
 1

Efficient FPGA Implementation of a Programmable Architecture for GF(p) Elliptic 
Curve Crypto Computations 
 
Lo’ai Tawalbeh, Abidalrahman Mohammad, Adnan Gutub 
 
Lo’ai Tawalbeh and Abidalrahman Mohammad are with 
Computer Engineering Department, Jordan University of Science and Technology, Irbid, Jordan  
Email: tawalbeh@just.edu.jo, abdmoh@gmail.com 
 

Adnan Gutub is with 
Computer Engineering Department 
King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia 
Email: gutub@kfupm.edu.sa 
 
 
Abstract:  

 

This paper presents a processor architecture for elliptic curve cryptography computations over GF(p). The speed to 

compute the Elliptic-curve point multiplication over the prime fields GF(p) is increased by using the maximum degree 

of parallelism, and by carefully selecting the most appropriate coordinates system. The proposed Elliptic Curve 

processor is implemented using FPGAs. The time, area and throughput results are obtained, analyzed, and compared 

with previously proposed designs showing interesting performance and features. 

 

1 Introduction 

Elliptic curves cryptography (ECC) was proposed in the mid 1980s by Miler [1] and Koblitz [2]. It provides a 

public-key cryptosystem based on the elliptic curve discrete logarithm problem. It is considered the most secure 

public-key scheme until these days [21].  

In this paper, a high speed/throughput crypto-processor architecture for computing point multiplication for the 

elliptic curves defined over the prime fields GF(p) is proposed, and implemented in hardware, using Field 

Programmable Gate Arrays (FPGAs). The proposed architecture utilizes the parallelism of multiplication operations 

to speed up ECC point doubling and addition. Also, the new architecture takes advantage of an efficient projective 

coordinates system to convert GF(p) inversion needed in elliptic point operations into several multiplication steps. In 

more details, the affine coordinates (X, Y) input is projected into (X/Z, Y/Z, Z) which is more efficient than the 

conventional choice of projecting it to (X/Z2, Y/Z3, Z). This choice was made because the proposed architecture 

depends on performing several multiplications in parallel which will not be that efficient when using the conventional 

projective coordinates system, due to data dependency between operands. In addition to that, to increase the processor 

speed, we used very efficient algorithms to compute modular multiplication, addition, and subtraction, based on the 
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argument that the speed of the Elliptic Curve Crypto-processor depends on how fast these arithmetic operations can 

be performed. 

After presenting the proposed architecture for the ECC-processor, the synthesis results for area and delay are 

compared with other related architectures in this research area.  

In the next section, three ECC coordinates systems are discussed based on their relation to this work. Section 3 

presents the modular multiplication method considered based on Montgomery's approach. The modular addition 

operation is detailed in Section 4. The proposed elliptic curve crypto hardware is described in Section 5. Section 6 

provides the simulation and synthesis strategy and results which are compared with other designs showing the benefit 

of this work. The conclusions are presented in Section 7 summarizing the paper and its contributions.  

 

2 ECC Coordinates Systems 

One of the crucial decisions when implementing an efficient elliptic curve cryptosystem over GF(p) is deciding 

which point coordinates system to use. This section investigates the efficiencies of three different coordinates 

systems. The first one is the Affine coordinates where a point is represented as (XA, YA). The other two are and two 

forms of the Projective coordinates: (X, Y) where XA = X/Z and YA = Y/Z, and (X, Y) where XA = X/Z2 and YA = Y/Z3 

[3, 4, 5, 22]. 

Other types of coordinates systems were not considered, either because they are not efficient in general or because 

they are not compatible with the parallel design of the ECC architecture we build. 

 

2.1 Affine Coordinates System 

Affine coordinates system is the simplest coordinates system. However, the modular inversions needed when 

adding and doubling points which are represented using Affine coordinates system make it an inefficient choice. 

Other coordinates systems require at least one extra value to represent a point and do not use modular inversions in 

point addition and doubling, but extra multiplications and squarings are required instead [4, 6, 7, 21]. 

