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Abstract 

This work studies and compares different modular multiplication algorithms with emphases on the 
underlying binary adders. The method of interleaving multiplication and reduction, Montgomery’s method, 
and high-radix method were studied using the carry-save adder, carry-lookahead adder and carry-skip 
adder. Two recent implementations of the first two methods were modeled and synthesized for practical 
analysis. A modular multiplier following Koc’s implementation [6] based on carry-save adders and the use 
of carry-skip adders in the final addition step is expected to be of a fast speed with fair area requirement and 
reduced power consumption. 
 

1. Introduction 
Modular multiplication is the basic arithmetic operation in many encryption systems that provide key 

distribution and authentication. This operation is defined as C = A * B mod M. Since the size of the operands 
required to achieve secured systems is usually very large, the modular multiplication operation is going to be 
too expensive. Several modular multiplication algorithms have been proposed to solve this problem based on 
various computer arithmetic principles. This work discuses and compares some of these algorithms. Mainly, 
the classical method of interleaving multiplication and reduction, and Montgomery’s algorithm are presented 
here. 

Binary adders are the basic building blocks in modular multipliers as any other kind of multipliers. 
They perform the multiplication operation through repeated number of additions.  Hence, this work discusses 
different types of adders and compares between them. Hardware components studied in this work were 
modeled using VHDL and synthesized. ModelSim Se 5.6a was used to design and test the VHDL code. The 
Xilinx ISE 5.2i tool was used for synthesis.  

 
2.  Modular Multiplication Algorithms  

The modular multiplication operation is defined as the computation of P = A * B mod M given the 
integers A, B and M. Usually, A and B are assumed to be positive integers that are less than the modulus M 
which are represented using n bits. 

In the literature, various algorithms for modular multiplication have been proposed with different 
hardware implementations. A straightforward way to perform the modular multiplication operation is to do 
the multiplication first and then divide the result by the modulus. As someone might expect, this method is 
too expensive in terms of time and area requirements. An N×N bit multiplier is required followed by a 2N×N 
bit divider used to computer the remainder of the division process. Since the multiplication result of A * B is 
not important to the result of the modular multiplication, doing the reduction during the multiplication step is 
more suitable and also more efficient for the modular multiplication problem [19]. Hence, this survey does 
not seek to cover every technique and research in the area of modular multiplication computing. Instead, It 
discuses the basic common algorithms for modular multiplication of good performance so it might serve as 
an introduction to this widely evolving field. 

The algorithms are described using the binary representation so that direct mapping with the hardware 
can be induced from it. Some architectural implementations of the presented algorithms shall be discussed. 
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The upper case letters denote the words and the lower case ones denote the bits. The algorithms to be studied 
are: the method of interleaving multiplication and reduction, Montgomery’s method and high-radix method. 

 
2.1 Interleaving multiplication and reduction 

This algorithm of computing the modular multiplication was first proposed by Blakley [1, 2]. It embeds 
the subtraction steps of the division in the shift-addition iterations of the multiplication. One traditional 
version of the algorithm is as follows: 
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P = 0 
for i = n-1 to 0  
{ 
   P = 2 * P 
   if ( P ≥ M )  P = P – M 
   if ( bi = 1 ) 
   { 
      P = P + A 
      if ( P ≥ M )   P = P – M 
   } 
} 

 
 
 
Left Shift 
Magnitude Comparison 
 
 
Addition 
Magnitude Comparison 

The algorithm computes the product in n steps for the n-bit modulus by scanning the bits from left to 
right. At each step, one left shift, one addition, and two magnitude comparisons are performed. The 
magnitude comparison can be done by first subtracting the modulus from the partial product and then the 
produced carry determines the correct value of the partial product [3].  

In terms of hardware, the most crucial operations are the addition and subtraction operations. They slow 
down as the operands size increases. Reducing the complexity of the addition and subtraction operations will 
have significant impact on the overall performance of the algorithm. 

