A Hardware Model of an Expandable RSA Cryptographic System

by

Adnan Abdul-Aziz M.S. Gutub

A Thesis Presented to the

FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER ENGINEERING

December, 1998

A Hardware Model of an Expandable RSA Cryptographic System

Adnan Abdul-Aziz M.S. Gutub

A Thesis Presented to the FACULTY OF THE COLLEGE OF GRADUATE STUDIES KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN, SAUDI ARABIA

> in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Computer Engineering

December 1998

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

The Thesis, written by

Adnan Abdul-Aziz M. S. Gutub

under the direction of his Thesis advisor and approved by his Thesis Committee, has been presented to and accepted by the Dean of the College of Graduate Studies, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee:

10 1.

27.12.98

Dr. Alaaeldin Amin (Chairman)

Dr. Khalid Elleithy (Member)

28/12,94

Dr. Khalid Al-Tawil (Member)

Department Chairman

Dean, College of Graduate Studies

<u>30-12-98</u> Date

Abstract

Name:

Adnan Abdul-Aziz M. S. Gutub

Title:

A Hardware Model of an Expandable RSA Cryptographic System

Major Field: Computer Engineering

Date of Degree:

December 1998

Data security is an important aspect of information transmission and storage in an electronic form. Cryptographic systems are used to encrypt such information to guarantee its security. To retrieve such information, the encrypted form must be first decrypted. One of the most popular cryptographic systems is the RSA system. The security of the RSAencrypted information largely depends on the size of the used encryption key. The larger the key size is the longer the encryption/decryption time will be. To cope with the continuous demand for larger key sizes, faster hardware implementations of the RSA algorithm has become an active area of research. One disadvantage of hardware implementations is their fixed key sizes. If the key size is to be increased, the hardware design should be fully replaced.

The work reported here proposes an RSA hardware implementation that can be expanded as the key size gets larger. This implementation is modeled using VHDL in a parametrizable manner. Two other parameterized RSA hardware designs have also been VHDL modeled for comparison. The three models are compared for a 1024-bit key size and the results are analyzed. The complexity of the designs are compared and conclusions regarding optimal delay and area parameters are made.

Master of Science Degree

King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia December 1998

بسو الله الرحمن الرحيم

خلاصة الرسالة

الاسك عدنان بن عبدالعزيز بن محمد صديق قطب

عنوان الرسالة : تصميم دائرة إلكترونية دقيقة قابلة للتطوير حسب الحاجة لعمليـــة

التشفير بنظام RSA

التخصيص: هندسة الحاسب الآلي

تاريخ الشهادة: شعبان ١٩١٤هـ

التشفير (Cryptography) هو الأسلوب الأمثل لحماية المعلومات والحفاظ على سريتها. وأحد أنجح طرق التشفير المستخدمة يعرف بـــ(RSA) ، وهي الطريقة التي تعتمد على حجم مفتاح الشفرة لتعقيد استنباط الرسالة الأساسية في وقت قصير ، وتعاني طريقة (RSA) من سلبية في تصميمها بالدوائر الإلكترونية الدقيقة ، وهـــي أن الدوائر مصممة للتشفير بمفتاح ذو حجم معين ثابت ، لو تغير لأحتاج تغيير التصميم الإلكتروني بالكلية.

وقد تم في هذا البحث تصميم طريقة حديدة مبنية على فكرة تطوير الدائرة الإلكترونية الدقيقة حسب الحاجة، بحيث تم تمثيل هذا التصميم باستعمال نموذج محاكاة التصميم الإلكتروني باستخدام لغة (VHDL)، وقورن هذا النموذج بالتفصيل مع تصميمين آخرين أيضاً باستخدام (VHDL)، وأثبت التصميم المقترح تفوقاً في السرعة بالرغم من أنه يعتبر الأكبر مساحة.

وقد تم إحراء مقارنة بين التصاميم الثلاثة من حيث كفاءة الأداء والسرعة و التكلفة (التكلفة - المساحة × الســرعة)، وأظهر التصميم المقترح نتائج مقاربة لأفضل تصميم. واعتبرت زيادة التكلفة نوع من الثمن مقابل للمرونة المتوفرة في هذا التصميم والتي تجعله قابل للتطوير حسب حاحة المستخدم.

درجة الماجستير في العلوم جامعة الملك فهد للبترول والمعادن الظهران – المملكة العربية السعودية شعبان 1219هـ

Contents

	List	of Figu	res	ix
	List	of Tabl	les	хi
	Abst	ract (E	English)	xii
	Abst	ract (A	Arabic)	xiii
i	Introduction			
•	1.1		Objective	2
	1.2		Outline	2
	1.2	1 116212	Outilie.	_
2	Cry	ptogra	aphic Systems	4
	2.1	Introd	uction	4
		2.1.1	Substitution	5
		2.1.2	Transposition	6
	2.2	Public	: Key Cryptosystems	6
		2.2.1	Fundamental Operators	7
		2.2.2	Historical Background	8
2.3 The RSA System				9
		2.3.1	RSA Encryption	10
		2.3.2	Generation of the RSA Keys	10
		2.3.3	Example on Encryption Using RSA System	10
		2.3.4	The RSA Digital Signature Scheme	11
		2.3.5	Security of the RSA Cryptosystem	12
		2.3.6	RSA Speed	