The addition of two different points on the EC in Affine coordinates is computed as:  

(x1, y1) + (x2, y2) = (x3, y3), where x1 ≠ x2 

λ = (y2 − y1)/(x2 − x1) 

x3 = λ2 − x1 − x2 

y3 = λ (x1 − x3) − y1 

The addition of a point to itself (doubling a point) is computed as: 
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(x1, y1) + (x1, y1) = (x3, y3), where x1 ≠ 0 

λ = (3(x1)2 + a)/(2y1) 

x3 = λ2 − 2x1 

y3 = λ (x1 − x3) − y1 

We assume in here that the squaring is equivalent to a multiplication, and addition and subtraction are equivalent. 

Thus, to add two different points in GF(p) we need: six additions, one inversion, and three multiplication operations. 

To double a point we need: four additions, one inversion, and four multiplications. 

 

2.2 Projective Coordinates System (x, y) → (X/Z2, Y/Z3) 

Projective coordinates are used to eliminate the need for performing inversion [8, 9, 22]. For an elliptic curve 

defined over GF(p), the Affine elliptic point (x, y) is projected to (X, Y, Z), where x = X/Z2, and y = Y/Z3 [8]. This 

transformation between Affine and projective coordinates is performed only twice: at the beginning and at the end of 

computations. 

Point addition of P + Q in projective coordinates (x, y) ⇒ (X/Z2, Y/Z3) is computed as: 

P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P + Q = (X3, Y3, Z3), where P ≠ ± Q 

(x, y) = (X/Z2, Y/Z3) → (X, Y, Z) 

λ1 =X1Z2
2 

λ2 = X2Z1
2 

λ3 = λ1 - λ2 

λ4 = Y1Z2
3 

λ5 = Y2Z1
3 

λ6 = λ4 - λ5 

λ7 = λ1 + λ2 

λ8 = λ4 + λ5 

Z3 = Z1Z2 λ3 

X3 = λ6
2 λ3

2 

λ9 = λ7 λ3
2 - 2X3 

Y3 = (λ9 λ6 - λ8 λ3
3)/2 

The doubling of a point (P+P) in projective coordinates is computed as: 

P = (X1, Y1, Z1); P + P = (X3, Y3, Z3) 
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(x, y) = (X/Z2, Y/Z3) → (X, Y, Z) 

λ1 = 3X1
2 + aZ1

4 

Z3 = 2Y1Z1 

λ2 = 4X1Y1
2 

X3 = λ1
2 − 2 λ2 

λ3 = 8Y1
4 

λ4 = λ2 − X3 

Y3 = λ1 λ4 − X3 

The needed multiplications to add two points are sixteen, while there are ten multiplications to double a point. 

 

2.3 Projective Coordinates System (x, y) → (X/Z, Y/Z) 

In this architecture, we will use another projection system, the normal elliptic point (x, y) will be projected to (X, Y, 

Z), where x = X/Z, and y = Y/Z, this way is not usually used because the previous way is simpler and has less number 

of multiplication [7]. A comparison between the two projection ways is done in the next section, it will show that 

projecting to (X/Z, Y/Z) is faster for parallel design. 

The Point addition of P+Q in projective coordinates (x, y) ⇒ (X/Z,Y/Z )is computed as follows: 

P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P + Q = (X3, Y3, Z3), where P ≠ ± Q 

(x, y) = (X/Z, Y/Z) → (X, Y, Z) 

λ1 =X1Z2
2 

λ2 = X2Z1 

λ3 = λ2 - λ1 

λ4 = Y1Z2 

λ5 = Y2Z1 

λ6 = λ5 - λ4 

λ7 = λ1 + λ2 

λ8 = λ6
2 Z1Z2 – λ3

2 λ7  

Z3 = Z1Z2 λ3
3 

X3 = λ8 λ3 

λ9 = λ3
2 X1Z2 - λ8 

Y3 = λ9 λ6 - λ3
3 λ4 
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The doubling of a point (P+P) in this projective coordinates is computed as: 

P = (X1, Y1, Z1); P + P = (X3, Y3, Z3) 

(x, y) = (X/Z, Y/Z) → (X, Y, Z) 

λ1 = 3X1
2 + aZ1

4 

λ2 = Y1Z1 λ2 

λ3 = X1Y1 λ4 = λ1
2 - 8 λ3 

X3 = 2 λ4 λ2 

Y3 = λ1(4 λ3 − λ1) − 8(Y1 λ2)2 

Z3 = 8 λ3
3 

In this projective coordinates system the number of multiplications for adding two points is fifteen, which is one 

multiplication less than previous projection scheme. But the number of multiplications for doubling a point is found to 

be twelve which is two multiplications more than the previous scheme. 