The algorithm requires 2n subtractions and n additions. If the addition and subtraction operations are 
summed to have similar time complexity [5], the algorithm needs 3n full-magnitude additions (3n2 single-bit 
additions). This analysis looks for the algorithm on its worst case to reflect the hardware longest path delay. 

By scanning the bits from right to left, the above algorithm can be parallelized and thus speeded up with 
exactly the same amount of hardware. On the worst case, the algorithm will required 2n full-magnitude 
additions as follows: 
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P = 0 
for i = 0 to n-1  
{ 
   if ( bi = 1 ) 
   { 
      P = P + A 
      if ( P ≥ M )   P = P – M 
   } 
   A = 2 * A 
  if ( A ≥ M )  A = A – M 
} 

 
 
 
 
 
in parallel 
with steps 
9 and 10  

Chiou and Yang [4] proposed an algorithm with a speedup ratio of 2 by removing the magnitude 
comparison needed by the traditional Blakley’s algorithm. Unfortunately, the algorithm needs non-trivial pre-
calculations (for example, 2n mod M) that make it unsuitable for single modular multiplication. 

Many modified implementations of the Blakley’s algorithms are based on the use of carry save adders 
[6, 15, 3, 17, 19]. Carry-save adders (discussed later in section 3.2) will speedup the addition operation since 
they have constant time complexity. They take three operands as input and produce a sum-carry pair that 
represents the result. Carry-save adders are used to compute the partial products while a carry-propagation 
stage is needed at the last iteration. In order to decide if the partial product needs to be reduced without 
performing the full-magnitude addition, fast sign detection technique is needed to determine the sign of the 
sum-carry pair.  
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In reference [6], Koc proposed fast sign estimation technique that has constant time complexity based 
on the use of 5-bit carry-lookahead logic. The bits were scanned from left to right with overall time 
complexity of Ο(n + log m).  

In reference [16], based on Koc’s technique, the bits were scanned from right to left, but the amount of 
hardware required was doubled and the time increased too. Such a result is unexpected specially if we recall 
that scanning bits from right to left introduces parallelism by which the speed of the traditional version of the 
algorithm was improved. However, science the two reduction steps, in lines 7 and 10, are done on two 
separate numbers which can not be combined in one step, the result of reference [16]  is reasonable.   

 
2.2 Montgomery’s method 

In 1985, Montgomery [7] proposed a method for modular multiplication that replaces the costly 
division operation needed to perform modular reduction by simple shift operations, at the cost of having to 
transform the operands into a new domain representation before the operation and retransforming the result 
thereafter. 

The Montgomery’s algorithm computes A * B * R-1 mode M given that A, B < M. In addition, R should 
be larger than M such that they are relatively prime. It is more useful to take R as a power of two because of 
today’s digital computers [5]. If R is assumed to be equal to 2n, then a modified binary-based version [10] of 
the algorithm is as follows: 

 
Initialization Step: 
1 Transform A and B to A’ and  B’, such that A’ = A * R mod M and  
       B’ = B * R mod M 
 
Multiplication Step ( P’ = A’ * B’ * R-1 mod M ): 
2     P’ = 0 
3     for i= 0 to n-1 
4     { 
5        P’ = P’ + a’i * B’ 
6        if ( p’0 = 1 )   P’ = P’ + M 
7        P’ = P’ / 2  
8    } 
9    if ( P’ ≥ M )   P’ = P’ - M     
 
Finalization Step: 
10.   Transform P’ to P, such that P = P’ * 1 * R-1 mod M 

 
The basic idea of Montgomery’s algorithm is the following: adding multiple of M to the intermediate 

results does not change the value of the final result, because the result is computed modulo M. After the 
addition in step 5 of the loop, the least significant bit of the intermediate result is inspected. If it is odd, the 
modulus M, which is an odd number, is added to the intermediate result to make it even. This even number 
can be divided by 2 without a remainder. After n steps these divisions add up to one division by 2n. 