	2.4	Summ	ary	12
3	Rev	view of	RSA Hardware Implementations	13
	3.1	Introd	uction	13
	3.2	General Techniques for Modular Operations		14
		3.2.1	The Repeated Squaring Algorithm	14
		3.2.2	General Modular Multiplication Techniques	15
	3.3	Logari	thmic Speed Implementation	17
		3.3.1	The Algorithm	17
		3.3.2	The Implementation	18
	3.4	Imple	mentations of Montgomery's Algorithm	18
		3.4.1	Montgomery's Algorithm For Exponentiation	18
		3.4.2	Montgomery's Algorithm Hardware Designs	19
	3.5	Full R	SA Implementations	20
3.6 Systolic Arrays for Modular Exponentiation			ic Arrays for Modular Exponentiation	21
		3.6.1	Systolic Array for Multiplication	21
		3.6.2	Montgomery Reduction by the Systolic Multiplier	22
	3.7	Summ	ary	24
4 A Hardware Model of an Expandable RSA Cryptographi			re Model of an Expandable RSA Cryptographic System	26
	4.1	Introd	uction	26
	4.2	The S	ystolic Multiplier	27
		4.2.1	The Basic Cell of The Systolic Multiplier	28
		4.2.2	The b-bit Parallel Multiplier	29
	4.3	4.3 Montgomery Product Design		29
		4.3.1	Montgomery Product Implementation	31
		4.3.2	Expandability of the parallel MP Implementation	32
		4.3.3	The Expandable MP Design	33
4.4 The Modular Exponentiation System			Modular Exponentiation System	38
		441	The Basic Exponentiation Processor	36

		4.4.2	The Expansion hardware	37
		4.4.3	The Expandable MP Module	37
	4.5	Summ	ary	37
5	Oth	er Imp	olementations	39
	.5.1	Introd	uction	39
	5.2	The M	lerged Exponentiation Hardware	39
		5.2.1	The Merged Montgomery Product Algorithm	4(
		5.2.2	The Merged MP Implementation	4
		5.2.3	The Multiplication Loop Implementation	43
		5.2.4	The Reduction Loop Implementation	44
		5.2.5	The Merged Exponentiation Implementation	46
	5.3	The A	dd/Subtract Exponentiation Design	46
		5.3.1	The Add/Subtract Reduction Unit Implementation	47
		5.3.2	The Add/Subtract Multiplication Implementation	47
		5.3.3	The Modular Add/Subtract Exponentiation Implementation	49
	5.4	Summ	ary	5(
6	Modeling and Analysis			
	6.1	1 Introduction		5
	6.2	Impler	nentation Area	5
		6.2.1	Area of The RSA Implementations	54
	6.3	Speed	and Cost	5
		6.3.1	The Expandable Hardware Cost	56
		6.3.2	The Merged Exponentiation Design Cost	56
		6.3.3	The Add/Subtract Exponentiation Design Cost	5
	6.4	VHDL	Modeling	5
	6.5	Analys	sis	59
		6.5.1	Area and Delay	59
		652	The Implementations Cost	60

	6.6	Summary	62
7	nclusion and Future Work	64	
	7.1	Conclusion	64
	7.2	Future Work	65
	Bibl	iography	66
	Vita	L	70

List of Figures

2.1	The information flow in a classical cryptographic system	4
2.2	Public key cryptographic system (general concept)	8
3.1	The repeated squaring algorithm	14
3.2	The improved repeated squaring algorithm	15
3.3	The multiplication with reduction modified algorithm	16
3.4	Montgomery's algorithm for modular exponentiation	18
3.5	The systolic array	21
3.6	The algorithm for a cell behavior	22
3.7	The systolic Montgomery reduction	23
3.8	Sauerbrey's implementation of Montgomery modular multiplication	24
4.1	The word-serial multiplier (systolic array)	27
4.2	Expandability of the systolic multiplier	27
4.3	Hardware design of the cell	28
4.4	Hardware design of 4-bits parallel multiplier	30
4.5	The MP-algorithm (Montgomery Product)	31
4.6	The signal flow graph	31
4.7	The signal flow graph MP implementation (parallel hardware)	32
4.8	Expandability of the parallel implementation	33
4.9	Projecting all parallel and systolic multipliers into one	33
4.10	The expandable serial MP implementation	34
4.11	Expandable shift registers design	34

Vita

* Adnan Abdul-Aziz M. S. Gutub

- * Received Bachelor of Science in Electrical Engineering from King

 Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi

 Arabia, in January 1995.
- * Working as a Graduate Assistant in Computer Engineering Department at KFUPM since May 1995.
- * Started Computer Engineering graduate program in January 1996.
- * Completed the Master of Science in Computer Engineering from KFUPM in December 1998.

نبذة أكاديمية عن الباحث

- * عدنان بن عبدالعزيز بن محمد صديق قطب
- * حصل على درجة بكالوريوس علوم في الهندسة الكهربائية من جامعة الملك فهد للبترول والمعادن، الظهران، المملكة العربية السعودية في شعبان 1415 هـــ
- * يعمل كمعيد بقسم هندسة الحاسب الآلي في جامعة الملك فهد للبترول والمعادن منذ غرة شهر ذوالحجة 1415هـــ
- أكمل متطلبات درجة الماجستير في علوم هندسة الحاسب الآلي في رجب 1419هـــ