Table 1 compares the point addition and doubling for the three coordinates systems in terms of the number of 

additions (A), multiplications (M), and inversion (I) operations. 

 

Table 1: Comparison between the three coordinates systems 

Coordinates System  Doubling Addition 

Affine  4A + 4M + I 6A + 3M + I 

Projective (x, y) → (X/Z2, Y/Z3)  4A + 10M 6A + 16M 

Projective  (x, y) → (X/Z, Y/Z)  4A + 12M 6A + 15M 

 

2.4 ECC Coordinates System Selection 

The Affine coordinates system uses inversion operation in both point addition and point doubling, which is a costly 

and an inefficient operation, so it will be excluded from our research. We will concentrate on the two projective 

systems discussed above because of their efficiency for parallel designs. 

Field multiplication is the basic EC operation used in computing the point kP from P. Algorithm 1 below is the 

known Scalar Binary Multiplication Algorithm to be used for this field multiplication [21], which is used in this work 

too. The number of bits in the binary representation of an integer k is n indicating the exact number of point 

doublings, but not point additions. Assume the bits of k are half ones and half zeros (an average estimation for 
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comparison reasons similar to [7]), then the EC arithmetic operations required are n point doublings and 

approximately n/2 point additions. 

 

Algorithm 1: Scalar Binary Multiplication Algorithm 

Define n: number of bits in k. 

ki: the i-th bit of K 

Input: P (a point on the elliptic curve). 

Output: Q = kP (another point on the elliptic curve). 

1. if kn−1 = 1, then Q = P else Q = 0. 

2. for i = n-2 down to 0 

3.    Q = Q + Q. 

4.    if ki = 1 then Q = Q + P. 

5. return Q. 

The total number of Montgomery multiplications in EC scalar point multiplication kp in the (x, y)→(X/Z, Y/Z) 

projective coordinates can be calculated as: 

15 (point additions) + 12 (point doublings) = 15(n/2) + 12n = 19.5n 

And when projecting (x, y) to (X/Z2, Y/Z3) it is: 

16 (point additions) + 10 (point doublings) = 16(n/2) + 10n = 18n 

It is obvious here that when projecting (x, y) to (X/Z2, Y/Z3) the total number of multiplications needed is less than that 

when projecting (x, y) to (X/Z, Y/Z) by 1.5n multiplications. This made projecting (x, y) into (X/Z2, Y/Z3) always been 

the candidate for implementing ECC since it has the minimum number of multiplication operations among all 

projection systems [9, 11, 22]. 

One way to speedup computing kp is to parallelize multiplication operations. In fact, the most important factor is 

found to be the number of multiplications in the critical path, especially if the same amount of hardware is used. Deep 

analysis of the critical paths of both projective coordinates indicates that for parallel implementation the maximum 

number of multiplication operations that fit to be parallelized is four in point addition and point doubling for both 

projective coordinates [7]. 

Figures 1 and 2 show the exact analysis of most achievable parallelism for (x, y) → (X/Z2, Y/Z3) projective 

coordinates for point doubling and addition respectively. The corresponding critical path of each dataflow diagram is 
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effectively of 4 GF(p) multiplications for point doubling and of 5 GF(p) multiplications for point addition, and it can 

be achieved efficiently by using four multipliers. 

The time of GF(p) addition and subtraction is ignored since it is very small compared to the multiplication time. 

Therefore, the average time to perform one EC point multiplication operation when calculating of kp operation can be 

found from Figures 1 and 2, which is (4 + 5/2) = 6.5 GF(p) multiplications. 

Figures 3 and 4 show the analysis of most achievable parallelism for (x, y) → (X/Z, Y/Z) projective coordinates. 

Similarly, four multipliers are found sufficient to exploit the full parallelism inherent in this projective coordinates. 

The corresponding critical path of each dataflow diagram is effectively of 3 GF(p) multiplications for point doubling 

and of 4 GF(p) multiplications for point addition. Therefore, the average time to perform one ECC point 

multiplication operation when calculating of kp is (3 + 4/2) = 5 GF(p) multiplications. 

It can be concluded that using projecting (x, y) to (X/Z, Y/Z) is more efficient and appropriate for parallel designs. 