Step 9 of the algorithm is an additional operation to limit the temporary result, but it increases the 
algorithm complexity which may cause the hardware cost to increase, too. Fortunately, this step can be 
removed without changing other steps by taking R to be 2n+2 [11, 18]. Thus the algorithm requires n+2 
iteration steps where a’

n and a’
n+1 are defined to be zeros. However, this survey will discus the traditional 

binary version of Montgomery’s algorithm described above. 
The hardware design for doing Montgomery’s multiplication can be used for transforming back the 

result of the Montgomery’s product into the ordinary integer form (step 10) by having P’ and 1 as the 
operands of the multiplication operation. In contrast, direct use of Montgomery’s multiplication to do the 
initialization step is not possible without some preparation of the operands. More details can be found in 
reference [9]. 

The algorithm computes the Montgomery’s product in n steps for the n-bit modulus, where at each step 
one left shift, two additions, and one bit-by-word multiplication are performed. The subtraction operation 
after the loop can be ignored since it is done once. 

The most important property of Montgomery’s algorithm is that no full magnitude comparison is 
required for the modular reduction [5, 8]. XORing P’

0, a’
i and b’

0 will determine the need of a reduction step 
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prior to the addition operation in step 6. In contrast, the traditional method of interleaving as described 
before, computes the entire sum in order to decide whether a reduction needs to be performed [5]. 

In terms of hardware, the most crucial operation is the addition operation. The shift left operation might 
be done easily using wiring. AND gates can generate the bit-by-word multiplication in step 5 of the presented 
Montgomery’s algorithm. 

On the worst case, the algorithm requires 2n full-magnitude additions for one go by the multiplication 
step. Since the algorithm needs two passes to compute the desired result, 4n full-magnitude additions are 
required by the algorithm. Moreover, doing the pre-calculations of the two operands, A and B, in hardware 
will cost 4n full-magnitude additions, too. Thus, the total cost of Montgomery’s algorithm for single modular 
multiplication is 8n full-magnitude additions. 

The pre-calculations and post-calculations needed by Montgomery’s algorithm make it unsuitable for 
single modular multiplication. In multiple modular multiplication such as modular expatiation (P = DE mod 
M), the ratio between the transformation overhead and the actual modular multiplication arithmetic is much 
lower.  Thus, it is more appropriate when several multiplications with respect to the same modulus are to be 
performed [9, 10].  

Since the time Montgomery’s algorithm has been proposed, many researchers have worked on 
improving it. Several sequential and parallel architectures have been proposed [9, 10, 11, 12, 18]. 
Architectures based on carry save adders with redundant representation of the intermediate results seem to be 
the most effective solutions since they have constant time complexity with minimum area requirement. 

 
2.3 High-Radix Methods 

Numbers can be represented in various ways. The power-of-two base is preferable for machine 
computations. The base here is also called the radix. For example, radix 2 representation of a = (123)10 is 
(1111011)2. Radix 4 representation of a can be easily obtained by grouping the digits of base 2 representation 
of a in pairs of two digits. In this case, a = (1323)4. 

Since the speed of radix-2 multipliers is approaching limits, the use of higher radices is investigated [5]. 
High-radix operations require fewer clock cycles, but the cycle time will increase as well as required area. 
The cycle time will increase significantly due to the increase in the required time for the reduction step [5]. 
The reduction step will consume more time because it involves a 2radix-length division.  

Walter [13] shows that by increasing the radix of algorithms performing the multiplication via repeated 
addition, there is a direct trade-off between the required space and the overall computation time. As the radix 
goes higher, the time decreases but the required area increases. This will make the Time×Area factor constant 
and independent of the choice of the radix. However, this factor is expected to improve for radices that are 
not much larger that radix 2. In reference [19], radix-2 and radix-4 modular multipliers were proposed with 
about the same area requirement which seems to be a contradiction with Walter’s law. 

