism, selects the best performing

code variant from the set produced by the TSG. It operates in two phases, which are

discussed in Chapter 5, with the description of key algorithms. The independent auto-

tuning of the compiler optimizations and optimization parameters provides a mechanism

that navigates the best possible points in the search space, while ignoring the majority

uninteresting parts of the search space, resulting in pruning the search space by almost

90% on average for the set of benchmarks studied in for this thesis.

Other than the major focus on the above parts of the system, this thesis covers

the interfaces developed or modified with the existing but independent parts of the

CUDA-CHiLL system, to make the full parallelizing compiler framework work as a unit.

Discussion of this important integration work to make an end-to-end system is given

in Chapter 3. It includes the modified interface CUDA-CHiLL uses to map high-level

script functions to its the actual implementations. Also discussed is an algorithm for

appropriate tile size selection based on occupancy of available resources on a GPU. The

algorithm is discussed in Chapter 5 with results presented.

Additionally this thesis makes a key contribution in terms of providing performance

portable code by focusing on Nvidia GPUs from two different generations and architec-

tures. The system was tested for a diverse set of benchmarks, on GTX-280 GPU and the

C2050 GPU from Nvidia. The results are presented in Chapter 6. This thesis reports

performance results for nine computation kernels, from linear algebra, scientific computa-

tion and imaging kernels domains. Matrix-matrix multiplication, matrix-vector multipli-

cation and transposed matrix-vector multiplication are important linear algebra routines

used in many scientific applications. It is shown that our system generates high perfor-

mance solutions for these routines which often exceed the performance achieved by the

manually tuned CUDA code library from Nvidia i.e. CUBLAS. We have also compared

the performance of our system with a contemporary state-of-the-art compiler system

called PLUTO, various aspects of which are described in [BBK+08a, BBK+08b, BRS10],

on benchmark suite provided by PLUTO. One of the PLUTO benchmarks, MRIQ, was

80



taken from PARBOIL suite [IMP07], and both perform comparable to each other, so

our comparison holds for both the versions. Another imaging benchmark evaluated is

2D convolution and the performance is compared to a contemporary compiler system

described in [YXKZ10]. The results explained in Chapter 6 show that the code from our

systems performs considerably better against PLUTO implementations in its benchmark

suite.

Overall this thesis makes a case for autotuning compiler technology as a productivity

enhancement for developing high-performance CUDA code for loop nest computations,

and porting code from one platform to the next generation. Coupled with the broad

set of optimizations, we are able to achieve performance comparable to manually tuned

code. What is even more interesting is that in many cases, the compiler-generated

code outperforms manually-tuned code and sometimes finds a new optimization strategy.

With high-level abstractions for CUDA code generation and an autotuning compiler, the

port to the C2050 was relatively straightforward in spite of the architectural differences.

8.2 Future Work

The system developed for this thesis focuses on parallelizing sequential code restricted

to an affine domain, where loop bounds and subscript expressions are linear functions

of the loop index variables. The underlying software CHiLL will generate correct code

when dependences are satisfied. So a future addition to the system is to enable it to

handle non-affine codes. Extensions to both the underlying software and system devel-

oped for this thesis are required to be able to handle the scenarios stated above. Also,

the computations that we have studied in this thesis consist of single loop nests. A

system capable of handling multiple loop nests will require additional optimizing and

data transfer extensions. We have used a limited set of frequently used optimizations.

There are a number of other compiler loop optimizations, available in CHiLL, which

may be used as a part of the system like loop splitting, data pre-fetching, skewing and
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loop fusion. Lastly, some features of CUDA programming model, like concurrent execu-

tion of independent kernels, may also be supported by the system for high-performance

solutions.

8.3 Summary

This chapter summarized the thesis and revisited the major contributions, including

references to the chapters with detailed discussion about them. It summarized the two

major parts of the system, the TSG and autotuning mechanism along with the perfor-

mance numbers for various benchmarks evaluated.

Furthermore, the chapter also discussed some of the logical extensions that can enable

the current system to be used for a wide variety of computations using a larger set of

compiler transformations and features of the programming model.
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