So, it is adopted for the proposed ECC architecture. Furthermore, the utilization of the four multipliers is very high as 

can be seen in Figures 3 and 4 since all four multipliers are utilized in most steps. 

 

3 Montgomery Modular Multiplication 

The modular multiplication problem is defined as the computation of P = X×Y mod M given the integers X, Y, M 

with 0 ≤ X, Y < M. For practical applications only the case of odd M is interesting, where M < 2n ≤ 2M, i.e. the most 

significant bit n − 1 of M is 1, too. There have been several approaches for computing P in hardware. Residue number 

systems, for example, have been recently receiving more attention [12]. Reported implementations, however, have 

ignored the need for conversion between binary and residues numbers. This has discouraged researchers from using 

such an approach [13]. Another approach is based on look-up tables, i.e. ROM-based methods. This method is quite 

expensive since the required memory space grows exponentially with the word size [13]. 

The classical method to compute modulo multiplication is by performing the multiplication and then subtracting 

the modulus several times until the result is less than the modulus. This approach is inefficient and suffers from low 

speed [12,13,14]. The idea of Montgomery is to reduce the lengths of the intermediate results to a fixed quantity of 

n+1 bits. This is achieved by interleaving the computations and additions of new partial products with divisions by 2, 

each of them reducing the bit-length of the intermediate result by one. 

Most existing modular multiplication solutions are based on Montgomery's algorithm [9, 15, 16]. The basic idea of 

Montgomery is the following: adding a multiple of M to the intermediate results does not change the value of the final 

result, because the result is computed modulo M; where M is an odd number. So, after each addition in the inner loop 
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the least significant bit of the intermediate result is inspected. If it is 1, i.e. the intermediate result is odd, we add M to 

make it even. This even number can be divided by 2 without remainder. This division by 2 reduces the intermediate 

result to n+1 bits again. 

Algorithm 2: Conventional Montgomery Multiplication 

Require: X, Y, M, 0 ≤  X, Y < M.  

Ensure: P = (X × Y × (2n)−1) mod M. 

n: number of bits in X. 

xi : i-th bit of X. 

s0: LSB of S. 

1. P = 0. 

2. for i = 0 to n − 1 do 

3.   P = P + xi × Y . 

4.   P = P + s0 × M. 

5.   P = P / 2; 

6. if P ≥ M then P = P − M. 

 

After n steps these divisions add up to one division by 2n. Montgomery Multiplication requires two passes through 

the same multiplication process, therefore doubling the computation time. The first pass computes 

P=(X×Y×(2n)−1) mod M and the second pass computes (P ×22n × (2n)−1) mod M = (X × Y ) mod M which is the 

desired result. 

On the other hand, it is very easy to implement since it operates on the least significant bit first and does not require 

any comparisons. Therefore, it can be implemented using carry save adders and a redundant representation of the 

intermediate results. Carry save adders have a latency of O(1) in comparison to standard ripple carry adders with a 

latency of O(n) and carry lookahead adders with a latency of O(log n). Their disadvantage is that they add three 

operands to two results, thus producing a result in redundant form which does not allow comparisons to other values 

in constant time. A modification of Montgomerys Algorithm with carry save adders is shown in Algorithm 3 

[9,12,13,15,16]. 

In this algorithm the delay of one pass through the loop is reduced from O(log n) to O(1). We take the notion of an 

assignment of the sum of three operands to two values S,C as in order to indicate the use of a carry save adder. 

Algorithm 3: Montgomery Multiplication using Redundant CSA 
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Require: X, Y, M, 0 ≤ X, Y < M.  

Ensure: P = (X × Y ×(2n)−1) mod M. 

n: number of bits in X. 

xi : i-th bit of X. 

s0: LSB of S. 

1. S = 0; C = 0. 

2. for i = 0 to n − 1 do 

3.    S,C = S + C + xi × Y . 

4.    S,C = S + C + s0 × M. 

5.    S = S / 2; C = C / 2. 

6. P = S + C. 

 

Of course, the addition in step 6 is conventional addition. But since they are performed only once while the 

additions in the loop are performed n times this is subdominant with respect to time complexity. 