The high-radix method can be applied to the method of interleaving multiplication and reduction as well 
as Montgomery’s method [5]. Other modular multiplication algorithms [19, 20] that are not discussed here 
might apply the high-radix method, too. 

All the three modular multiplication algorithms described here have linear area complexity. However, 
Walter [14] proposed an optimum-speed modular multiplication algorithm that has a logarithmic time 
complexity, but it requires a space in the order of Ο(n2). As Walter suggested, this algorithm can be used to 
speedup the reduction step in the high-radix modular multiplication methods. 

 
2.4 Comparison 

This section compares two algorithms presented in section 1.1 and 1.2. The method presented in section 
1.1 will be referred to as the classical method of interleaving multiplication with reduction while the other 
one as Montgomery’s method. 

By comparing Koc’s implementation [6] with other implementations of the classical algorithm, it seems 
to have the least time and area complexity within its category.  

In contrast with the classical method, there exist many different implementations for Montgomery’s 
algorithm. Researchers found it more attractive to improve than the classical method. However, this study 
shows that Koc’s implementation of the classical method is very comparable with recent proposed 
implementations of Montgomery’s algorithm [18]. Moreover, improvements done to Montgomery’s method 
[11, 12, 18] can be extended to Koc’s implementation.  
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Hence, the proposed implementations in references [6] and [18] are chosen for comparison since they 
have comparable hardware structure. Details of both algorithms can be found in the mentioned references. 
The two implementations were modeled using VHDL and synthesized using the Xilinx synthesis tool (ISE 
Series 5.2i). The following tables summarize the differences between the two algorithms.  

 
Description Koc [6] Montgomery [18] 

Algorithm 

M = 8Minput , S = 0, C = 0, and t = n-1 
for i = n-1 to -3 
{ 
   (S,C) = 2S + 2C + aiB 
   if ES (S,C) = +  
         (S,C) = S + C – M 
  else if ES (S,C) = – 
         (S,C) = S + C + M 
  else if ES (S,C) = ± 
         (S,C) = S + C 
} 
P = S + C 
if P < 0  P = P + M 
return P/8 

S = 0 and C = 0 
for i = 0  to n+1 
{ 
   (S,C) = S + C + aiB 
   if s0 = 1  
         (S,C) = S + C + M 
  (S,C) = S / 2 + C / 2          
} 
P = S + C 
return P 

Hardware 

  

Table 1: Description of algorithms in [6] and [18]. 

 

Algorithmic Analysis Koc [6] Montgomery [18] 

Pre-calculations The two’s complement of the modulus 
needs to be computed 

Transformation of operands into 
Montgomery’s domain 

Inter-calculations n + 3 iterations n + 2 iterations 

Post-calculations There is a correction step in addition to the 
final summation of the sum-carry pair 

Summation of the sum-carry pair needs 
to be transformed back to the ordinary 
domain 

Restrictions If M is represented using n bits, then  |M| ≥ 
2n-1 GCD (M, 2) = 1 

Table 2: Algorithmic analysis of algorithms in [6] and [18]. 
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Hardware Analysis of 
Multiplication Step Koc [6] Montgomery [18] 

Logic Two (n+4)-bit carry save adders 
plus 5-bit carry lookahead logic  Two n-bit carry save adders 

Registers 6 5 
Table 3: Hardware analysis of the multiplication steps of algorithms in [6] and [18]. 

 
Synthesis Analysis of 
Multiplication Step  Koc [6] Montgomery [18] 

Clock period  6.468 ns 6.342 ns 
Table 4: Synthesis analysis of the multiplication steps of algorithms in [6] and [18]. 

 

The above figures show that the classical method in reference [6] takes slightly larger amount of 
hardware than the Montgomery’s method in reference [18]. In addition, the multiplication step of the 
classical method takes slightly more time than Montgomery’s method. Moreover, it has a correction step at 
the end of the algorithm that will complicate the hardware for the final summation circuit.  