Figure 5 shows the design of the Montgomery multiplier mentioned in Algorithm 3, the design consists of 2 carry 

save adders. The three inputs of the first adder are the sum and carry of the previous iteration shifted by one bit 

denoted by " << " to the right (zeros the first iteration), and Y.xi (Y if the i − th bit of vector X is one and zero 

otherwise). The inputs of the second carry save adder are the sum and carry outputs of the first adder and s0.M (M if 

bit zero of the sum is one and zero otherwise). 

The critical path delay of this multiplier could be calculated as follows:  

critical path delay  = 2 (CSA delay) + 2 (AND gate delay). 

= 4 (XOR gate delay) + 2 (AND gate delay). 

The operating frequency of the multiplier is expected to be high, since it is the reciprocal of the critical path delay 

which is relatively small. 

 

4 Modular Addition Subtraction 

The modular addition operation adds two inputs, A and B (both < M), and subtracts the modulus M from the sum if 

(A+B)≥M, if not the answer remains (A+B). Implementing the two cases in parallel by calculating (A+B) and 

((A+B)−M) and choosing one of them depending on the sign of (A+B−M) omits the cost of reduction. To perform 

modular subtraction, (A−B) and (A−B+M) are calculated in parallel. If the result of (A−B) is positive then it is the 
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correct answer, and if it is negative then (A−B+M) is the correct answer. 

By this method, both possible results are computed in slightly more time than a single n-bit addition, and the 

correct result is selected depending on the sign of the results. This eliminates the necessity to wait a full n-bit 

magnitude comparison before deciding whether to add M, subtract M or do nothing. Algorithm 4 summarizes the idea: 

Algorithm 4: Modular Addition Subtraction 

Require: M, 0 ≤ A < M, −M ≤ B < M 

Ensure: C = A ± B mod M 

1. C' = A ± B 

2. if B > 0 and C' > M then 

3.    C'' = A + B − M 

4. elsif B < 0 and C' < 0 then 

5.    C'' = A − B + M 

6. else 

7.    C'' = C' 

 

To eliminate the cost of reduction (subtracting or adding M when the result is grater than M or less than zero) a 

especial design is used. Both the reduced and non-reduced values are calculated and the correct answer is then 

selected depending on the result. 

Figure 6 shows the design of the Modular Adder Subtractor Shifter that implements Algorithm 3. The design 

consists of 2 Carry Propagate Adders (CPA), a Carry Save Adder (CSA) and four Multiplexors (MUX). The inputs of 

the design are selected using multiplexors depending on the operation. For example if addition is to be performed, the 

first MUX selects −p, the second and the third select a and b to calculate both (a + b − p) on CPA1 and (a + b) on 

CPA2. One of the results is then selected depending on the sign of (a + b − p), if it is positive, then it is the correct 

answer, if not then (a + b) is the correct answer. 

Similarly, in case of subtraction, multiplexors select p, a, and −b to calculate both (a − b + p) on CPA1 and (a − b) 

on CPA2. One of the results is then selected depending on the sign of (a − b), if it is positive then it is the correct 

answer, otherwise then (a − b + p) is the correct answer. In case of shifting, the inputs are −p, 2a, and zero, the result 

of CPA1 is selected if it is positive (2a−p ≥ 0) if not, the result of CPA2 (2a) is selected. 

Carry propagation delay is a problem in this part of the design. It was avoided in Montgomery multiplier by using 

CSAs, but here CSAs cannot be used because their output is in redundant form, and the inputs to the Montgomery 
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multipliers in the next iteration must be in conventional form. The carry propagation delay could be minimized by 

using advanced adders such as carry look ahead adders but this will require large area that might not be available for 

this design. Instead of using such adders, we use a especial carry propagate adder that has a small precision and it 

calculates the result in many cycles, which minimizes the area and increases the operating frequency of the adder.  

Figure 7 shows the input register width (n bits) is divided to many words each is L-bits width (padding with zeros is 

used if less than L bits remain in the last word). At each clock cycle L-bit word from input registers is added, the carry 

out of each part is used as a carry in to the next iteration and the output is written to the output register. The delay of 

the addition mainly depends on the width of the adder L. The critical path delay calculation will be different here, 

because special built-in adders of the target device (will be investigated in next chapter) have much less propagation 

time than manually built adders. (For example: the delay of a 32-bit built in adder is 16.67ns but 28.5ns for manually 

designed adders on VirtexE XCV600E device). 