However, a full-custom design of the sign-estimation logic needed by the classical method will reduce 
the latency to its minimum. The carry-save logic and the sign-estimation logic are both of three logic levels. 
This means that parallel execution of the two logics will take about the same time as one individual carry-
save stage. Hence, the multiplication steps of two algorithms are expected to have the same latency.  

By considering the pre and post-calculations needed by both algorithms, we see that Montgomery’s 
method needs much more expensive calculations. Reference [12] shows how practically pre and post-
calculations of Montgomery’s method take very long time over the multiplication step. These calculations 
doubled the amount of time required by Montgomery’s method by more than 20 times. In addition, the 
hardware was complicated. 

 Thus, carry save implementations of the classical method of interleaving multiplication and reduction 
has the potential to be one of the most effective solutions in terms of time and hardware requirements. 
Further improvements by researchers on the classical method would lead to a high speed modular multiplier 
which is scalable and regular by its nature. 

 
2.5 Remarks 

This section discusses some aspects of Koc’s implementation [6]. The algorithm restricts the magnitude 
of M to be larger than 2n-1 which reduces the valid range of numbers that M can have. However, this 
restriction can be relaxed by including more bits in the sign-estimation logic at the cost of increasing the 
complexity of this logic [6]. However, since A and B should be generally less than M, the desired precision of 
the sign-estimation logic is not expected to be much apart from 2n-1. This keeps the sign-estimation logic fast 
and does not add much complexity to it. 

The sign-estimation logic produces qM where q could be 1, -1 or 0. Similarly, aiB might produce a zero 
if ai equals 0. In both cases, when a zero is produced, the carry-save stage can be omitted. However, in the 
case of aiB, omitting the carry-save logic is not straightforward because of the left shift applied on the sum-
carry pair. A small experiment was run to test the frequency of q being equal to 0. Unfortunately, q equals to 
1 or -1 most of the time and it equals to 0 only very few times. Thus, time and space overheads introduced by 
the hardware used to skip the carry-save stage, when it is possible, will most probably overcome the time 
gained from omitting the carry-save stage. Hence, the modular multiplier is kept in its simplest structure as it 
was proposed. 

 

2.6 Proposed Improvements 
This section studies some aspects of Koc’s implementation [6] and suggests improvements on the 

original version of the algorithm. 
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2.6.1 Pipelining 
If each carry-save adder is considered to represent one stage, then this modular multiplier can be 

pipelined in two stages. However, due to data dependency, the pipelining will not improve the throughput if 
not increasing the latency because of the needed latches. However, the pipeline can be used to compute two 
separate operations simultaneously as follows:   

 

CSA-1 

operation: 1 

addition:   1 

iteration:   1 

operation: 2 

addition:   1 

iteration:   1 

operation: 1 

addition:   1 

iteration:   2 

operation: 2 

addition:   1 

iteration:   2 

operation: 1 

addition:   1 

iteration:   3 

 

CSA-2  

operation: 1 

addition:   2 

iteration:   1 

operation: 2 

addition:   2 

iteration:   1 

operation: 1 

addition:   2 

iteration:   2 

operation: 2 

addition:   2 

iteration:   2 

 

Figure 1: Pipelining two separate multiplication operations. 

 

 
Figure 2: The core of the multiplier after pipelining. 

 

2.6.2 Parallelizing the correction step 

The correction step at the end of the algorithm increases the algorithm complexity. It can be 
implemented at the software level as well as the hardware level. At the hardware level, the correction step 
can be done in the last stage of the algorithm through a dedicated logic. The sum-carry pair can be added and 
if the result is negative, then the result is fed to the adder again with the modulus. The correction step in this 
case will take 2 log n times. However, the factor can be reduced by computing the two possible results in 
parallel at the cost of increasing the hardware complexity as shown in Figure 3. 

 
2.6.3 Speedup with high-radix 

The total number of clock cycles needed by Koc’s implementation of the classical method of 
interleaving multiplication with reduction can be reduced using the high-radix method. In a straightforward 
way, radix-4 modular multiplier may be implemented as shown in Figure 4. (for VHDL coding details, refer 
to Appendix-B): 
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Figure 3: The two options for implementing the correction step in hardware. 

 

 
Figure 4: Radix-4 Modular Multiplier. 

 
Although the total number of clock cycles will be reduced by half, the clock period will be doubled 

which will keep the total time required by the algorithm the same. However, further improvement on the 
radix-4 modular multiplier might eliminate one or more of the carry-save stages which will increase the 
speed by a significant factor. Such improvement is expected to add significant changes to the original 
algorithm proposed by Koc. 

The last stage in both of the two algorithms does full-length addition on the carry-sum pair which can 
be performed in hardware through binary adder. The following sections discuses the problem of binary 
addition and studies some well-known binary adders.  

  

3. Binary Adders 
Integer addition is one of the most important operations in digital computer systems. In addition to 

explicit arithmetic such as addition and multiplication performed in a program, additions are performed to 
increment the program counter and calculate the effective address. Statistics showed that 72% of the 
instructions perform additions in the data path of a prototypical RISC machine. [21] This work shows that 
addition is the bottleneck of modular multipliers.  Thus, the performance is significantly influenced by the 
speed of adders. 

In the literature, there exist many types of adders with different time and space complexities. The focus 
in this work is on some practicable and commonly used binary adders which will be discussed and compared. 
For the sake of completeness, the ripple-carry adder and the carry-save adder are presented first. Then, the 
carry-lookahead adder and the carry-skip adder are studied. 
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3.1  Ripple-Carry Adder (RCA) 
The ripple-carry adder consists of a sequence of cascaded Full Adders (FA) by which each FA 

computes the ith bit of the result according to the following logical relations: 
si = ai ⊕  bi ⊕  ci ,  ci+1 = ai bi + (ai + bi) ci ,    where i = 0, 1, …, n-1     

 

Figure 5: Ripple-Carry Adder 
Obviously, both the logic complexity and the worst case computation time are Ο(n). The ripple-carry 

adder required the optimum space and has the worst computation time among it category of parallel adders. 
However, the carry propagation process takes on average Ο(log n) time to be completed [5, 22]. The carry-
completion sensing adder is an asynchronous adder designed based on this fact.  

 

3.2 Carry-Save Adder (CSA) 
A carry-save adder adds three n-bit numbers and produces the result without performing carry 

propagation by saving the carry. The result will be in an n-bit redundant format represented using two bit 
vectors, sum and carry. The total delay of a carry-save adder equals to the delay of a single full adder cell. In 
addition, the carry save adder requires n times the area of a full adder cell. Thus, the carry-save adder takes 
Ο(1) time and Ο(n) space. A carry-save adder will look as follows: 

 

 
Figure 6: Carry-Save Adder 

 

According to reference [5], there are basically two disadvantages of the carry-save adders. The carry-
save adders do not add two numbers and produce a single output; instead, they add three inputs and produce 
two outputs such that the sum of the outputs equals to the sum of the inputs. Moreover, the sign-detection is 
hard. Unless the addition on the outputs is performed in full length, the correct sign of the sum-carry pair 
may never be determined. 

 

 3.3 Carry-Lookahead Adder (CLA) 
The carry-lookahead scheme computes the sum as follows: 

si = ai ⊕  bi ⊕  ci ,  pi = ai ⊕  bi , gi = ai bi ,  ci+1 = gi + pi ci
By expanding further the equation of the carry we get: 

ci+1 = gi +  pi gi-1 +  pi  pi-1 gi-2 +  pi  pi-1 …  p1 g0 +  pi  pi-1 …  p1  p0  c0 
A carry-lookahead adder may look like this: 
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 Figure 7: Carry-Lookahead Adder 

 
The carry-lookahead logic consists of two logic levels, AND gates followed by an OR gate, for each ci. 