The value of L could be determined from the view of the overall design, a trade-off between the number of cycles 

and the cycle delay occurs. Number of cycles increased by n/L, but the benefit of decreasing cycle time is much 

larger, because the Montgomery multiplier has relatively small cycle time and large number of cycles. The cycle time 

of the whole design will depend on the greatest cycle time of either the modular adder or Montgomery multiplier (it 

will be explained in the next section). 

The number of cycles in the Montgomery multiplication the EC point multiplication operation is 5n and the number 

of cycles taken in addition is 8(n/L), this mean that if this adder is used 8(n L −1) extra cycles are needed. But 

5n+8(n/L) cycles will benefit from decreasing the cycle time, which results in a good increase in performance if L is 

chosen correctly (selecting L for this design is done based on the synthesis results and its typical value is found to be 

32). 

 

5 EC Crypto-processor Datapath 

The hardware architecture of the datapath of the EC crypto-processor is shown in Figure 8. It consists of four 

Montgomery Modular multipliers (MM), four Modular-Adder Subtractors (MA-S), a control unit, General Purpose 

(G.P) Register file and 16 input/output registers. 

At each state, signals from the control unit start either the MM units or the MA-S units as needed. The inputs to 

MM units could be taken from the user or from the output of MA-S units. Inputs of MA-S units are taken from the 

output of MA-S units themselves or from MM units. Also control signals enable or disable all input/output registers 

and general purpose registers as needed. 
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It is worth mentioning a simple protocol for providing the start signal as the inputs are ready, and finish signal 

when the outputs are ready is used for both MM and MA-S units. This allows easy modifications on the datapath. For 

example radix-2 MM could be replaced with radix-4 or word-based MMs. 

 

6 Simulations Synthesis and Comparison Results 

The previously described EC crypto-processor was implemented in VHDL, and simulated in Mentor-Graphic 

simulation tool (ModelSim) to validate its functional correctness. It was synthesized using Xilinx synthesis tool, with 

the target FPGA chip family chosen to be virtex5. It is a new unique one that provides large area (330000 logic cells) 

with 65 − nm copper CMOS process technology, and operates on high frequency (up to 550 MHz). The used chip 

within this family was XC5VLX30. 

Firstly, synthesis was carried independently for the MM and MA-S units. Figure 9 shows the operating frequency 

of the MM units operate on the range from 230 to 340 MHz depending on datapath width. The area of MM units for 

different datapath widths is shown in Figure 10 in terms of the number of slices and LUTs (Look Up Tables). 

For MA-S units Figure 11 shows that the operating frequency range is from 190 to 300 MHz depending on datapath 

width. The area of the results are in terms of the number of slices and LUTs as shown on Figure 12. Synthesis results 

show that the EC crypto-processor operate at frequency range from 200 to 228 MHz as can be seen from Figure 13. 

Compared with other designs, it is a high frequency, that is due to two reasons, the first is the efficient datapath design 

that use such as using CSAs in Montgomery Multiplication and built-in CPA with small width and the efficient 

reduction algorithm, the second reason is using a new device with advanced features, high operational speed and large 

area. 

From the previous figures, anyone can note that the frequency of the whole processor could be more than the 

frequency of some of its components (such as adders), which seems to be not logical. Register retiming or register 

balancing is a technique in which part of the hardware before or after the register is transferred to other side within the 

datapath, in order to balance the delay before and after it, so the frequency of the design is increased. If this property 

is disabled, the results would be logical but the frequency will decrease. Figure 14 and Table 2 show the area of the 

EC crypto-processor. The area increase is expected. The area of the datapath it is almost four times the area of a MM 

and a MA-S units, which sound logical. 

 

Table 2: Datapath Area 

Datapath Width (bits) Number of Slices  Number of LUTs 
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50 

100 

150 

200 

250 

300 

4598 

8568 

11926 

15892 

19250 

23216 

8284 

16018 

22652 

29868 

37082 

44029 

 

The amount of increase in the throughput compared to a similar serial design could be estimated by dividing the 

number of multiplications in serial design by the number of multiplications in parallel design:  

Throughput increase = 19.5/5 % = 390% 

The time needed to compute one Montgomery Multiplication can be computed by: 

Tmult = (cycles/bit) × n × clockperiod. 

At operand precision of n=256 bits, the time required to compute one Montgomery multiplication: 

Tmult = 1 × 256 × 5 × 10−9 = 1.28 µsec 

From section 3.2 EC point addition needs 4 multiplications so: 

Tadd = 4 Tmult = 4 (1.28) = 5.12 µsec 

And EC point doubling needs 3 multiplications so: 

Tdouble = 3 Tmult = 3 (1.28) = 3.84 µsec 

To compute the scalar point multiplication (kp), an inversion is required to transform the results from projective to 

affine coordinates, the time needed to compute modular inversion is estimated by: Tinv = 3 Tmult = 3.84 µsec.  

From the above equation we can compute the time needed for an EC point multiplication: 

Tkp = k  Tdouble+ 0.5 k Tadd + Tinv = 3  k  Tmult + 4 (0.5) (k) Tmult + 3 Tmult = 5 (k + 3) Tmult 

Assuming that the length of binary vector k is equal to n then: 

Tkp = 5 (n + 3) (n) clockperiod = 5 (n2 + 3n) clockperiod 

Comparisons with other designs could be inconsistent because of the use of different designs, Galois Fields and 

devices technologies. But comparing the number of EC point multiplication operations per second could be the most 

compatible way for comparison.  

The number of EC point multiplications within a second is the inverse of Tkp:  

EC mult/sec = 1/Tkp = frequency/5 (n2 + 3n). 

For comparison purpose it can be approximated by: 
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= frequency/5 (n2). 

Eberle et al. [17] processor operate on 66 MHz . The number of ECC point multiplications per second 

= 66 × 106/(19.5 × n2), which equals: 3.4 × 106/n2. For our processor it is: 200 × 106/(5 × n2) which equals 

40 ×106/n2. So our processors throughput is 40/3.4 = 11.7 times greater. 

Satoh and Takano [18] processor can perform 700 point multiplications per second on 192-bit prime field. For our 

processor, 206 ×109/(5×1922) = 1120 point multiplications per second for the same field can be done, compared with 

it our design is 1120/700 = 1.6 times faster, although there was implemented on ASIC device and is dedicated for one 

prime field which makes it simpler and faster. 

Also, our design is 3.5 times faster than Orlando and Paar [19] processor which can perform 330 multiplications per 

second on a dedicated 192 bit prime field, and 14.5 and 6.4 times faster than Ors et al. [20] and Crowe et al. [11] 

processors that can operate 70 and 174 point multiplications per second on a dedicated 160 and 256 bit prime fields, 

respectively. 

 

7 Conclusions 

In this paper, a new crypto-processor architecture to compute the point multiplication for the elliptic curves defined 

over the prime fields GF(p) is implemented. Unlike known architectures, this EC crypto-processor depends on 

parallelizing the multiplication operations to speed up EC point doubling and addition rather than sequential 

multiplication which result in great increases in performance.  

We also showed that the maximum parallelism occurs when projecting the input (x,y) into (X/Z,Y/Z) rather than 

conventional choice of projecting it to (X/Z2, Y/Z3), the affine coordinates system was excluded because it requires the 

costly inversion operation in point addition and doubling. 

Very efficient algorithms to compute modular multiplication, addition, and subtraction where used, such as 

Montgomery Multiplication with CSA adders, pre-computing of reduced and non-reduced results in Modular 

Addition, and the usage of small width adders for many cycles to add larger precisions operands.  

The Usage of parallelism, efficient coordinates system, and fast algorithms in field operations lead to a very large 

increase in the throughput and performance of the proposed Elliptic Curve Crypto-processor compared to other well 

known ones. 
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Figure Captions: 

Figure 1. ECC point doubling in (x, y) → (X/Z2, Y/Z3) projection 

Figure 2. ECC point addition in (x, y) → (X/Z2, Y/Z3) projection 

Figure 3. ECC point doubling in (x, y) → (X/Z, Y/Z) projection 

Figure 4. ECC point addition in (x, y) → (X/Z, Y/Z) projection 

Figure 5. Montgomery modular multiplier design 

Figure 6. Modular adder subtractor shifter 

Figure 7. Adder design 

Figure 8. ECC datapath 

Figure 9. Montgomery modular multiplier frequency 

Figure 10. Montgomery modular multiplier area 

Figure 11. Modular adder-subtractor frequency 

Figure 12. Modular adder-subtractor area 

Figure 13. Datapath frequency 

Figure 14. Datapath area 
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