When the adder inputs are loaded in parallel, all gi and pi will be generated at the same time. The carry-
lookahead logic allows carry for each bit to be computed independently. Ideally, the carry signals ci will be 
produced through two-stage logic at about the same time which means that the adder will have a constant 
time complexity. However, it is impractical to build a two-stage full large-size carry-lookahead adder 
because of the practical limitations on fan-in and fan-out, irregular structure, and many long wires [21, 27]. 

In practice two approaches are used to implement the CLA: the block carry-lookahead adder and the 
complete carry-lookahead adder [5]. In the first implementation, small (4-bit or 8-bit) carry-lookahead logic 
cells with sections generate and propagate functions are built, and then they are stacked to build larger carry-
lookahead adders.  In complete carry-lookahead logic, the adder is built for the given operand size but in a 
way that allow the use of parallel prefix circuits. One well-known adder of this type is the Brent-Kung adder 
[28]. The total delay of the carry-lookahead adder is Ο(log n) which can be significantly lees than the carry 
propagate adder. There is a penalty paid for this gain: the area increases. The carry-lookahead adders require 
Ο(n log n) area. Is seems that a carry-lookahead adder larger than 256 bits is not cost effective. Even by 
employing block carry-lookahead approach, a carry-lookahead adder with 1024 bits seems not feasible or 
cost effective. [5] 

 
3.4 Carry-Skip Adder (CSK) 

The carry-skip adder [23, 24, 25, 26] was invented for decimal arithmetic operations by Babbage in the 
1800’s, and become quite popular in mechanical adding machines later that century. Modern interest in 
carry-skip adders only began in the early 1960’s by Lehman and Burla [22]. 

The carry-skip adder is and an improvement over the ripple-carry adder. By grouping the ripple cells 
together into blocks, it makes the carry signal available to the blocks further down the carry chain, earlier.  
The primary carry ci coming into a black can go out of it unchanged if and only if, ai and bi are exclusive–or 
of each other. This means that corresponding bits of both operands within a block should be dissimilar. If ai = 
bi = 1, then the block generates a carry without waiting for the incoming carry signal. And the generated 
carry will be used by blocks beyond this block in the carry chain. If ai = bi = 0, then the block does not 
generate a carry and will absorb any carry coming into it. 

By ANDing all (ai ⊕  bi) of a block, the skip signal will be generated to select between the incoming 
carry and the generated carry using a 2×1 multiplexer as shown in Figure 8. However, reference [25] 
presented a more simplified skip logic that requires less area as Figure 9. 

If the adder input is assumed to be loaded in parallel, then the skip signal of all blocks will be ready at 
about the same time. The last FA stage of a block will generate a carry, if any, before arrival of the input 
carry ci. When the input carry arrives, it needs to pass through two logic gates only so that the output carry 
ci+1 will stabilize.  

In order to count for the overall delay, we need to look at the longest path delay of the carry-skip adder. 
The longest path is the path that passes through the skip logic plus the un-skipped FA stages at the two ends 
of the adder as shown in Figure 10 
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Figure 8: Using multiplexers in the carry-skip logic. 

 

 
Figure 9: More simplified carry-skip logic. 

 

 
Figure 10: The longest path delay in carry-skip adders. 

 Note that the first skipped block needs to have the same size as the un-skipped block prior to it so that all 
the first multiplexer’s inputs arrive simultaneously. Subsequent blocks can have larger size so that the carry 
will skip more bits and the adder speed will be increased. In this case, the adder is called one-level carry-skip 
adder with variable block sizes. The adder speed can be improved even more by using a multilevel skip 
structure; the skip logic determines whether a carry entering one block may skip the next group of blocks. 
However, the main design problem with the adder is working out how best to group the “skips” [24].  

In the literature, there exist many proposals for optimum design of carry-skip adders. Based on some 
assumptions and some input variables in addition to the desired size, the proposed algorithms decide on the 
optimum size of each block and some times the number of skip levels. For more details, please refer to the 
mentioned references at the beginning of this section. 

The carry-skip adder has a simple and regular structure that requires an area in the order of Ο(n) which 
is hardly larger then the area required by the ripple-carry adder. The time complexity of the carry-skip adder 
is bounded between O( n ) and Ω(log_n). An equal-block-size one-level carry-skip adder will have a time 

complexity of O( n ). However, a more optimized multi-level carry-skip adder will have less time latency 
reported in reference [29] to be Ο(log n). 
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3.5 Comparison 
This section compares two fast speed adders described above: the carry-skip adder and carry-lookahead 

adder. By relaying on some recently published research, the two adders will be compared in terms of time, 
area and power.  

In order to have a fair comparison, we claim that the adders need to be design at the VLSI level. Using 
FPGAs to implement and compare both adders will give results that are most probably inconsistent with 
results obtained from a practical implementation. In addition, it has been shown that optimizing the carry-
skip adder is highly dependent on the time delay deference between the skip logic and the propagate logic. 
Thus, optimizing the carry-skip adder on FPGAs is difficult and may not lead to an optimum time delay. This 
explains why implementing the carry-skip adder on FPGAs as in reference [30] results in a time delay that is 
not much better that the delay of the ripple-carry adder.  

In reference [29], the two adders were designed using the CMOS technology and compared. A 32-bit 
carry-skip adder was better than a 32-bit carry-lookahead adder in terms of time, area and power. A carry-
skip adder, that has multi-level skip logic, was compared with a conventional carry-lookahead adder. The 
carry-skip adder was 14 % faster. However, if the adder size is increased to 64 bits, the carry-lookahead 
adder starts to have slight improvement in time over the carry-skip adder. 

The carry-skip adders have the potential for reduced power dissipation because they requires only 
propagate signals, in contrast with the carry-lookahead adders that require both propagate and generate 
signals [29]. Moreover, the carry-skip adders require a linear area that is hardly larger then the area required 
by the ripple-carry adder. This means much lower power consumption than the carry-lookahead adders. 
Reference [29] reports that the carry-skip adder’s power dissipation was 58 % of that of the carry-lookahead 
adder.  

If one-level carry-skip adder is used, as in reference [27], then 64-bit carry-skip adder is 38% slower 
than 64-bit carry-lookahead adder. However, the carry-skip adder is still better than the carry-lookahead 
adder in the average power consumption by 33% and in chip area by 32%.  

The results presented here matches with the theoretical analysis presented before. A full-optimized 
carry-skip adder is comparable in speed with a conventional carry-lookahead adder since they are of the same 
complexity class, Ο(log n). However, the carry-skip adder is much better than the carry-lookahead adder in 
terms of area and power consumption.   
 

4.  Conclusion 
This work studied the modular multiplication problem over large operand sizes. Various types of 

modular multiplication algorithms have been presented and the time complexities of these algorithms were 
compared. Two implementations for Montgomery’s method and the method of interleaving multiplication 
and reduction were modeled using VHDL and synthesized. A time-area analysis of both implementations 
showed that Koc’s implementation [6] based on carry-save adders of the interleaving method has the 
potential to be one of the most effective solutions in terms of time and hardware requirements. This 
implementation was improved further by parallelizing the final correction step of the algorithm. In addition, 
pipelining was used to compute two separate modular multiplication operations simultaneously. A radix-4 
modular multiplier based on Koc’ implementation was proposed, too. 

Carry-save adders give the maximum speedup in computing the partial products since they have 
constant time complexity. However, full-length addition on the sum-carry pair needs to be carried out at the 
last iteration. This final addition is done through dedicated binary adder. Two binary adders were studied: the 
carry-lookahead adder and the carry-skip adder. It has been shown that the two adders can be of a 
comparable speed. However, the carry-skip adders require smaller area and consume much less power than 
the carry-lookahead adders. 
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